
Prepared by
Mr. Rajasekhar Nennuri

Assistant Professor
C.S.E Department

UNIT-1

.

BASIC CONCEPTS

DATASTRUCTURE

The data structure can be defined as the collection of elements

and all the possible operations which are required for those set

of elements.

Or

Data structure is a combination of a set of elements and

corresponding set of operations.

The data structures can be implemented by building the suitable

algorithms for them.

TYPES OF DATASTRUCTURES

Data structures

Primitive data structures
Ex: int, char,float

linear data structures
Ex: lists, stack, queues

Non linear data structures
Ex : trees, graphs

Non primitive data structure

OPERATIONS ON DATA

STRUCTURES
1. Traversing- It is used to access each data item exactly once so

that it can be processed.
2. Searching- It is used to find out the location of the data item if

it exists in the given collection of data items.

3. Inserting- It is used to add a new data item in the given
collection of data items.

4. Deleting- It is used to delete an existing data item from the
given collection of data items.

5. Sorting- It is used to arrange the data items in some order i.e.
in ascending or descending order in case of numerical data and
in dictionary order in case of alphanumeric data.

6. Merging- It is used to combine the data items of two sorted
files into single file in the sorted form.

ABSTRACT DATATYPE

An abstract data type, sometimes abbreviated ADT, is a logical

description of how we view the data and the operations that are

allowed without regard to how they will be implemented. This

means that we are concerned only with what the data is

representing and not with how it will eventually be

constructed.

ALGORITHM

An algorithm is a step by step representation or a procedure for

solving a problem.

or

It is a method of finding a right solution to a problem or to a

different problem or to a different problem breaking into

simple cases.

PROPERTIES OF AN

ALGORITHM

Finiteness: An algorithm should terminate at finite number of

steps.

Definiteness: Each step of an algorithm must be precisely stated.

Effectiveness: It consists of basic instructions that are realizable.

This means that the instructions can be performed by using the

given inputs in a finite amount of time.

Input: An algorithm accepts zero or more inputs.

Output: It produces at least one output.

DIFFERENT APPROACHES TO

DESIGN AN ALGORITHM
 Various design techniques exist:

Classifying algorithms based on design ideas or

commonality.

General-problem solving strategies.

• Brute force

• Divide-and-conquer

• Decrease-and-conquer

• Transform-and-conquer

• Space-and-time tradeoffs

• Dynamic programming

• Greedy techniques

DIFFERENT APPROACHES TO

DESIGN AN ALGORITHM

• Brute force

Selection sort, Brute-force string matching, Convex hull problem

Exhaustive search: Traveling salesman, Knapsack, and

Assignment problems

• Divide-and-conquer

Master theorem, Mergesort, Quicksort, Quickhull

• Decrease-and-conquer

Insertion sort, Permutations (Minimal change approach, Johnson-

Trotter algorithm)

Fake-coin problem (Ternary search), Computing a median,

Topological sorting

.

DIFFERENT APPROACHES TO

DESIGN AN ALGORITHM

• Transform-and-conquer

Gaussian elimination, Heaps and Heapsort, Problem reduction

• Space-and-time tradeoffs

String matching: Horspool’s algorithm, Boyer-Moore algorithm

• Dynamic programming

Warshall’s algorithm for transitive closure

Floyd’s algorithms for all-pairs shortest paths

DIFFERENT APPROACHES TO

DESIGN AN ALGORITHM

• Greedy techniques

MST problem: Prim’s algorithm, Kruskal’s algorithm (Sets and

set operations)

Dijkstra’s algorithm for single-source shortest path problem

Huffman tree and code

• More on algorithms.

RECURSIVE ALGORITHM

A recursive routine is one whose design includes a call to

itself.

Or

A function that calls itself is known as recursive function and

this technique is known as recursion in C programming.

