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UNIT I 

 
 

INTRODUCTION TO NEURAL NETWORKS 

 
Soft Computing refers to a partnership of computational techniques in computer science, artificial 

intelligence, machine learning and some engineering disciplines, which attempt to study, model, and analyze 

complex phenomena. The principle partners at this juncture are fuzzy logic, neuron-computing, probabilistic 

reasoning, and genetic algorithms. Thus the principle of soft computing is to exploit the tolerance for 

imprecision, uncertainty, and partial truth to achieve tractability, robustness, low cost solution, and better 

rapport with reality. Learn more in: Adaptive Neuro-Fuzzy Systems. 

 

FUNDAMENTAL CONCEPTS: 

Neural networks are parallel computing devices, which is basically an attempt to make a computer model of 

the brain. 

The main objective is to develop a system to perform various computational tasks faster than the traditional 

systems. These tasks include pattern recognition and classification, approximation, optimization, and data 

clustering. 

What is Artificial Neural Network? 

Artificial Neural Network (ANN) is an efficient computing system whose central theme is borrowed from the 

analogy of biological neural networks. ANNs are also named as ―artificial neural systems,‖ or ―parallel 

distributed processing systems,‖ or ―connectionist systems.‖ ANN acquires a large collection of units that are 

interconnected in some pattern to allow communication between the units. These units, also referred to as 

nodes or neurons, are simple processors which operate in parallel. 

Every neuron is connected with other neuron through a connection link. Each connection link is associated 

with a weight that has information about the input signal. This is the most useful information for neurons to 

solve a particular problem because the weight usually excites or inhibits the signal that is being 

communicated. Each neuron has an internal state, which is called an activation signal. Output signals, which 

are produced after combining the input signals and activation rule, may be sent to other units. 

EVOLUTION OF ARTIFICIAL NEURAL NETWORKS: 

The history of ANN can be divided into the following three eras − 

ANN during 1940s to 1960s 

Some key developments of this era are as follows − 
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 1943 − It has been assumed that the concept of neural network started with the work of physiologist, 

Warren McCulloch, and mathematician, Walter Pitts, when in 1943 they modeled a simple neural 

network using electrical circuits in order to describe how neurons in the brain might work. 

 1949 − Donald Hebb‘s book, The Organization of Behavior, put forth the fact that repeated activation 

of one neuron by another increases its strength each time they are used. 

 1956 − An associative memory network was introduced by Taylor. 

 1958 − A learning method for McCulloch and Pitts neuron model named Perceptron was invented by 

Rosenblatt. 

 1960 − Bernard Widrow and Marcian Hoff developed models called "ADALINE" and 

―MADALINE.‖ 

ANN during 1960s to 1980s 

Some key developments of this era are as follows − 

 1961 − Rosenblatt made an unsuccessful attempt but proposed the ―backpropagation‖ scheme for 

multilayer networks. 

 1964 − Taylor constructed a winner-take-all circuit with inhibitions among output units. 

 1969 − Multilayer perceptron (MLP) was invented by Minsky and Papert. 

 1971 − Kohonen developed Associative memories. 

 1976 − Stephen Grossberg and Gail Carpenter developed Adaptive resonance theory. 

ANN from 1980s till Present 

Some key developments of this era are as follows − 

 1982 − The major development was Hopfield‘s Energy approach. 

 1985 − Boltzmann machine was developed by Ackley, Hinton, and Sejnowski. 

 1986 − Rumelhart, Hinton, and Williams introduced Generalised Delta Rule. 

 1988 − Kosko developed Binary Associative Memory (BAM) and also gave the concept of Fuzzy 

Logic in ANN. 

Soft computing characterstics: 
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The historical review shows that significant progress has been made in this field. Neural network based chips 

are emerging and applications to complex problems are being developed. Surely, today is a period of 

transition for neural network technology. 

Human expertise Soft computing utilizes human expertise in the form of fuzzy if-then rules, as well as in 

conventional knowledge representations, to solve practical problems. Biologically inspired computing 

models Inspired by biological neural networks, artificial neural networks are employed extensively in soft 

computing to deal with perception, pattern recognition, and nonlinear regression and classification problems. 

New optimization techniques Soft computing applies innovative optimization methods arising from various 

sources; they are genetic algorithms (inspired by the evolution and selection process), simulated annealing 

(motivated by thermodynamics), the random search method, and the downhill Simplex method. These 

optimization methods do not require the gradient vector of an objective function, so they are more flexible in 

dealing with complex optimization problems. Numerical computation Unlike symbolic AI, soft computing 

relies mainly on numerical computation. Incorporation of symbolic techniques in soft computing is an active 

research area within this field. New application domains Because of its numerical computation, soft 

computing has found a number of new application domains besides that of AI approaches. These application 

domains are mostly computation intensive and include adaptive signal processing, adaptive control, 

nonlinear system identification, nonlinear regression, and pattern recognition. Model-free learning Neural 

networks and adaptive fuzzy inference systems have the ability to construct models using only target system 

sample data. Detailed insight into the target system helps set up the initial model structure, but it is not 

mandatory. Intensive computation Without assuming too much background knowledge of the problem being 

solved, neuro-fuzzy and soft computing rely heavily on high-speed number-crunching computation to find 

rules or regularity in data sets. This is a common feature of all areas of computational intelligence. Fault 

tolerance Both neural networks and fuzzy inference systems exhibit fault tolerance. The deletion of a neuron 

in a neural network, or a rule in a fuzzy inference system, does not necessarily destroy the system. Instead, 

the system continues pedorming because of its parallel and redundant architecture, although performance 

quality gradually deteriorates. Goal driven characteristics Neuro-fuzzy and soft computing are goal driven; 

the path leading from the current state to the solution does not really matter as long as we are moving toward 

the goal in the long run. This is particularly true when used with derivative-free optimization schemes, such 

as genetic algorithms, simulated annealing, and the random search method. Domainspecific knowledge helps 

reduces the amount of computation and search time, but it is not a requirement. Real-world applications Most 

real-world problems are large scale and inevitably incorporate built-in uncertainties; this precludes using 

conventional approaches that require detailed description of the problem being solved. Soft computing is an 

integrated approach that can usually utilize specific techniques within subtasks to construct generally 

satisfactory solutions to real-world problems. The field of soft computing is evolving rapidly; new 

techniques and applications are constantly being proposed. We can see that a firm foundation for soft 
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computing is being built through the collective efforts of researchers in various disciplines all over the world. 

The underlying driving force is to construct highly automated, intelligent machines for a better life 

tomorrow, which is already just around the corner 

MODEL OF ARTIFICIAL NEURAL NETWORK: 

The following diagram represents the general model of ANN followed by its processing. 

The inventor of the first neuro computer, Dr. Robert Hecht-Nielsen, defines a neural network as − "...a 

computing system made up of a number of simple, highly interconnected processing elements, which process 

information by their dynamic state response to external inputs.‖ Basic Structure of ANNs The idea of ANNs 

is based on the belief that working of human brain by making the right connections, can be imitated using 

silicon and wires as living neurons and dendrites. The human brain is composed of 86 billion nerve cells 

called neurons. They are connected to other thousand cells by Axons. Stimuli from external environment or 

inputs from sensory organs are accepted by dendrites. These inputs create electric impulses, which quickly 

travel through the neural network. A neuron can then send the message to other neuron to handle the issue or 

does not send it forward. 

 ANNs are composed of multiple nodes, which imitate biological neurons of human brain. The neurons are 

connected by links and they interact with each other. The nodes can take input data and perform simple 

operations on the data. The result of these operations is passed to other neurons. The output at each node is 

called its activation or node value. Each link is associated with weight. ANNs are capable of learning, which 

takes place by altering weight values. The following illustration shows a simple ANN  

Types of Artificial Neural Networks There are two Artificial Neural Network topologies − FeedForward and 

Feedback. FeedForward ANN The information flow is unidirectional. A unit sends information to other unit 

from which it does not receive any information. There are no feedback loops. They are used in pattern 

generation/recognition/classification. They have fixed inputs and outputs. 

FeedBack ANN: Here, feedback loops are allowed. They are used in content addressable memories. 

Working of ANNs In the topology diagrams shown, each arrow represents a connection between two neurons 

and indicates the pathway for the flow of information. Each connection has a weight, an integer number that 

controls the signal between the two neurons. If the network generates a ―good or desired‖ output, there is no 

need to adjust the weights. However, if the network generates a ―poor or undesired‖ output or an error, then 

the system alters the weights in order to improve subsequent results. 

Machine Learning in ANNs :ANNs are capable of learning and they need to be trained. There are several 

learning strategies −  Supervised Learning − It involves a teacher that is scholar than the ANN itself. 

Forexample, the teacher feeds some example data about which the teacher already knows the answers. For 
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example, pattern recognizing. The ANN comes up with guesses while recognizing. Then the teacher provides 

the ANN with the answers. The network then compares it guesses with the teacher‘s ―correct‖ answers and 

makes adjustments according to errors.  Unsupervised Learning − It is required when there is no example 

data set with known answers. For example, searching for a hidden pattern. In this case, clustering i.e. dividing 

a set of elements into groups according to some unknown pattern is carried out based on the existing data sets 

present.  Reinforcement Learning − This strategy built on observation. The ANN makes a 

 decision by observing its environment. If the observation is negative, the network adjusts its weights to be 

able to make a different required decision the next time. 

Back Propagation Algorithm It is the training or learning algorithm. It learns by example. If you submit to the 

algorithm the example of what you want the network to do, it changes the network‘s weights so that it can 

produce desired output for a particular input on finishing the training. Back Propagation networks are ideal 

for simple Pattern Recognition and Mapping Tasks. Bayesian Networks (BN) These are the graphical 

structures used to represent the probabilistic relationship among a set of random variables. Bayesian networks 

are also called Belief Networks or Bayes Nets. BNs reason about uncertain domain. In these networks, each 

node represents a random variable with specific propositions. For example, in a medical diagnosis domain, 

the node Cancer represents the proposition that a patient has cancer. The edges connecting the nodes 

represent probabilistic dependencies among those random variables. If out of two nodes, one is affecting the 

other then they must be directly connected in the directions of the effect. The strength of the relationship 

between variables is quantified by the probability associated with each node. There is an only constraint on 

the arcs in a BN that you cannot return to a node simply by following directed arcs. Hence the BNs are called 

Directed Acyclic Graphs (DAGs). BNs are capable of handling multivalued variables simultaneously. The 

BN variables are composed of two dimensions −  Range of prepositions 

  Probability assigned to each of the prepositions. 

 Consider a finite set X = {X1, X2, …,Xn} of discrete random variables, where each variable Xi may take 

values from a finite set, denoted by Val(Xi). If there is a directed link from variable Xi to variable, Xj, then 

variable Xi will be a parent of variable Xj showing direct dependencies between the variables. The structure 

of BN is ideal for combining prior knowledge and observed data. BN can be used to learn the causal 

relationships and understand various problem domains and to predict future events, even in case of missing 

data. Building a Bayesian Network A knowledge engineer can build a Bayesian network. There are a number 

of steps the knowledge engineer needs to take while building it. Example problem − Lung cancer. A patient 

has been suffering from breathlessness. He visits the doctor, suspecting he has lung cancer. The doctor knows 

that barring lung cancer, there are various other possible diseases the patient might have such as tuberculosis 
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and bronchitis. Gather Relevant Information of Problem  Is the patient a smoker? If yes, then high chances of 

cancer and bronchitis. 

  Is the patient exposed to air pollution? If yes, what sort of air pollution? 

  Take an X-Ray positive X-ray would indicate either TB or lung cancer. 

 Identify Interesting Variables The knowledge engineer tries to answer the questions −  Which nodes to 

represent? 

  What values can they take? In which state can they be? 

 For now let us consider nodes, with only discrete values. The variable must take on exactly one of these 

values at a time. Common types of discrete nodes are −  Boolean nodes − They represent propositions, taking 

binary values TRUE (T) and 

 FALSE (F).  Ordered values − A node Pollution might represent and take values from {low, medium, 

 high} describing degree of a patient‘s exposure to pollution.  Integral values − A node called Age might 

represent patient‘s age with possible values 

 from 1 to 120. Even at this early stage, modeling choices are being made. 
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For the above general model of artificial neural network, the net input can be calculated as 

follows − 

Yin=x1.w1+x2.w2+x3.w3…xm.wm 

                     i.e., i.e., Net input Y =  𝑥𝑖.𝑤𝑖𝑚
𝑖  

The output can be calculated by applying the activation function over the net input. 

Y=F (Yin) 

                      Output = function (net input calculated) 

Areas of Application 

Followings are some of the areas, where ANN is being used. It suggests that ANN has an 

interdisciplinary approach in its development and applications. 

Speech Recognition 

Speech occupies a prominent role in human-human interaction. Therefore, it is natural for 

people to expect speech interfaces with computers. In the present era, for communication with 

machines, humans still need sophisticated languages which are difficult to learn and use. To 

ease this communication barrier, a simple solution could be, communication in a spoken 

language that is possible for the machine to understand. 

Great progress has been made in this field, however, still such kinds of systems are facing the 

problem of limited vocabulary or grammar along with the issue of retraining of the system for 

different speakers in different conditions. ANN is playing a major role in this area. Following 

ANNs have been used for speech recognition − 

 Multilayer networks 
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 Multilayer networks with recurrent connections 

 Kohonen self-organizing feature map 

The most useful network for this is Kohonen Self-Organizing feature map, which has its input 

as short segments of the speech waveform. It will map the same kind of phonemes as the output 

array, called feature extraction technique. After extracting the features, with the help of some 

acoustic models as back-end processing, it will recognize the utterance. 

Character Recognition 

It is an interesting problem which falls under the general area of Pattern Recognition. Many 

neural networks have been developed for automatic recognition of handwritten characters, 

either letters or digits. Following are some ANNs which have been used for character 

recognition − 

 Multilayer neural networks such as Backpropagation neural networks. 

 Neocognitron 

Though back-propagation neural networks have several hidden layers, the pattern of connection 

from one layer to the next is localized. Similarly, neocognitron also has several hidden layers 

and its training is done layer by layer for such kind of applications. 

Signature Verification Application 

Signatures are one of the most useful ways to authorize and authenticate a person in legal 

transactions. Signature verification technique is a non-vision based technique. 

For this application, the first approach is to extract the feature or rather the geometrical feature 

set representing the signature. With these feature sets, we have to train the neural networks 

using an efficient neural network algorithm. This trained neural network will classify the 

signature as being genuine or forged under the verification stage. 

Human Face Recognition 

It is one of the biometric methods to identify the given face. It is a typical task because of the 

characterization of ―non-face‖ images. However, if a neural network is well trained, then it can 

be divided into two classes namely images having faces and images that do not have faces. 

First, all the input images must be preprocessed. Then, the dimensionality of that image must be 

reduced. And, at last it must be classified using neural network training algorithm. Following 

neural networks are used for training purposes with preprocessed image − 
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 Fully-connected multilayer feed-forward neural network trained with the help of back-

propagation algorithm. 

 For dimensionality reduction, Principal Component Analysis (PCA) is used. 

McCullogh-Pitts Model 

In 1943 two electrical engineers, Warren McCullogh and Walter Pitts, published the first paper 

describing what we would call a neural network. Their "neurons" operated under the following 

assumptions: 

1. They are binary devices (Vi = [0,1]) 

2. Each neuron has a fixed threshold, theta 

3. The neuron receives inputs from excitatory synapses, all having identical weights. 

(However it my receive multiple inputs from the same source, so the excitatory weights 

are effectively positive integers.) 

4. Inhibitory inputs have an absolute veto power over any excitatory inputs. 

5. At each time step the neurons are simultaneously (synchronously) updated by summing 

the weighted excitatory inputs and setting the output (Vi) to 1 iff the sum is greater than 

or equal to the threhold AND if the neuron receives no inhibitory input. 

We can summarize these rules with the McCullough-Pitts output rule 

 

and the diagram 

 

Using this scheme we can figure out how to implement any Boolean logic function. As you 

probably know, with a NOT function and either an OR or an AND, you can build up XOR's, 

adders, shift registers, and anything you need to perform computation. 

We represent the output for various inputs as a truth table, where 0 = FALSE, and 1 = TRUE. 

You should verify that when W = 1 and theta = 1, we get the truth table for the logical NOT, 

        Vin  |  Vout 

        -----+------ 

          1  |   0 

          0  |   1 
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by using this circuit: 

 

With two excitatory inputs V1 and V2, and W =1, we can get either an OR or an AND, depending 

on the value of theta: 

 

if  

if  

Can you verify that with these weights and thresholds, the various possible inputs for V1 and 

V2 result in this table? 

 

        V1 | V2 | OR | AND 

        ---+----+----+---- 

         0 |  0 |  0 |  0 

         0 |  1 |  1 |  0 

         1 |  0 |  1 |  0 

         1 |  1 |  1 |  1 

The exclusive OR (XOR) has the truth table: 

        V1 | V2 | XOR 

        ---+----+---- 

         0 |  0 |  0  

         0 |  1 |  1       (Note that this is also a 

         1 |  0 |  1        "1 bit adder".) 

         1 |  1 |  0  

It cannot be represented with a single neuron, but the relationship 

XOR = (V1 OR V2) AND NOT (V1 AND V2) suggests that it can be represented with the 

network 
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Exercise: Explain to your own satisfaction that this generates the correct output for the four 

combinations of inputs. What computation is being made by each of the three "neurons"? 

These results were very encouraging, but these networks displayed no learning. They were 

essentially "hard-wired" logic devices. One had to figure out the weights and connect up the 

neurons in the appropriate manner to perform the desired computation. Thus there is no real 

advantage over any conventional digital logic circuit. Their main importance was that they 

showed that networks of simple neuron-like elements could compute. 

Hebbian Learning Rule 

This rule, one of the oldest and simplest, was introduced by Donald Hebb in his book The 

Organization of Behavior in 1949. It is a kind of feed-forward, unsupervised learning. 

Basic Concept − This rule is based on a proposal given by Hebb, who wrote − 

―When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes 

part in firing it, some growth process or metabolic change takes place in one or both cells such 

that A‘s efficiency, as one of the cells firing B, is increased.‖ 

From the above postulate, we can conclude that the connections between two neurons might be 

strengthened if the neurons fire at the same time and might weaken if they fire at different 

times. 

Mathematical Formulation − According to Hebbian learning rule, following is the formula to 

increase the weight of connection at every time step. 

Δwji (t)=αxi(t).yj(t)Δwji(t)=αxi(t).yj(t) 

Here, Δwji (t) Δwji(t) = increment by which the weight of connection increases at time step t 

αα = the positive and constant learning rate 

xi(t)xi(t) = the input value from pre-synaptic neuron at time step t 

yi(t)yi(t) = the output of pre-synaptic neuron at same time step t 

 

 

Supervised learning takes place under the supervision of a teacher. This learning process is 

dependent. During the training of ANN under supervised learning, the input vector is presented 
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to the network, which will produce an output vector. This output vector is compared with the 

desired/target output vector. An error signal is generated if there is a difference between the 

actual output and the desired/target output vector. On the basis of this error signal, the weights 

would be adjusted until the actual output is matched with the desired output. 

Perceptron 

Developed by Frank Rosenblatt by using McCulloch and Pitts model, perceptron is the basic 

operational unit of artificial neural networks. It employs supervised learning rule and is able to 

classify the data into two classes. 

Operational characteristics of the perceptron: It consists of a single neuron with an arbitrary 

number of inputs along with adjustable weights, but the output of the neuron is 1 or 0 depending 

upon the threshold. It also consists of a bias whose weight is always 1. Following figure gives a 

schematic representation of the perceptron. 

 

Perceptron thus has the following three basic elements − 

 Links − It would have a set of connection links, which carries a weight including a bias 

always having weight 1. 

 Adder − It adds the input after they are multiplied with their respective weights. 

 Activation function − It limits the output of neuron. The most basic activation function 

is a Heaviside step function that has two possible outputs. This function returns 1, if the 

input is positive, and 0 for any negative input. 

Adaptive Linear Neuron (Adaline) 
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Adaline which stands for Adaptive Linear Neuron, is a network having a single linear unit. It 

was developed by Widrow and Hoff in 1960. Some important points about Adaline are as 

follows − 

 It uses bipolar activation function. 

 It uses delta rule for training to minimize the Mean-Squared Error (MSE) between the 

actual output and the desired/target output. 

 The weights and the bias are adjustable. 

Architecture 

The basic structure of Adaline is similar to perceptron having an extra feedback loop with the 

help of which the actual output is compared with the desired/target output. After comparison on 

the basis of training algorithm, the weights and bias will be updated. 

 

 

Multiple Adaptive Linear Neuron (Madaline): 

Madaline which stands for Multiple Adaptive Linear Neuron, is a network which consists of 

many Adalines in parallel. It will have a single output unit. Some important points about 

Madaline are as follows − 

 It is just like a multilayer perceptron, where Adaline will act as a hidden unit between the 

input and the Madaline layer. 
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 The weights and the bias between the input and Adaline layers, as in we see in the 

Adaline architecture, are adjustable. 

 The Adaline and Madaline layers have fixed weights and bias of 1. 

Training can be done with the help of Delta rule The architecture of Madaline consists 

of ―n‖ neurons of the input layer, ―m‖neurons of the Adaline layer, and 1 neuron of the 

Madaline layer. The Adaline layer can be considered as the hidden layer as it is between 

theinput layer and the output layer, i.e. the Madaline layer. 

 

Back Propagation Neural Networks: 

Back Propagation Neural (BPN) is a multilayer neural network consisting of the input layer, at 

least one hidden layer and output layer. As its name suggests, back propagating will take place 

in this network. The error which is calculated at the output layer, by comparing the target output 

and the actual output, will be propagated back towards the input layer. 

Architecture 

As shown in the diagram, the architecture of BPN has three interconnected layers having weights on 

them. The hidden layer as well as the output layer also has bias, whose weight is always 1, on them. As is 

clear from the diagram, the working of BPN is in two phases. One phase sends the signal from the input 

layer to the output layer, and the other phase back propagates the error from the output layer to the input 

layer.In order to train a neural network to perform some task, we must adjust the weights of each 

unit in such a way that the error between the desired output and the actual output is reduced. This 

process requires that the neural network compute the error derivative of the weights (EW). In 

other words, it must calculate how the error changes as each weight is increased or decreased 

slightly. The back propagation algorithm is the most widely used method for determining the 

EW.  