EXAMPLES

Factorial of a number

Algorithm factorial(a)

int a;

{

int fact=1

if(a>1)

Fact = a* factorial(a-1);

Return(fact);

}

SEARCHING TECHNIQUES

17

LINEAR SEARCH - EXAMPLE

• Array numlist contains:

• Searching for the the value 11, linear search examines 17, 23,
5, and 11

• Searching for the the value 7, linear search examines 17, 23, 5,
11, 2, 29, and 3

17 23 5 11 2 29 3

18

LINEAR SEARCH

PROS

Easy to understand

Array can be of any order

CONS

Ineffiencient for an array of N elements

19

BINARY SEARCH

A binary search looks for an item in a list using a divide-and-

conquer strategy.

20

BINARY SEARCH

Requires array elements to be in order

1. Divides the array into three sections:

– middle element

– elements on one side of the middle element

– elements on the other side of the middle element

2. If the middle element is the correct value, done. Otherwise, go
to step 1. using only the half of the array that may contain the
correct value.

3. Continue steps 1. and 2. until either the value is found or there
are no more elements to examine

BINARY SEARCH

left + right

2

21

mid =

22

BINARY SEARCH

bool BinSearch(double list[], int n, double item, int&index)

{

int left=0;

int right=n-1;

int mid;

while(left<=right)

{

mid=(left+right)/2;

23

BINARY SEARCH

if(item> list [mid]){ left=mid+1; }

else if(item< list [mid]){right=mid-1;}

else{

item= list [mid];

index=mid;

return true; }

}// while

return false;

}

24

BINARY SEARCH

• Array numlist2 contains:

• Searching for the the value 11, binary search examines 11 and
stops

• Searching for the the value 7, binary search examines 11, 3,
5, and stops

2 3 5 11 17 23 29

25

BINARY SEARCH

• Benefits:

– Much more efficient than linear search. For array of N

elements, performs at most log2N comparisons

• Disadvantages:

– Requires that array elements be sorted

FIBONACCI SEARCH

A possible improvement in binary search is not to use the

middle element at each step, but to guess more precisely where

the key being sought falls within the current interval of

interest.

This improved version is called fibonacci search. Instead of

splitting the array in the middle, this implementation splits the

array corresponding to the fibonacci numbers, which are

defined in the following manner.

F0 = 0, F1 = 1 Fn = Fn-1+Fn-2 forn>=2.

• Fibonacci search is used to search an element of a sorted array

with the help of Fibonacci numbers. It studies the locations

whose addresses have lower dispersion. Fibonacci number is

subtracted from the index thereby reducing the size of the list.

• When the search element has non-uniform access memory

storage, the Fibonacci search algorithm reduces the average

time needed for accessing a storage location.

• Time complexity:-0(log (n))

FIBONACCI SEARCH

• 0 1 2 3 5 6 9 11 15 16 18 22

Searching element

FIBONACCI SEARCH

RIGHT MEAN DOWN IN THIS

LEFT MEAN UP IN THIS

SORTING TECHNIQUES

37

SORTING

• To arrange a set of items in sequence.

• It is estimated that 25~50% of all computing power is used for
sorting activities.

• Possible reasons:

– Many applications require sorting;

– Many applications perform sorting when they don't have to;

– Many applications use inefficient sorting algorithms.

38

SORTING

Sorting: an operation that segregates items into groups

according to specified criterion.

A = { 3 1 6 2 1 3 4 5 9 0 }

A = { 0 1 1 2 3 3 4 5 6 9 }

39

SORTING

• Internal Sort

– The data to be sorted is all stored in the computer’s main

memory.

• External Sort

– Some of the data to be sorted might be stored in some

external, slower, device.

• In Place Sort

– The amount of extra space required to sort the data is

constant with the input size.

SORTING

There are many, many different types of sorting algorithms,

but the primary ones are:

● Bubble Sort
● Selection Sort
● Insertion Sort
● Merge Sort
●Quick Sort

● Shell Sort

●Radix Sort
● Swap Sort

●Heap Sort

40

41

INSERTION SORT

• Idea: like sorting a hand of playing cards

– Start with an empty left hand and the cards facing down on

the table.

– Remove one card at a time from the table, and insert it into

the correct position in the left hand

INSERTION SORT

• compare it with each of the cards already in the hand,

from right to left

– The cards held in the left hand are sorted

• these cards were originally the top cards of the pile on

the table

42

To insert 12, we need to make

room for it by moving first 36

and then 24.