 

The back-propagation algorithm is easiest to understand if all the units in the network are linear. 
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The algorithm computes each EW by first computing the EA, the rate at which the error changes 

as the activity level of a unit is changed. For output units, the EA is simply the difference 

between the actual and the desired output. To compute the EA for a hidden unit in the layer just 

before the output layer, we first identify all the weights between that hidden unit and the output 

units to which it is connected. We then multiply those weights by the EAs of those output units 

and add the products. This sum equals the EA for the chosen hidden unit. After calculating all 

the EAs in the hidden layer just before the output layer, we can compute in like fashion the EAs 

for other layers, moving from layer to layer in a direction opposite to the way activities 

propagate through the network. This is what gives back propagation its name. Once the EA has 

been computed for a unit, it is straight forward to compute the EW for each incoming connection 

of the unit. The EW is the product of the EA and the activity through the incoming connection.  

 

 

 

Radial basis function network: 

In the field of mathematical modeling, a radial basis function network is an artificial neural 

network that uses radial basis functions as activation functions. The output of the network is a 

linear combination of radial basis functions of the inputs and neuron parameters. 

Architecture 

Locally tuned and overlapping receptive fields are well-known structures that have been studied 
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in regions of the cerebral cortex, the visual cortex, and others. Drawing on knowledge of 

biological receptive fields, Moody and Darken proposed a network structure that employs local 

receptive fields to perform function mappings. Similar schemes have been proposed by Powell, 

Broom head and Lowe and many others in the areas of interpolation and approximation theory; 

these schemes are collectively called radial basis function approximations. Here we shall call the 

network structure the radial basis function network or RBFN. 

Wi = ~(x) = ~(llx - uill/o-i), i = 1, 2, ... , H,  

where x is a multidimensional input vector, lli is a vector with the same dimension as 

x, H is the number of radial basis functions (or, equivalently, receptive field units), 

and ~ ( ·) is the ith radial basis function with a single maximum at the origin. There 

are no connection weights between the input layer and the hidden  

Radial Basis Function Networks layer. Typically, R; ( ·) is a Gaussian function or a 

logistic function  

R;,(x) = exp (- llx - uill2 ) 2o}  

1 R;, (x) = _l _+_ex_p_[l-lx ___ u_i_ll2_/_a~ff  

Thus, the activation level of radial basis function wi computed by the ith hidden unit 

is maximum when the input vector x is at the center ui of that unit. The output of an 

RBFN can be computed in two ways. In the simpler method, as shown in Figure 

9.lO(a), the final output is the weighted sum of the output value associated with each 

receptive field:  

H H d(x) = L CiWi = L ciRi(x), (9.16) i=l i=l  

where ci is the output value associated with the ith receptive field. We can a.lso view 

ci as the connection weight between the receptive field i and the output unit. A more 

complicated method for calculating the overall output is to take the weighted average 

of the output associated with each receptive field:  

Weighted average has a higher degree of computational complexity, but it is 

advantageous in that points in the areas of overlap between two or more receptive 

fields will have a well-interpolated overall output between the outputs of the 

overlapping receptive fields. For representation purposes, if we change the radial 

basis function Ri(x) in each node of layer 2 in to its normalized counterpart R;,(x)/ Li 

Ri(x), then the overall output is specified by Equation . A more explicit 

representation is shown in Figure 9.lO(b), where the division of the weighted sum 

(:Ei ciwi) by the activation total (:Ei wi) is indicated in the division node in the last 

layer. In Figure 9.10, plots (c) and (d) are the two-output counterparts of the RBFNs 
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in (a) and (b). Moody-Darken's RBFN may be extended by assigning a linear 

function to the output function of each receptive field-that is, making ci a linear 

combination of the input variables plus a constant: Ci= a; X + bi. 

where ai is a parameter vector and bi is a scalar parameter. Stokbro et al. used this structure to 

model the Mackey-Glass chaotic time series and found 

An RBFN's approximation capacity may be further improved with supervised adjustments of the 

center and shape of the receptive field (or radial basis) functions Several learning algorithms 

have been proposed to identify the parameters (ui, <Ti, and Ci) of an RBFN. Besides using a 

supervised learning scheme alone to update all modifiable parameters, a variety of sequential 

training algo Radial Basis Function Networks for RBFNs have been reported. The receptive 

field functions are first fixed, and then the weights of the output layer are adjusted. Several 

schemes have been proposed to determine the center positions ( ui) of the receptive field 

functions. Lowe proposed a way to determine the centers based on standard deviations of 

training data. Moody and Darken  selected the centers ui by means ofdata clustering techniques 

that assume that similar input vectors produce similar outputs; <Ti's are then obtained 

heuristically by taking the average distance to the several nearest neighbors of u/s. In another 

variation, Nowlan employed the so-called soft competition among Gaussian hidden units to 

locate the centers. This soft competition method is based on a "maximum likelihood estimate" 

for the centers, in contrast to the so-called hard competitions such as the k-means winner-take-

all algorithm. Once these nonlinear parameters are fixed and the receptive fields are frozen, the 

linear parameters (i.e., the weights of the output layer) can be updated using either the least-

squares method or the gradient method. Alternatively, we can apply the pseudoinverse method 

in solving Equations to determine these weights .used another method that employs the 

orthogonal least-squares algorithm to determine the u/s and Ci'S while keeping the <1/s at 

predetermined values. There are many other schemes as well, such as generalization properties, 

and sequential adaptation  among others .  
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Applications of Neural Networks: 

They can perform tasks that are easy for a human but difficult for a machine − 

 Aerospace − Autopilot aircrafts, aircraft fault detection. 

 Automotive − Automobile guidance systems. 

 Military − Weapon orientation and steering, target tracking, object discrimination, facial 

recognition, signal/image identification. 

 Electronics − Code sequence prediction, IC chip layout, chip failure analysis, machine 

vision, voice synthesis. 

 Financial − Real estate appraisal, loan advisor, mortgage screening, corporate bond 

rating, portfolio trading program, corporate financial analysis, currency value prediction, 

document readers, credit application evaluators. 

 Industrial − Manufacturing process control, product design and analysis, quality 

inspection systems, welding quality analysis, paper quality prediction, chemical product 

design analysis, dynamic modeling of chemical process systems, machine maintenance 

analysis, project bidding, planning, and management. 

 Medical − Cancer cell analysis, EEG and ECG analysis, prosthetic design, transplant 

time optimizer. 

 Speech − Speech recognition, speech classification, text to speech conversion. 
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 Telecommunications − Image and data compression, automated information services, 

real-time spoken language translation. 

 Transportation − Truck Brake system diagnosis, vehicle scheduling, routing systems. 

 Software − Pattern Recognition in facial recognition, optical character recognition, etc. 

 Time Series Prediction − ANNs are used to make predictions on stocks and natural 

calamities. 

 Signal Processing − Neural networks can be trained to process an audio signal and filter 

it appropriately in the hearing aids. 

 Control − ANNs are often used to make steering decisions of physical vehicles. 

 Anomaly Detection − As ANNs are expert at recognizing patterns, they can also be 

trained to generate an output when something unusual occurs that misfits the pattern. 

The most influential work on neural nets in the 60's went under the heading of 'perceptrons' 

a term coined by Frank Rosenblatt. The perceptron (figure 4.4) turns out to be an MCP 

model ( neuron with weighted inputs ) with some additional, fixed, pre--processing. Units 

labelled A1, A2, Aj , Ap are called association units and their task is to extract specific, 

localised featured from the input images. Perceptrons mimic the  

basic idea behind the mammalian visual system. They were mainly used in pattern 

recognition even though their capabilities extended a lot more.  

 In 1969 Minsky and Papert wrote a book in which they described the limitations of single 

layer Perceptrons. The impact that the book had was tremendous and caused a lot of neural 

network researchers to loose their interest. The book was very well written and showed 

mathematically that single layer perceptrons could not do some basic pattern recognition 

operations like determining the parity of a shape or determining whether a shape is 

connected or not. What they did not realised, until the 80's, is that given the appropriate 

training, multilevel perceptrons can do these operations. 

Hebb‘s rule: 

Hebb‘s rule is a postulate proposed by Donald Hebb in 1949 [1]. It is a learning rule that 

describes how the neuronal activities influence the connection between neurons, i.e., the 

synaptic plasticity. It provides an algorithm to update weight of neuronal connection within 
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neural network. Hebb‘s rule provides a simplistic physiology-based model to mimic the 

activity dependent features of synaptic plasticity and has been widely used in the area of 

artificial neural network. Different versions of the rule have been proposed to make the 

updating rule more realistic. The weight of connection between neurons is a function of the 

neuronal activity. The classical Hebb‘s rule indicates ―neurons that fire together, wire 

together‖. In the simplest form of Hebb‘s rule, wij stands for the weight of the connection 

from neuron j to neuron i  

 The plasticity within neural network. (A) The single connection between neuron i and 

neuron j. (B) A network of neurons connecting to neuron i. The perceptron is type of 

artificial neural network. It can be seen as the simple feedforward. 
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UNIT-2 

ASSOCIATIVE MEMORY AND UNSUPERVISED LEARNING NETWORKS 

Associate Memory Network: 

These kinds of neural networks work on the basis of pattern association, which means they can store 

different patterns and at the time of giving an output they can produce one of the stored patterns by 

matching them with the given input pattern. These types of memories are also called Content-

Addressable Memory (CAM). Associative memory makes a parallel search with the stored patterns 

as data files. 

Following are the two types of associative memories we can observe − 

 Auto Associative Memory 

 Hetero Associative memory 

Auto Associative Memory 

This is a single layer neural network in which the input training vector and the output target vectors 

are the same. The weights are determined so that the network stores a set of patterns. 

Architecture 

As shown in the following figure, the architecture of Auto Associative memory network has „n‟ number 

of input training vectors and similar „n‟ number of output target vectors. 

 

Training Algorithm 

For training, this network is using the Hebb or Delta learning rule. 

Step 1 − Initialize all the weights to zero as wij = 0 (i = 1 to n, j = 1 to n) 

Step 2 − Perform steps 3-4 for each input vector. 

Step 3 − Activate each input unit as follows − 
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xi=si(i=1ton)xi=si(i=1ton) 

Step 4 − Activate each output unit as follows − 

yj=sj(j=1ton)yj=sj(j=1ton) 

Step 5 − Adjust the weights as follows − 

wij(new)=wij(old)+xiyjwij(new)=wij(old)+xiyj 

Testing Algorithm 

Step 1 − Set the weights obtained during training for Hebb‘s rule. 

Step 2 − Perform steps 3-5 for each input vector. 

Step 3 − Set the activation of the input units equal to that of the input vector. 

Step 4 − Calculate the net input to each output unit j = 1 to n 

yinj=∑i=1nxiwijyinj=∑i=1nxiwij 

Step 5 − Apply the following activation function to calculate the output 

yj=f(yinj)={+1−1ifyinj>0ifyinj⩽0 

 

Hetero Associative memory 

Similar to Auto Associative Memory network, this is also a single layer neural network. However, 

in this network the input training vector and the output target vectors are not the same. The weights 

are determined so that the network stores a set of patterns. Hetero associative network is static in 

nature, hence, there would be no non-linear and delay operations. 

Architecture 

As shown in the following figure, the architecture of Hetero Associative Memory network has „n‟ 

number of input training vectors and „m‟ number of output target vectors. 
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Training Algorithm 

For training, this network is using the Hebb or Delta learning rule. 

Step 1 − Initialize all the weights to zero as wij = 0 (i = 1 to n, j = 1 to m) 

   Step 2 − Perform steps 3-4 for each input vector. 

   Step 3 − Activate each input unit as follows − 

xi=si(i=1ton)xi=si(i=1ton) 

Step 4 − Activate each output unit as follows − 

yj=sj(j=1tom)yj=sj(j=1tom) 

Step 5 − Adjust the weights as follows − 

wij(new)=wij(old)+xiyjwij(new)=wij(old)+xiyj 

Testing Algorithm 

   Step 1 − Set the weights obtained during training for Hebb‘s rule. 

   Step 2 − Perform steps 3-5 for each input vector. 

   Step 3 − Set the activation of the input units equal to that of the input vector. 

   Step 4 − Calculate the net input to each output unit j = 1 to m; 

yinj=∑i=1nxiwijyinj=∑i=1nxiwij 

Step 5 − Apply the following activation function to calculate the output 

yj=f(yinj)=⎧⎩⎨⎪⎪+10−1ifyinj>0ifyinj=0ifyinj<0 

 

Hopfield networks: 

Hopfield neural network was invented by Dr. John J. Hopfield in 1982. It consists of a single 

layer which contains one or more fully connected recurrent neurons. The Hopfield network is 

commonly used for auto-association and optimization tasks. 

Hopfield network which operates in a discrete line fashion or in other words, it can be said the input 

and output patterns are discrete vector, which can be either binary (0,1) or bipolar (+1, -1) in nature. 

The network has symmetrical weights with no self-connections i.e., wij = wji and wii = 0. 

Architecture 

Following are some important points to keep in mind about discrete Hopfield network − 

 This model consists of neurons with one inverting and one non-inverting output. 

 The output of each neuron should be the input of other neurons but not the input of self. 

 Weight/connection strength is represented by wij. 
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 Connections can be excitatory as well as inhibitory. It would be excitatory, if the output of the 

neuron is same as the input, otherwise inhibitory. 

 Weights should be symmetrical, i.e. wij = wji 

The output from Y1 going to Y2, Yi and Yn have the weights w12, w1i and w1n respectively. 

Similarly, other arcs have the weights on them. 

 

 

Training Algorithm 

During training of discrete Hopfield network, weights will be updated. As we know that we can 

have the binary input vectors as well as bipolar input vectors. Hence, in both the cases, weight 

updates can be done with the following relation 

Case 1 − Binary input patterns 

For a set of binary patterns s(p), p = 1 to P 

Here, s(p) = s1(p), s2(p),..., si(p),..., sn(p) 

Weight Matrix is given by 

wij=∑p=1P[2si(p)−1][2sj(p)−1]fori≠jwij=∑p=1P[2si(p)−1][2sj(p)−1]fori≠j 

Case 2 − Bipolar input patterns 

For a set of binary patterns s(p), p = 1 to P 
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Here, s(p) = s1(p), s2(p),..., si(p),..., sn(p) 

Weight Matrix is given by 

wij=∑p=1P[si(p)][sj(p)]fori≠j 

 

Testing Algorithm 

Step 1 − Initialize the weights, which are obtained from training algorithm by using Hebbian principle. 

Step 2 − Perform steps 3-9, if the activations of the network is not consolidated. 

Step 3 − For each input vector X, perform steps 4-8. 

Step 4 − Make initial activation of the network equal to the external input vector X as follows − 

yi=xifori=1tonyi=xifori=1ton 

Step 5 − For each unit Yi, perform steps 6-9. 

Step 6 − Calculate the net input of the network as follows − 

yini=xi+∑jyjwjiyini=xi+∑jyjwji 

Step 7 − Apply the activation as follows over the net input to calculate the output − 

yi=⎧⎩⎨1yi0ifyini>θiifyini=θiifyini<θiyi={1ifyini>θiyiifyini=θi0ifyini<θi 

Here θiθi is the threshold. 

Step 8 − Broadcast this output yi to all other units. 

Step 9 − Test the network for conjunction. 

Unsupervised Learning: 

As the name suggests, this type of learning is done without the supervision of a teacher. This 

learning process is independent. During the training of ANN under unsupervised learning, the input 

vectors of similar type are combined to form clusters. When a new input pattern is applied, then the 

neural network gives an output response indicating the class to which input pattern belongs. In this, 

there would be no feedback from the environment as to what should be the desired output and 

whether it is correct or incorrect. Hence, in this type of learning the network itself must discover the 

patterns, features from the input data and the relation for the input data over the output. 

Kohonen self organizing feature maps: 

Suppose we have some pattern of arbitrary dimensions, however, we need them in one 

dimension or two dimensions. Then the process of feature mapping would be very useful to 

convert the wide pattern space into a typical feature space. Now, the question arises why do we 

require self-organizing feature map? The reason is, along with the capability to convert the 

arbitrary dimensions into 1-D or 2-D, it must also have the ability to preserve the neighbor 

topology. 

Neighbor Topologies in Kohonen SOM 
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There can be various topologies, however the following two topologies are used the most − 

Rectangular Grid Topology 

This topology has 24 nodes in the distance-2 grid, 16 nodes in the distance-1 grid, and 8 nodes 

in the distance-0 grid, which means the difference between each rectangular grid is 8 nodes. The 

winning unit is indicated by #. 

 

 

Hexagonal Grid Topology 

This topology has 18 nodes in the distance-2 grid, 12 nodes in the distance-1 grid, and 6 

nodes in the distance-0 grid, which means the difference between each rectangular grid is 6 

nodes. The winning unit is indicated by #. 

 

 
 

Architecture 
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The architecture of KSOM is similar to that of the competitive network. With the help of 

neighborhood schemes, discussed earlier, the training can take place over the extended region 

of the network. 

 

 
 

Algorithm for training 

Step 1 − Initialize the weights, the learning rate α and the neighborhood topological scheme. 

Step 2 − Continue step 3-9, when the stopping condition is not true. 

Step 3 − Continue step 4-6 for every input vector x. 

Step 4 − Calculate Square of Euclidean Distance for j = 1 to m 

D(j)=∑i=1n∑j=1m(xi−wij)2D(j)=∑i=1n∑j=1m(xi−wij)2 

Step 5 − Obtain the winning unit J where D(j) is minimum. 

Step 6 − Calculate the new weight of the winning unit by the following relation − 

wij(new)=wij(old)+α[xi−wij(old)]wij(new)=wij(old)+α[xi−wij(old)] 

Step 7 − Update the learning rate α by the following relation − 

α(t+1)=0.5αtα(t+1)=0.5αt 

Step 8 − Reduce the radius of topological scheme. 

Step 9 − Check for the stopping condition for the network. 

learning vector quantization 

Learning Vector Quantization (LVQ), different from Vector quantization (VQ) and Kohonen 

Self-Organizing Maps  

  (KSOM), basically is a competitive network which uses supervised learning. We may define 

it as a process of classifying the patterns where each output unit represents a class. As it uses 

supervised learning, the network will be given a set of training patterns with known 

classification along with an initial distribution of the output class. After completing the 

training process, LVQ will classify an input vector by assigning it to the same class as that of 

the output unit. 
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Architecture 

Following figure shows the architecture of LVQ which is quite similar to the architecture of 

KSOM. As we can see, there are “n” number of input units and “m” number of output units. 

The layers are fully interconnected with having weights on them. 

 

Parameters Used 

Following are the parameters used in LVQ training process as well as in the flowchart 

x = training vector (x1,...,xi,...,xn) 

T = class for training vector x 

wj = weight vector for j
th

 output unit 

Cj = class associated with the j
th

 output unit 

Training Algorithm 

Step 1 − Initialize reference vectors, which can be done as follows − 

Step 1(a) − from the given set of training vectors, take the first ―m‖ (number of clusters) training 

vectors and use  

Them as weight vectors. The remaining vectors can be used for training. 

Step 1(b) − Assign the initial weight and classification randomly. 

Step 1(c) − Apply K-means clustering method. 

Step 2 − Initialize reference vector αα  

Step 3 − Continue with steps 4-9, if the condition for stopping this algorithm is not met. 

Step 4 − Follow steps 5-6 for every training input vector x. 
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Step 5 − Calculate Square of Euclidean Distance for j = 1 to m and i = 1 to n 

D(j)=∑i=1n∑j=1m(xi−wij)2D(j)=∑i=1n∑j=1m(xi−wij)2 

Step 6 − Obtain the winning unit J where D(j) is minimum. 

Step 7 − Calculate the new weight of the winning unit by the following relation  

if T = Cj then wj(new)=wj(old)+α[x−wj(old)]wj(new)=wj(old)+α[x−wj(old)]  

if T ≠ Cj then wj(new)=wj(old)−α[x−wj(old)]wj(new)=wj(old)−α[x−wj(old)]  

Step 8 − Reduce the learning rate αα. 

Step 9 − Test for the stopping condition. It may be as follows – 

Maximum number of epochs reached and Learning rate reduced to a negligible value. 

 

adaptive resonance theory network: 

This network was developed by Stephen Grossberg and Gail Carpenter in 1987. It is based on 

competition and uses unsupervised learning model. Adaptive Resonance Theory (ART) 

networks, as the name suggests, is always open to new learning (adaptive) without losing the 

old patterns (resonance). Basically, ART network is a vector classifier which accepts an input 

vector and classifies it into one of the categories depending upon which of the stored pattern it 

resembles the most. 

Operating Principal 

The main operation of ART classification can be divided into the following phases − 

 Recognition phase − The input vector is compared with the classification presented at 

every node in the output layer. The output of the neuron becomes ―1‖ if it best matches 

with the classification applied, otherwise it becomes ―0‖. 

 Comparison phase − In this phase, a comparison of the input vector to the comparison 

layer vector is done. The condition for reset is that the degree of similarity would be less 

than vigilance parameter. 

 Search phase − In this phase, the network will search for reset as well as the match done 

in the above phases. Hence, if there would be no reset and the match is quite good, then 

the classification is over. Otherwise, the process would be repeated and the other stored 

pattern must be sent to find the correct match. 

ART1 

It is a type of ART, which is designed to cluster binary vectors. We can understand about this 

with the architecture of it. 

Architecture of ART1 
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It consists of the following two units − 

Computational Unit − It is made up of the following − 

 Input unit (F1 layer) − It further has the following two portions − 

o F1(a) layer (Input portion) − In ART1, there would be no processing in this 

portion rather than having the input vectors only. It is connected to F1(b) layer 

(interface portion). 

o F1(b) layer (Interface portion) − This portion combines the signal from the input 

portion with that of F2 layer. F1(b) layer is connected to F2 layer through bottom 

up weights bij and F2 layer is connected to F1(b) layer through top down weights 

tji. 

 Cluster Unit (F2 layer) − This is a competitive layer. The unit having the largest net input 

is selected to learn the input pattern. The activation of all other cluster unit are set to 0. 

 Reset Mechanism − The work of this mechanism is based upon the similarity between 

the top-down weight and the input vector. Now, if the degree of this similarity is less 

than the vigilance parameter, then the cluster is not allowed to learn the pattern and a rest 

would happen. 

Supplement Unit − Actually the issue with Reset mechanism is that the layer F2 must have to be 

inhibited under certain conditions and must also be available when some learning happens. That 

is why two supplemental units namely, G1 and G2 is added along with reset unit, R. They are 

called gain control units. These units receive and send signals to the other units present in the 

network. ‗+‘ indicates an excitatory signal, while ‗−‘ indicates an inhibitory signal. 

 

Parameters Used 
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Following parameters are used − 

n − Number of components in the input vector 

m − Maximum number of clusters that can be formed 

bij − Weight from F1(b) to F2 layer, i.e. bottom-up weights 

tji − Weight from F2 to F1(b) layer, i.e. top-down weights 

ρ − Vigilance parameter 

||x|| − Norm of vector x 

Algorithm 

Step 1 − Initialize the learning rate, the vigilance parameter, and the weights as follows − 

α>1and0<ρ≤1α>1and0<ρ≤1 

0<bij(0)<αα−1+nandtij(0)=10<bij(0)<αα−1+nandtij(0)=1 

Step 2 − Continue step 3-9, when the stopping condition is not true. 