INSERTION SORT

43

INSERTION SORT

44

INSERTION SORT

45

INSERTION SORT

left sub-array

46

right sub-array

input array

5 2 4 6 1 3

at each iteration, the array is divided in two sub-arrays:

sorted unsorted

INSERTION SORT

47

48

INSERTION SORT

• Running time analysis:

– Worst case: O(N2)

– Best case: O(N)

49

SELECTION SORT

1. We have two group of items:

– sorted group, and

– unsorted group

2. Initially, all items are in the unsorted group. The sorted group

is empty.

– We assume that items in the unsorted group unsorted.

– We have to keep items in the sorted group sorted.

50

SELECTION SORT

1. Select the “best” (eg. smallest) item from the unsorted group,

then put the “best” item at the end of the sorted group.

2. Repeat the process until the unsorted group becomes empty.

SELECTION SORT

5 1 3 4 6 2

Comparison

Data Movement

Sorted

51

SELECTION SORT

5 1 3 4 6 2

Comparison

Data Movement

Sorted

52

SELECTION SORT

5 1 3 4 6 2

Comparison

Data Movement

Sorted

53

SELECTION SORT

5 1 3 4 6 2

Comparison

Data Movement

Sorted

54

SELECTION SORT

5 1 3 4 6 2

Comparison

Data Movement

Sorted

55

SELECTION SORT

5 1 3 4 6 2

Comparison

Data Movement

Sorted

56

SELECTION SORT

5 1 3 4 6 2

Comparison

Data Movement

Sorted

57

SELECTION SORT

5 1 3 4 6 2

Comparison

Data Movement

Sorted

58



Largest

SELECTION SORT

5 1 3 4 2 6

Comparison

Data Movement

Sorted

59

SELECTION SORT

5 1 3 4 2 6

Comparison

Data Movement

Sorted

60

SELECTION SORT

5 1 3 4 2 6

Comparison

Data Movement

Sorted

61

SELECTION SORT

5 1 3 4 2 6

Comparison

Data Movement

Sorted

62

SELECTION SORT

5 1 3 4 2 6

Comparison

Data Movement

Sorted

63

SELECTION SORT

5 1 3 4 2 6

Comparison

Data Movement

Sorted

64

SELECTION SORT

5 1 3 4 2 6

Comparison

Data Movement

Sorted

65

SELECTION SORT

5 1 3 4 2 6

Comparison

Data Movement

Sorted

66



Largest

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

67

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

68

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

69

SELECTION SORT

Comparison

Data Movement

Sorted

70

2 1 3
SELECTI

4
ON SORT

5 6

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

71

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

72

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

73



Largest

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

74

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

75

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

76

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

77

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

78

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

79



Largest

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

80

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

81

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

82

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

83

SELECTION SORT

2 1 3 4 5 6

Comparison

Data Movement

Sorted

84



Largest

SELECTION SORT

1 2 3 4 5 6

Comparison

Data Movement

Sorted

85

SELECTION SORT

1 2 3 4 5 6

Comparison

Data Movement

Sorted

86

DONE!

40 2 1 3 3 4 0 -1 42 43 58 65

40 2 1 43 3 4 0 -1 42 3 58 65

40 2 1 43 3 4 0 -1 58 3 42 65

40 2 1 43 3 65 0 -1 58 3 42 4

SELECTION SORT

87

40 2 1 3 3 4 0 -1 42 43 58 65

-1 2 1 3 3 4 0 40 42 43 58 65

-1 2 1 3 3 0 4 40 42 43 58 65

-1 2 1 0 3 3 4 40 42 43 58 65

88

SELECTION SORT

-1 2 1 0 3 3 4 40 42 43 58 65

-1 0 1 2 3 3 4 40 42 43 58 65

-1 0 1 2 3 3 4 40 42 43 58 65

-1 0 1 2 3 3 4 40 42 43 58 65

-1 0 1 2 3 3 4 40 42 43 58 65

89

SELECTION SORT

90

SELECTION SORT

• Running time:

–Worst case: O(N2)

–Best case: O(N2)