Step 3 − Continue step 4-6 for every training input. 

Step 4 − Set activations of all F1(a) and F1 units as follows 

F2 = 0 and F1(a) = input vectors 

Step 5 − Input signal from F1(a) to F1(b) layer must be sent like 

si=xisi=xi 

Step 6 − For every inhibited F2 node 

yj=∑ibijxiyj=∑ibijxi the condition is yj ≠ -1 

Step 7 − Perform step 8-10, when the reset is true. 

Step 8 − Find J for yJ ≥ yj for all nodes j 

Step 9 − Again calculate the activation on F1(b) as follows 

xi=sitJixi=sitJi 

Step 10 − Now, after calculating the norm of vector x and vector s, we need to check the reset condition 

as follows − 

If ||x||/ ||s||< vigilance parameter ρ,theninhibit node J and go to step 7 

Else If ||x||/ ||s|| ≥ vigilance parameter ρ, then proceed further. 

Step 11 − Weight updating for node J can be done as follows − 

bij(new)=αxiα−1+||x||bij(new)=αxiα−1+||x|| 

tij(new)=xitij(new)=xi 

Step 12 − The stopping condition for algorithm must be checked and it may be as follows − 
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Do not have any change in weight. 

Reset is not performed for units. 

Maximum number of epochs reached. 
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                                                             UNIT -3 

                                                      FUZZY LOGIC 

Fuzzy logic system 

Today control systems are usually described by mathematical models that follow the laws of 

physics, stochastic models or models which have emerged from mathematical logic. A general 

difficulty of such constructed model is how to move from a given problem to a proper 

mathematical model. Undoubtedly, today‘s advanced computer technology makes it possible; 

however managing such systems is still too complex. 

These complex systems can be simplified by employing a tolerance margin for a reasonable 

amount of imprecision, vagueness and uncertainty during the modelling phase. As an outcome, 

not completely perfect system comes to existence; nevertheless in most of the cases it is capable 

of solving the problem in appropriate way. Even missing input information has already turned 

out to be satisfactory in knowledge-based systems. 

Fuzzy logic allows to lower complexity by allowing the use of imperfect information in sensible 

way. It can be implemented in hardware, software, or a combination of both. In other words, 

fuzzy logic approach to problems‘ control mimics how a person would make decisions, only 

much faster. 

The fuzzy logic analysis and control methods shown in Figure 1 can be described as: 

1. Receiving one or large number of measurements or other assessment of conditions 

existing in some system that will be analysed or controlled. 

2. Processing all received inputs according to human based, fuzzy ‖if-then‖ rules, which can 

be expressed in simple language words, and combined with traditional non-fuzzy 

processing. 

3. Averaging and weighting the results from all the individual rules into one single output 

decision or signal which decides what to do or tells a controlled system what to do. The 

result output signal is a precision as follows; 

Usually fuzzy logic control system is created from four major elements presented on Figure 2: 

fuzzification interface, fuzzy inference engine, fuzzy rule matrix and defuzzification interface. 

Each part along with basic fuzzy logic operations will be described in more detail below. 
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Defuzzification Mechanisms 

 

Defuzzification task is to find one single crisp value that summarises the fuzzy set. There are 

several mathematical techniques available: centroid, bisector, mean, maximum, maximum and 

weighted average. Figure 5 demonstrate illustration of how values for each method are chosen. 

 

 

 
Graphical demonstration of defuzzification methods 

Centroid defuzzification is the most commonly used method, as it is very accurate. It provides 

centre of the area under the curve of membership function. For complex membership functions it 

puts high demands on computation. It can be expressed by the following formula 
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where z0 is defuzzified output, ui is a membership function and x is output variable. 

Bisector defuzzification uses vertical line that divides area under the curve into two equal areas. 

 

 

Mean of maximum defuzzification method uses the average value of the aggregated membership 

function outputs. 

 

where x’ = {x; µA(x) = µ*}. 

Smallest of maximum defuzzification method uses the minimum value of the aggregated 

membership function outputs. 

 

Largest of maximum defuzzification method uses the maximum value of the aggregated 

membership function outputs. 
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Weighted average defuzzification method, based on peak value of each fuzzy sets, calculates 

weighted sum of these peak values [4]. According to these weight values and the degree of 

membership for fuzzy output, the crisp value of output is determined by the following formula. 

 

where µi is the degree of membership in output singleton i, Wi and is the fuzzy output weight 

value for the output singleton  

Member ship functions: 

The MATLAB toolbox includes 11 built-in membership function types. These 11 functions are, 

in turn, built from several basic functions: 

•       piecewise linear functions 

•       the Gaussian distribution function 

•       the sigmoid curve 

•       quadratic and cubic polynomial curves 

The simplest membership functions are formed using straight lines. The simplest is the 

triangular membership function, and it has the function name trimf.  

• The trapezoidal membership function, trapmf, has a flat top and really is just a truncated 

triangle curve. These straight line membership functions have the advantage of 

simplicity. 

 

Membership FunctionsAlthough the Gaussian membership functions and bell membership 

functions achieve smoothness, they are unable to specify asymmetric membership functions, 

which are important in certain applications. the sigmoidal membership functionis defined, which 

is either open left or right. Asymmetric and closed (i.e. not open to the left or right) membership 

functions can be synthesized using two sigmoidal functions, so in addition to the basic sigmf, 
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you also have the difference between two sigmoidal functions, dsigmf, and the product of two 

sigmoidal functions psigmf. 

Methods of  membership value assignments: 

Since the membership function essentially embodies all fuzziness for a particular fuzzy set, its 

description is the essence of a fuzzy property or operation. 

Membership Value assignments Methods 

1. Intuition  

2. Inference  

3. Rank ordering  

4. Neural networks  

5. Genetic algorithms 

 6. Inductive reasoning 

Intuition: 

Intuition involves contextual and semantic knowledge about an issue; it can also involve 

linguistic truth values about this knowledge 
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For example, each curve is a membership function corresponding to various fuzzy variables, 

such as very cold, cold, normal, hot, and very hot. 

Inference: 

In the inference method we use knowledge to perform deductive reasoning.  

• let A, B, and C be the inner angles of a triangle, in the order A ≥ B ≥ C ≥ 0, and  

let U be the universe of triangles, i.e., U = {(A, B,C) | A ≥ B ≥ C ≥ 0; A + B + C = 180 ◦} 

 

For the approximate isosceles triangle, 

 

For the approximate right triangle, 

 

For approximate isosceles and right triangle 

the logical intersection (and operator) of the isosceles and right triangle membership functions, 
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Rank Ordering” 

Assessing preferences by a single individual, a committee, a poll, and other opinion methods can 

be used to assign membership values to a fuzzy variable. • Preference is determined by pairwise 

comparisons, and these determine the ordering of the membership. 

Neural Network: 

It is a technique that seeks to build an intelligent program using models that simulate the working 

network of the neurons in the human brain. 
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UNIT 4 

 

FUZZY AIRTHEMATIC 

        Fuzzy rule base and approximate reasoning 

     Fuzzy systems models form a special class of systems models that use the apparatus of fuzzy logic to 

represent the essential features of a system. From a formal point of view, fuzzy systems can be regarded as 

one alternative to the linear, nonlinear and neural modeling paradigms. Fuzzy systems models, however, 

possess a unique characteristic that is not available in most other types of formal modeling techniques — this 

is the ability to mimic the mechanism of approximate reasoning performed in the human mind. The most 

common fuzzy systems models consist of collections of logical IF — THEN rules with vague predicates; 

these rules along with the reasoning mechanism are the kernel of a fuzzy model. 

Fuzzy Logic (FL) is a method of reasoning that resembles human reasoning. The approach of FL imitates the way of decision 

making in humans that involves all intermediate possibilities between digital values YES and NO. 

The conventional logic block that a computer can understand takes precise input and produces a definite output a 

TRUE or FALSE, which is equivalent to human‘s YES or NO. 

The inventor of fuzzy logic, Lotfi Zadeh, observed that unlike computers, the human decision making includes a  

range of possibilities between YES and NO, such as – 

 

CERTAINLY YES 

POSSIBLY YES 

CANNOT SAY 

POSSIBLY NO 

CERTAINLY NO 

 

The fuzzy logic works on the levels of possibilities of input to achieve the definite output. 

Implementation 

 It can be implemented in systems with various sizes and capabilities ranging from small micro-controllers to 

large, networked, workstation-based control systems. 

 It can be implemented in hardware, software, or a combination of both. 

Fuzzy logic is useful for commercial and practical purposes. 

 It can control machines and consumer products. 

 It may not give accurate reasoning, but acceptable reasoning. 
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 Fuzzy logic helps to deal with the uncertainty in engineering. 

 

 
 

Fuzzy Logic Systems Architecture 

It has four main parts as shown − 

Fuzzification Module − It transforms the system inputs, which are crisp numbers, into fuzzy Sets. It splits the input 

signal into five steps such as −LP x is Large Positive, MP x is Medium Positive,S x is Small,MN x is Medium  

Negative 

 

Knowledge Base − It stores IF-THEN rules provided by experts. 

Inference Engine − It simulates the human reasoning process by making fuzzy inference onthe inputs and IF-THEN 

rules.Defuzzification Module − It transforms the fuzzy set obtained by the inference engine into. 

The membership functions work on fuzzy sets of variables. 

Membership functions allow you to quantify linguistic term and represent a fuzzy set graphically. AMembership 

function for a fuzzy set A on the universe of discourse X is defined as μA:X → [0,1]. Here, each element of X is  

mapped to a value between 0 and 1. It is called membership value or Degree of membership. It quantifies the degree  

of membership of the element in X to the fuzzy set A. 

 

x axis represents the universe of discourse.y axis represents the degrees of membership in the [0, 1] interval. There  

can be multiple membership functions applicable to fuzzify a numerical value. Simple 

Membership functions are used as use of complex functions does not add more precision in the 

Output. All membership functions for LP, MP, S, MN, and LN are shown as below – 

The triangular membership function shapes are most common among various other membershipsFunction shapes 

 such as trapezoidal, singleton, and Gaussian. 

Here, the input to 5-level fuzzifier varies from -10 volts to +10 volts. Hence the corresponding output also changes. 
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       Advantages of FLSs: 

 

    Mathematical concepts within fuzzy reasoning are very simple. You can modify a FLS by just adding or deleting  

   Rules due to flexibility of fuzzy logic.Fuzzy logic Systems can take imprecise, distorted, noisy input information.FLSs 

are  easy to construct and understand. Fuzzy logic is a solution to complex problems in all fields of life, including 

medicine, as it resembles human reasoning and decision making. 

 

       Disadvantages of FLSs: 

 

   There is no systematic approach to fuzzy system designing. They are understandable only when simple. They are 

   suitable    for the problems which do not need high accuracy. 

 

        Application Areas of Fuzzy Logic; 

 

The key application areas of fuzzy logic are as given − 

   Automotive Systems 

   Automatic Gearboxes 

    Four-Wheel Steering 

   Vehicle environment control 

   Consumer Electronic Goods 

    Hi-Fi Systems 

   Photocopiers 

    Still and Video Cameras 

    Television 

     Domestic Goods 

 

     Example of a Fuzzy Logic System 

    Let us consider an air conditioning system with 5-lvel fuzzy logic system. This system adjusts the temperature of air 

conditioner by comparing the room temperature and the target temperature value. 

 

     Algorithm: 

 

 Define linguistic variables and terms. 

 Construct membership functions for them. 

 Construct knowledge base of rules. 

 Convert crisp data into fuzzy data sets using membership functions. Fuzzification 

 Evaluate rules in the rule base. Interfaceengine 

 Combine results from each rule. Interfaceengine 

 

     Convert Logic Development: 

 

        Step 1: Define linguistic variables and terms 

       Linguistic variables are input and output variables in the form of simple words or sentences. For room  

      Temperature, cold, warm, hot, etc., are linguistic terms. 

       Temperature t = {very-cold, cold, warm, very-warm, hot} 
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      Every member of this set is a linguistic term and it can cover some portion of overall temperature values. 

       Step 2: Construct membership functions for them 

The membership functions of temperature variable are as shown −utput data into non-fuzzy values.  

defuzzification 

 

      Step3: Construct knowledge base rules 

         Create a matrix of room temperature values versus target temperature values that an air 

    Conditioning system is expected to provide. Build a set of rules into the knowledge base in the form of 

          IF-THEN-ELSE structures. 

 

 

     Step 4: Obtain fuzzy value 

   Fuzzy set operations perform evaluation of rules. The operations used for OR and AND are Max and Min  

       respectively. Combine all results of evaluation to form a final result. This result is a fuzzy value. 

 

    Step 5: Perform defuzzification 

     Defuzzification is then performed according to membership function for output variable. 

 

 

      Foundations of fuzzy theory: 

 

   Mathematical foundations of fuzzy logic rest in fuzzy set theory, which can be seenas a generalization of classical  

    set   theory. Fuzziness is a language concept; its main strength is its vagueness using symbols and defining them. 

Consider a set of tables in a lobby. In classical set theory we would ask: Is it a table? And we would have only two      

answers, yes or no. If we code yes with a 1 and no with a 0 then we would have the pair of answers as {0,1}. At the  

end we Would collect all the elements with 1 and have the set of tables in the lobby. We may then ask what objects  

in the lobby can function as a table. We could answer those tables, boxes, desks, among others can function as a 

 table. The set is not uniquely defined, and it all depends on what we mean by the word function. Words like this  

have  many shades of meaning and depend on the circumstances of the situation. Thus, we may say that the set of 

objects in the lobby that can Function as a table is a fuzzy set, because we have not crisply defined the criteria defines  

the membership of an element to the set. Objects such as tables,desks, boxes may function as a table with a certain  

degree, although the fuzziness is a feature of their representation in symbols and is normally a property of models,  

or languages. 

 

 

     Fuzzy Relations 
 

In fuzzy relations we consider n-tuples of elements that are related to a degree. Just as the question of whether some 

element belongs to a set may be considered a matter of degree, whether some elements are associated may also be a   

matter of degree. Fuzzy relations are fuzzy sets defined on Cartesian products. While fuzzy sets are defined on a single 

universe of discourse, fuzzy relations are defined on higher-dimensional universes of discourse. If S is the universe set    

and A and B are subsets, A _ B will denote a product set in the universe S _ S. A fuzzy relation is a relation between 

elements of A and 

   elements of B, described by a membership function _AxB .a; b/, a 2 A and b 2 B. A discrete example of a fuzzy  

    relation can be defined as: SD R, A D fa1; a2; a3;a4g D f1; 2; 3; 4g and B D fb1; b2; b3g D f0; 0:1; 2g.  defines a   

     Fuzzy. 
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          relation: a is considerably larger than b.Definition of relation: a is considerably larger than  

 

              bb1 b2 b3 

 

          a10.6 0.60.0 

          a2 0.8 0.70.0 

         a3 0.9 0.80.4 

        a4 1.0 0.9 0.5 

 

 

       Properties of Relations: 

 

      Fuzzy relations can be represented in many ways: linguistically, listed, in a directed graph, tabular, matrix, among       

others. Crisp and fuzzy relations are classified on the basis of the mathematical properties they possess. In fuzzy 

relations, different properties call for different requirements for the membership function of a relation. 

        The following are some of the properties that a relation can have: 

       • Reflexive.We say that a relation R is reflexive if any arbitrary element x in S for  which xRx is valid. 

        Anti-reflexive. A relation R is anti-reflexive if there is no x in S for which xRx is valid. 

        • Symmetric. A relation R is symmetric if for all x and y in S, the following is 

     true: if xRy then yRx is valid also. 

• Anti-symmetric. A relation R is anti-symmetric if for all x and y in S, when xRy 

is valid and yRx is also valid, then x D y. 

• Transitive. A relation R is called transitive if the following for all x; y; z in S: if 

xRy is valid and yRx is also valid, then xRz is valid as well. 

• Connected. A relation R is connected when for all x; y in S, the following is 

true: if x . y, then either xRy is valid or yRx is valid. 

• Left unique. A relation R is left unique when for all x; y; z in S the following is 

true: if xRy is valid and yRx is also valid, then we can infer that x D y. 

• Right unique. A relation R is right unique when for all x; y; z in S the following 

is true: if xRy is valid and xRz is also valid, then we can infer that y D z. 

• Biunique.A relationR that is both left unique and right unique is called biunique. 

 

 

Fuzzy Linguistic Descriptions: 

 

Fuzzy linguistic descriptions are often called fuzzy systems or linguistic descriptions. They are formal representations of 

systems made through fuzzy IF–THENrules. A linguistic variable is a variable whose arguments are words modeled by 

fuzzy sets, which are called fuzzy values. They are an alternative to analytical modeling systems. Informal linguistic 

descriptions used by humans in daily life as wellas in the performance of skilled tasks are usually the starting point for the 

development of fuzzy linguistic descriptions. Although fuzzy linguistic descriptions are formulated in a human-like 

language, they have rigorous mathematical foundations involving fuzzy sets and relations. The knowledge is encoded in a 

statement of theform shown in  

IF (a set of conditions is satisfied) THEN (a set of consequences can be inferred) : 

A general fuzzy IF–THEN rule has the form: 

IF a1 is A1 AND : : : AND an is An THEN b is B 
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Reasoning with Fuzzy Rules 

 

Fuzzy reasoning includes two distinct parts: evaluating the rule antecedent (IF part of the rule) and implication or applying 

the result to the consequent, the THEN part of the rule.While in classical rule-based systems if the antecedent of the rule is 

true, then the consequent is also true, but in fuzzy systems the evaluation is different. In fuzzy systems the antecedent is a 

fuzzy statement, this means all the rules fire at some extent. If the antecedent is true in some degree of membership, then 

the consequent is also true in some degree. 

 

 
Example 2.11. Consider two fuzzy sets, tall men and heavy men represented in. These fuzzy sets provide the basis for a weight 

estimation model. Themodel is based on a relationship between a man‘s height and his weight, which can be expressed with the 

following rule: IF height is tall, THEN weight is heavy. The value of the output or the membership grade of the rule consequent can be 

estimated  directly from a corresponding membership grade in the antecedent. Fuzzy rules can have multiple antecedents, as the 

consequent of the rule, which can also includmultiple parts. UtIn general, fuzzy expert systems incorporate not one but several rules 

that describeexpert knowledge. The output of each rule is a fuzzy set, but usually we need to obtain a single number representing the 

expert system output, the crisp solution. To obtain a single crisp output a fuzzy expert system first aggregates all output fuzzy sets into 

a single output fuzzy set, and then defuzzifies the resulting set int 

 

 

The Fuzzy Logic Controller 

 

With traditional sets an element either belongs to the set or does not belong to the set {0,1}, while in fuzzy sets the degree 

to which the element belongs to the set is analyzed and it is called the membership degree, giving values in the 

range [0,1], where 1 indicates that the element belongs completely to the set. Thefuzzy logic controllers (FLC) make a non-

linear mapping between the input and the output using membership functions and linguistic rules (normally in the form 

if__then__). In order to use a FLC, knowledge is needed and this can be represented as two 

different types: 

 

1. Objective information is what can be somehow quantifiable by mathematical 

models and equations. 

 

2. Subjective information is represented with linguistic rules and design requirements 

 

 

Linguistic Variables: 

 

Just like in human thinking, in fuzzy logic systems (FLS) linguistic variables are  utilized to give a ―value‖ to the element, 

some examples are much, tall, cold, etc. FLS require the linguistic variables in relation to their numeric values, their 

quantification and the connections between variables and the possible implications. 

 

 

Membership Functions 

In FLS the membership functions are utilized to find the degree of membership of 

the element in a given set. 

Rules Evaluation: 

 

The rules used in the FLS are of the IF–THEN type, for example, IF x1 is big 
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THEN y1 is small. To define the rules you need an expert, or you must be able to extract the information from a 

mathematic formula. The main elements of a FLC are fuzzification, rules evaluation, and defuzzification. 

 

 

 

Rules Evaluation: 

 

After getting the membership values of the inputs, they are evaluated using IF–THEN rules: IF a is x AND b is y AND c is 

z THEN w, where a, b and c are thecrisp inputs, x, y and z are the fuzzy clusters to which the inputs may correspond, 

and w is the output fuzzy cluster used to defuzzify. To be able to obtain the fuzzy values of the outputs, the system has to 

use an inference engine. The min–max composition is used which takes the minimum of the premises and the maximum of 

the consequences. 

 

 

Fuzzy Numbers: 

Fuzzy numbers are the basis for fuzzy arithmetic. A fuzzy number is a fuzzy subset of the universe of numerical numbers 

e.g. afuzzy integer is a fuzzysubset of the domain of integers. While Fig. a is crisp Number 1.3, depicts b the fuzzy number 

1.3, or in other words the fuzzy set ―around 1.3‖or ―close to 1.3‖ Fig. b,d are for the Interval 1.25 to1.35 

 

The extension Principle : 

In a mapping provided by the general function f: y = f (x), if the input, x is crisp, then the resulting output, y, is also crisp. 

An extension principle developed by Zadeh enables us to extend the domain ofa function on fuzzy sets. It thus generalizes 

a common point-topoint mapping of a function f(.) to a mapping between fuzzy sets. 

 

Let A ,B be two fuzzy sets, defined in universe of discourse X,Y.And let ‗f ‘ be a nonfuzzy transformation function between 

universes X and Y, so that f : X  Y. We say that the crisp function 

f : X  Y 

 

 

is fuzzified when it is extended to act on fuzzy sets defined on X and Y. 

 

 

 

Fuzzy Arithmetic Operations: 

Applying the extension principle to arithmetic operations it is possible to define fuzzy arithmetic operations. 

Let x and y be the operands, z the result. Let A and B denote the fuzzy sets that represent the operands x 

and y respectively. the symbol ∨ is the maximum operator and ∧ is the minimum operator 

 

. Fuzzy Addition 
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= fuzzy number 3 = 0.3/1+0.6/2+1/3+0.6/4+0.3/5 

B = fuzzy number 11= 0.5/10 + 1/11 + 0.5/12 

 

A+B= (0.3^0.5)/(1+10) + (0.3^1)/(1+11) + ( 0.3^0.5)/(1+12) +(0.6^0.5)/(2+10) + (0.6^1)/(2+11) + (0.6^0.5)/(2+12) + 

(1^0.5)/(3+10) + (1^1)/(3+11) + (1^0.5)/(3+12 ) +(0.6^0.5)/(4+10) +(0.6^1)/(4+11) + (0.6^0.5)/(4+12) + 

(0.3^0.5)/(5+10) + (0.3^1)/(5+11) + (0.3^0.5)/(5+12) 
 
Getting the minimum of the membership values: 

A+B=0.3/11 + 0.3/12 + 0.3/13 +0.5/12 + 0.6/13 + 0.5/14 + 0.5/13 + 1/14 + 0.5/15 +0.5/14 + 0.6/15 + 0.5/16 + +0.3/15 + 

0.3/16 + 0.3/17 

Getting the maximum of the duplicated values: 

 

A+B=0.3/11 + (0.3 V 0.5)/12 + (0.3 V 0.6 V 0.5)/13 + (0.5 V 1 V 0.5)/14 +(0.5 V 0.6 V 0.3)/15 + (0.5 V 0.3)/16 + 0.3/17 

A+B=0.3 / 11 + 0.5 / 12 + 0.6 / 13 + 1 / 14 + 0.6 / 15 + 0.5 / 16 + 0.3 / 17
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Fuzzy Subtraction 

 

 

 
 

Fuzzy Multiplication 
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UNIT-5 

 

GENETIC ALGORITHRMS 

 

 

 

 

Genetic algorithm and search space: 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms that belong to the larger part of evolutionary 

algorithms. Genetic algorithms are based on the ideas of natural selection and genetics. These are intelligent exploitation 

 of random search provided with historical data to direct the search into the region of better performance in solution 

space. They are commonly used to generate high-quality solutions for optimization problems and search problems. 

 
Genetic algorithms simulate the process of natural selection which means those species who can adapt to changes in their 

environment are able to survive and reproduce and go to next generation. In simple words, they simulate ―survival of the 

fittest‖ among individual of consecutive generation for solving a problem. Each generation consist of a population of 

individuals and each individual represents a point in search space and possible solution. Each individual is represented as a 

string of character/integer/float/bits. This string is analogous to the Chromosome. 

Foundation of Genetic Algorithms 

Genetic algorithms are based on an analogy with genetic structure and behavior of chromosome of the population. 

Following is the foundation of GAs based on this analogy – 

1. Individual in population compete for resources and mate 

2. Those individuals who are successful (fittest) then mate to create more offspring than others 

3. Genes from ―fittest‖ parent propagate throughout the generation that is sometimes parents create offspring which is 

better than either parent. 

4. Thus each successive generation is more suited for their environment. 

   

Search space 

 

The populations of individuals are maintained within search space. Each individual represent a solution in search space for 

given problem. Each individual is coded as a finite length vector (analogous to chromosome) of components. These 

variable components are analogous to Genes. Thus 

a chromosome 

(individual) is composed of  

 

 

Fitness Score 

A Fitness Score is given to each individual which shows the ability of an individual to ―compete‖. The individual having 

optimal fitness score (or near optimal) are sought. 

The GAs maintains the population of n individuals (chromosome/solutions) along with their fitness scores.The individuals 

having better fitness scores are given more chance to reproduce than others. The individuals with better fitness scores are 
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selected who mate and produce better offspring by combining chromosomes of parents. The population size is static so the 

room has to be created for new arrivals. So, some individuals die and get replaced by new arrivals eventually creating new 

generation when all the mating opportunity of the old population is exhausted. It is hoped that over successive generations 

better solutions will arrive while least fit die. 

Each new generation has on average more ―better genes‖ than the individual (solution) of previous generations. Thus each 

new generation have better ―partial solutions‖ than previous generations. Once the off springs produced having no 

significant difference than offspring produced by previous populations, the population is converged. The algorithm is said 

to be converged to a set of solutions for the problem. 

 

 

General genetic algorithm: 

 

Genetic Algorithm (GA) is a search-based optimization technique based on the principles of Genetics and Natural 

Selection. It is frequently used to find optimal or near-optimal solutions to difficult problems which otherwise would take a 

lifetime to solve. It is frequently used to solve optimization problems, in research, and in machine learning. 

GAs were developed by John Holland and his students and colleagues at the University of Michigan, most notably    David 

E. Goldberg and has since been tried on various optimization problems with a high degree of success. 

 

 

Operators of Genetic Algorithms: 

 

Once the initial generation is created, the algorithm evolves the generation using following operators – 

1) Selection Operator: The idea is to give preference to the individuals with good fitness scores and allow them to pass 

their genes to the successive generations. 
2) Crossover Operator: This represents mating between individuals. Two individuals are selected using selection operator 

and crossover sites are chosen randomly. Then the genes at these crossover sites are exchanged thus creating a completely 

new individual (offspring). For example  
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3) Mutation Operator: The key idea is to insert random genes in offspring to maintain the diversity in population to avoid 

the premature convergence. For example – 
 

 
 

The whole algorithm can be summarized as – 

1) Randomly initialize population‘s p 

2) Determine fitness of population 

3) Untill convergence repeat: 

      a) Select parents from population 

      b) Crossover and generate new population 

      c) Perform mutation on new population 

      d) Calculate fitness for new population 

 

Example problem and solution using Genetic Algorithms: 

 

Given a target string, the goal is to produce target string starting from a random string of the same length. In the following 

implementation, following analogies are made – 

 Characters A-Z, a-z, 0-9 and other special symbols are considered as genes 

 A string generated by these character is considered as chromosome/solution/Individual 

Fitness score is the number of characters which differ from characters in target string at a particular index. So individual 

having lower fitness value is given more preference. 

 

Generational cycle: 

In genetic algorithms and evolutionary computation, crossover, also called recombination, is a genetic operator used to 

combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate 

new solutions from an existing population, and analogous to the crossover that happens during sexual 

reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual 

reproduction. Newly generated solutions are typically mutated before being added to the population. 

Different algorithms in evolutionary computation may use different data structures to store genetic information, and 

each genetic representation can be recombined with different crossover operators. Typical data structures that can be 

recombined with crossover are bit arrays, vectors of real numbers, or trees. 

Traditional genetic algorithms store genetic information in a chromosome represented by a bit array. Crossover methods 

https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Evolutionary_computation
https://en.wikipedia.org/wiki/Genetic_operator
https://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Chromosomal_crossover
https://en.wikipedia.org/wiki/Sexual_reproduction
https://en.wikipedia.org/wiki/Sexual_reproduction
https://en.wikipedia.org/wiki/Sexual_reproduction
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Cloning
https://en.wikipedia.org/wiki/Asexual_reproduction
https://en.wikipedia.org/wiki/Asexual_reproduction
https://en.wikipedia.org/wiki/Asexual_reproduction
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Genetic_representation
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Bit_array
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for bit arrays are popular and an illustrative example of genetic recombination. 

Single-point crossover 

A point on both parents' chromosomes is picked randomly, and designated a 'crossover point'. Bits to the right of that point 

are swapped between the two parent chromosomes. This results in two offspring, each carrying some genetic information 

from both parents. 

 

Two-point and k-point crossover 

In two-point crossover, two crossover points are picked randomly from the parent chromosomes. The bits in between the 

two points are swapped between the parent organisms. 

 

Two-point crossover is equivalent to performing two single-point crossovers with different crossover points. This strategy 

can be generalized to k-point crossover for any positive integer k, picking k crossover points. 

Uniform crossover 

In uniform crossover, each bit from the offspring's genome is independently chosen from the two parents according to a 

given distribution. In contrast to k-point crossover, uniform crossover exchanges individual bits and not segments of the bit 

array. This means there is no bias for two bits that are close together in the array to be inherited together. 

Typically, each bit is chosen from either parent with equal probability. Other mixing ratios are sometimes used, resulting in 

offspring which inherit more genetic information from one parent than the other. 

Crossover for ordered lists 

In some genetic algorithms, not all possible chromosomes represent valid solutions. In some cases, it is possible to use 

specialized crossover and mutation operators that are designed to avoid violating the constraints of the problem. 

For example, a genetic algorithm solving the travelling salesman problem may use an ordered list of cities to represent a 

solution path. Such a chromosome only represents a valid solution if the list contains all the cities that the salesman must 

visit. Using the above crossovers will often result in chromosomes that violate that constraint. Genetic algorithms 

optimizing the ordering of a given list thus require different crossover operators that will avoid generating invalid 

solutions. Many such crossovers have been published:
[1]

 

1. partially matched crossover (PMX) 

2. cycle crossover (CX) 

3. order crossover operator (OX1) 

4. order-based crossover operator (OX2) 

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)#cite_note-1
https://en.wikipedia.org/wiki/File:OnePointCrossover.svg
https://en.wikipedia.org/wiki/File:TwoPointCrossover.svg
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5. position-based crossover operator (POS) 

6. voting recombination crossover operator (VR) 

7. alternating-position crossover operator (AP) 

8. sequential constructive crossover operator (SCX) 

Other possible methods include the edge recombination operator. 

 

Stopping condition: 

The stopping condition of a Genetic Algorithm is important in determining when a GA run will end. It has been observed 

that initially, the GA progresses very fast with better solutions coming in every few iteration, but this tends to saturate in 

the later stages where the improvements are very small. We usually want a termination condition such that our solution is 

close to the optimal, at the end of the run. 

Usually, we keep one of the following termination conditions − 

 When there has been no improvement in the population for X iterations. 

 When we reach an absolute number of generations. 

 When the objective function value has reached a certain pre-defined value. 

For example, in a genetic algorithm we keep a counter which keeps track of the generations for which there has been no 

improvement in the population. Initially, we set this counter to zero. Each time we don‘t generate off-springs which are 

better than the individuals in the population, we increment the counter. 

However, if the fitness any of the off-springs is better, then we reset the counter to zero. The algorithm terminates when 

the counter reaches a predetermined value. 

Like other parameters of a GA, the termination condition is also highly problem specific and the GA designer should try 

out various options to see what suits his particular problem the best. 

 

 

Constraints: 

In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several 

types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate 

solutions that satisfy all constraints is called the feasible set. 

Example: 

The following is a simple optimization problem: 

Min f(x) =x1
2
+x2

4 

Subject tox1>1 and x2=1 

Where x  denotes the vector (x1, x2). 

In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost 
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https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Optimization_(mathematics)
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function). The second and third lines define two constraints, the first of which is an inequality constraint and the second of 

which is an equality constraint. These two constraints are hard constraints, meaning that it is required that they are 

satisfied; they define the feasible set of candidate solutions. 

Without the constraints, the solution would be (0, 0), where f(x) has the lowest value. But this solution does not satisfy the 

constraints. The solution of the constrained optimization problem. stated above is , x=(1,1),which is the point with the 

smallest value of  f(x) that satisfies the two constraints. 

 

 

Hard and Soft constraints: 

 

If the problem mandates that the constraints be satisfied, as in the above discussion, the constraints are sometimes referred 

to as hard constraints. However, in some problems, called flexible constraint satisfaction problems, it is preferred but not 

required that certain constraints be satisfied; such non-mandatory constraints are known as soft constraints. Soft constraints 

arise in, for example, preference-based planning. In a MAX-CSP problem, a number of constraints are allowed to be 

violated, and the quality of a solution is measured by the number of satisfied constraints. 

 

 

Genetic programming: 

 

 In programming languages such as LISP, the mathematical notation is not written in standard notation, but in prefix 

notation. Some examples of this:  

 + 2 1   :  2 + 1  

 * + 2 1 2    :  2 * (2+1)  

 * + - 2 1 4 9  :  9 * ((2 - 1) + 4)  

 Notice the difference between the left-hand side to the right? Apart from the order being different, no parenthesis! 

The prefix method makes it a lot easier for programmers and compilers alike, because order precedence is not an 

issue.  

 You can build expression trees out of these strings that then can be easily evaluated, for example, here are the trees 

for the above three expressions.  

https://en.wikipedia.org/wiki/Hard_constraint
https://en.wikipedia.org/wiki/Constrained_optimization
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https://en.wikipedia.org/wiki/Constraint_optimization#Definition
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 You can see how expression evaluation is thus a lot easier. 

 What this have to do with GAs? If for example you have numerical data and 'answers', but no expression to conjoin 

the data with the answers.  

 A genetic algorithm can be used to 'evolve' an expression tree to create a very close fit to the data. 

  By 'splicing' and 'grafting' the trees and evaluating the resulting expression with the data and testing it to the 

answers, the fitness function can return how close the expression is.  

 The limitations of genetic programming lie in the huge search space the GAs have to search for - an infinite number 

of equations.  

 Therefore, normally before running a GA to search for an equation, the user tells the program which operators and 

numerical ranges to search under.  

 Uses of genetic programming can lie in stock market prediction, advanced mathematics and military applications 
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Multilevel optimization: 

 

The same is true for other areas such as multi-objective programming (there are always several goals in a real 

application), stochastic programming (all data is uncertain and therefore stochastic models should be used), and so 

forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision 

makers, and decisions are made at different levels in this hierarchy. One way to handle such hierarchies is to focus 

on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that 

focuses on the whole hierarchy structure. In terms of modeling, the constraint domain associated with a multilevel 

programming problem is implicitly determined by a series of optimization problems which must be solved in a 

predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and 

one follower (associated with the lower level). 

 

A multilevel genetic algorithm (MLGA) is proposed in this paper for solving the kind of optimization problems 

which are multilevel structures in nature and have features of mixed-discrete design variables, multi-modal and 

non-continuous objective functions, etc. Firstly, the formulation of the mixed-discrete multilevel optimization 

problems is presented. Secondly, the architecture and implementation of MLGA are described. Thirdly, the 

algorithm is applied to two multilevel optimization problems. The rst one is a three-level optimization problem in 

which the optimization of the number of actuators, the positions of actuators and the control parameters are 

considered in dierent levels. An actively controlled tall building subjected to strong wind action is considered to 

investigate the eectiveness of the proposed algorithm. The second application considers a combinatorial 

optimization problem in which the number and conguration of actuators are optimized simultaneously, an actively 

controlled building under earthquake excitations is adopted for this case study. Finally, some results and 

discussions about the application of the proposed algorithm are presented.  

Application of Genetic Algorithm: 

Genetic algorithms have been used for difficult problems (such as NP-hard problems), for machine learning and also for 

evolving simple programs. They have been also used for some art, for evolving pictures and music. A few applications of 

GA are as follows: 

 Business: Genetic Algorithms have been used to solve many different types of business problems in functional 

areas such as finance, marketing, information systems, and production/ operations. Within these functional areas, 

GAs has performed a variety of applications such as tactical asset allocation, job scheduling, machine-part 

grouping, and computer network design. 

 Optimization: GAs have been used in a wide variety of optimization tasks, including numerical optimization, and 

combinatorial optimization problems such as traveling salesman problem (TSP), circuit design , job shop 

scheduling  and video & sound quality optimization, Telecommunication routing, State assignment problem, Time 

tabling problem, Traffic and Shipment routing etc. 

 Automatic Programming: They are used to evolve computer programs for specific tasks and to design other 

computational structures as in Cellular automata and sorting networks.   

 Design: They are also used to optimize the structure and operational design of buildings, factories, machines etc. 

They are used to design heat exchangers, robot gripping arms, flywheels, turbines etc.   

 Robotics: Robot‘s design is dependent on the job it is intended to do. A range of optimal designs and components 

can be searched with the help of genetic algorithms for each specific use and return entirely new type of robots.   
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 Machine Learning: These algorithms are used for machine learning applications like and prediction, protein 

structure prediction etc. They are also used to design neural networks, to evolve rules for learning classifier systems 

and symbolic production systems.   

 Evolvable Hardware: Genetic algorithms are used develop computer models that use stochastic operators to evolve 

new configurations from old ones so as develop new electronic circuits that can be termed as evolvable hardware.   

 Game Playing: Genetic algorithms are also applied in Game theory and so they are widely used in developing 

computer games, simulated environments.  

 Encryption and code breaking: Genetic algorithms can be used both to create encryption for sensitive data as well 

as to break those codes.   

Image processing: With medical X-rays or satellite images, there is often a need to align two images of the same 

area, taken at different times. By comparing a random sample of points on the two images, a GA can efficiently and 

a set of equations which transform one image to fit onto the other. 

 

 

Optimization of travelling salesman problem using genetic algorithm approach: 

The Travelling Salesman Problem (TSP) is a classic combinatorial optimization problem, which is simple to state but very 

difficult t o solve. This problem is known to be NP-hard, and cannot be solved exactly in polynomial time. Many exact and 

heuristic algorithms have been developed in the field of operations research (OR) to solve this problem. The problem is to 

find the shortest possible tour through a set of n vertices so that each vertex is visited exactly once. The traveling salesman 

first gained fame in a book written by German salesman BF Voigt in 1832 on how to be a successful traveling salesman. 

He mentions the TSP, although not by that name, by suggesting that to cover as many locations as possible without visiting 

any location twice is the most important aspect of the scheduling of a tour.  

 

The origins of the TSP in mathematics are not really known -all we know for certain is that it happened around 1931. On 

the basis of the structure of the cost matrix, the TSPs are classified into two groups – symmetric and asymmetric. The TSP 

is symmetric if cij = cji, for all i, j and asymmetric otherwise. For an n-city asymmetric TSP, there are (n − )!1 possible 

solutions, one or more of which gives the minimum cost. For an n-city symmetric TSP, there are (n − 1)!/2 possible 

solutions along with their reverse cyclic permutations having the same total cost. In either case the number of solutions 

becomes extremely large for even moderately large n so that an exhaustive search is impracticable. 

 

 

Genetic algorithm based internet search technique: 

Abstract: Internet search is becoming problematic due to Information overload on the Internet. In order to help users in 

information searching, various applications appeared. There are two basic approaches to Internet search: indexing and 

agent search. An agent presented in this paper uses genetic algorithm for global search. It is written in the Java 

programming language. For a set of input documents, the agent finds and displays similar documents and the information 

regarding how similar they are. It uses database of topic sorted URLs to perform mutation. 

 

Introduction: 
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Each day number of documents and servers on the Internet grows rapidly. In such an abundance of data it is hard to get the 

information needed in the shortest time possible. There are two approaches to Internet search: 

1. Indexing and database searching (e.g. Altavista, Yahoo...) - tools for indexing fetch all available documents on the 

Internet, parse their contents, and store it in an indexed database. Based on the keywords, submitted by the user, the 

tool searches the database and displays all documents containing desired keywords. Advantage of this approach is 

that it covers a big search space, but these tools have usually poor evaluation function, and keywords that user 

submits have to be carefully picked up, in order to obtain a desired number and quality of resulting documents. 

2. Agent search - autonomous program (agent) performs the search without user supervision. It takes the number of 

URLs as input parameters and follows their links in order to find similar documents on the Web. 

Program package Tropical, developed in this B.Sc. thesis is agent that performs Internet search using genetic algorithm 

with database mutation. It is written in Java programming language. 

Problem Definition: 

Client-based searching agents can be agents for local search (which means that they search for documents linked to the 

input documents) and agents for non-local search (which can find documents that are not linked to the input documents). 

Broadly defined, an agent is a program that can operate autonomously to accomplish unique tasks without direct human 

supervision. 

The agent presented in this paper named Tropical is an agent for global search, written in the Java programming language. 

For set of input documents, the agent finds and displays similar documents and the information regarding how similar they 

are. It uses services of following packages: 

o Spider  for document fetching 

o Agent for Best First Search algorithm 

o Generator for designing and communication with the database of topic sorted URLs. 

Basic Genetic Algorithm 

Genetic algorithm is a search method that is used for covering a big search space, and finding the optimal solution. Its 

application is especially important in AI. It is frequently used for finding optimal schedule of resource. Basic steps in the 

workflow of genetic algorithm are: 

1. representing each solution uniformly in a way suitable for computer processing (often like arrays or strings) 

2. initialization of the current set of solutions that is examined (current configuration set) by picking randomly from 

the whole search space desired number of potential solutions 

3. Forming set of promising solutions for further examination (mating pool) by picking the best ones from current 

configuration set. How good is the solution, determines the fitness function which is defined for each problem 

separately. 

4. Performing operators of crossover and mutation on mating pool and thus generating new solutions. Crossover 

operator generates new solution by using genetic material of existing solutions in the mating pool. Mutation 

operator generates a whole new solution randomly. New solutions are then inserted in the current configuration set. 

5. If stopping criterion is satisfied algorithm ends, otherwise steps 3-5 are repeated. 
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Genetic Algorithm for Internet Search 

Algorithm performs following steps: 

1. User submits input set of documents like string of URLs. 

5. From the Web are fetched the input documents and parsed in order to extract keywords. 

6. From the Web are fetched documents that are pointed to by the hyperlinks in input documents and they form the 

current configuration set H. 

7. From the database is randomly picked desired number of URLs that cover the same topic as do the input documents 

(this topic is specified by the user at the beginning of the program) and corresponding documents are fetched from 

the Web and inserted in the set H. 

8. Determining the documents from the set H that are most similar to the input ones by calculating Jaccard Score for 

each of them. 

9. Inserting the most similar document in the output set and adding the documents linked to it in the set H. 

Repeating steps 4-6 until desired number of output documents is obtained 

 

 

Some Relevant Details 

Linking the database - just once before you first start the program 

Start button in Windows environment, Settings, Control Panel, ODBC, User DSN Window, Add, Microsoft Access Driver, 

Finish, In the field Data Source Name put URL base, Select, select the database url.mdb in the tropical directory, 

Advanced, in the fields for username and password type mladen and java 

Starting the program 

In JDK 1.1.4 Package: 

java tropical -dProxySet=true 

-dProxyHost=proksi 

-dProxyPort=port 

proksi is IP address of proxy server you are using 

port port number of this proxy server 

I suggest you put this line in tropical.bat file and then just type tropical each time. 

Example of the command line is: 

Java tropical -dProxySet=true 
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-dProxyHost=147.91.8.62 

-dProxyPort=8080 

Input parameters 

 Input Set - field for input set of URLs. It is necessary that you enter either a set of URLs or a name of the file 

containing URLs or both. 

 Input file - field for the name of the file with URLs (each in the new line) 

 Number of outputs - field for the required number of output documents. Default number is 10. 

 Database mutation - list for desired number of mutated documents per iteration. Default number is 0. 

 Spatial mutation - not realized yet. 

 Temporal mutation - not realized yet. 

 Topic - list for choosing one or more topics covered by mutation. 

 Comments - comments on/off field. 

 

Output window 

 Program Flow - some program messages that keep you informed about program execution. 

 Result Set - result set of URLs. 

 Medium Jaccard's Score - medium Jaccard's Score for the result set. 

Result of the program work can also be found in the file izlaz.html in the Tropical directory and can be viewed during 

program execution. 

 

  

Conclusion: 

Agent for global search was meant to be a part of a bigger project, but also to be able to do the autonomous work. During 

"Tropical" development, it was noticed that it could be improved. For example, improvement of class which performs 

extraction of keywords, creation of mobile agents, intelligent search, cooperation with Altavista tool in order to cover a 

bigger search space... Agent presented in this paper can give better search results than index engines in cases when desired 

URLs are in the database regarding time of search and quality of the documents found. 
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