QUICKSORT

• Basic Concept: divide and conquer

• Select a pivot and split the data into two groups: (< pivot)

and (> pivot):

(<pivot)
LEFT group

(> pivot)
RIGHT group

• Recursively apply Quicksort to the subgroups

91

QUICKSORT

Unsorted Array

Start with all data
in an array, and
consider it unsorted

92

QUICKSORT

Step 1, select a pivot
(it is arbitrary)

We will select the first
element, as presented in the
original algorithm by
C.A.R. Hoare in 1962.

pivot

93

26 33 35 29 19 12 22

QUICKSORT

Step 2, start process of
dividing data into LEFT

and RIGHT groups:

The LEFT group will
have elements less than
the pivot.

The RIGHT group will have
elements greater that the pivot.

Use markers left and right

left

pivot

26 33 35 29 19 12 22

right

94

QUICKSORT

Step 3,
If left element belongs
to LEFT group, then increment

left index.

If right index element belongs
to RIGHT, then decrement right.

Exchange when you find
elements that belong to the other
group.

left

pivot

26 33 35 29 19 12 22

right

95

QUICKSORT

Step 4:

Element 33 belongs
to RIGHT group.

Element 22 belongs
to LEFT group.

Exchange the two
elements.

left

pivot

26 33 35 29 19 12 22

right

left

pivot

26 22 35 29 19 12 33

right

96

QUICKSORT

26

Step 5:

After the exchange,
increment left marker,
decrement right marker.

22 35 29 19

left

pivot

12 33

right

97

QUICKSORT

Step 6:

Element 35 belongs
to RIGHT group.

Element 12 belongs
to LEFT group.

Exchange,
increment left, and
decrement right.

left

pivot

26 22 35 29 19 12 33

right

left

pivot

26 22 12 29 19 35 33

right

98

QUICKSORT

26

Step 7:

Element 29 belongs
to RIGHT.

Element 19 belongs
to LEFT.

Exchange,
increment left,
decrement right.

22 12 29 19

left

pivot

35 33

right

left

pivot

26 22 12 19 29 35 33

right

99

QUICKSORT

26

Step 8:
When the left and right
markers pass each other,

we are done with the
partition task.

Swap the right with pivot.

22 12 19 29

left

pivot

35 33

right

26
19 22 12

pivot

29 35 33

LEFT RIGHT

100

QUICKSORT

Step 9:

Apply Quicksort
to the LEFT and
RIGHT groups,
recursively.

Assemble parts when done

pivot

26

19 22 12

previous pivot

29 35 33

Quicksort Quicksort

pivot

12 19 22 29 33 35

26

12 19 22 26 29 33 35

101

102

QUICKSORT

The partitioning of an array into two parts is O(n)

The number of recursive calls to Quicksort depends on how

many times we can split the array into two groups.

On average this is O (log2 n)

The overall Quicksort efficiency is O(n) = n log2n

What is the worst-case efficiency?

Compare this to the worst case for the heapsort.

COMPARISON OF SORTING

METHODS

103

UNIT-2

LINEAR DATA STRUCTURES

Stacks: Primitive operations, implementation of stacks using

Arrays, applications of stacks arithmetic expression

conversion and evaluation.

Queues: Primitive operations; Implementation of queues using

Array, applications of linear queue, circular queue and double

ended queue (deque).

STACKS

STACKS

A stack is a linear structures in which addition or deletion of
elements takes place at the same end.

Or

The stack is an ordered list in which insertion and deletion is
done at the same end.

The end is called the top of stack.

Insertion and deletion cannot be done from the middle.

A technique of Last In First Out is followed.

Stack can be implemented by using both arrays and linked
lists.

STACKS

STACK ADT

Stacks can also be defined as Abstract Data Types(ADT).

A stack of elements of any particular type is a finite sequence

of elements of that type together with specific operations.

Therefore, stacks are called LIFO lists.

STACK OPERATIONS

The primitive operations on stack are

To create a stack.

To insert an element on to the stack.

To delete an element from the stack.

To check which element is at the top of the stack.

To check whether a stack is empty or not.

STACK OPERATIONS

If Stack is not full ,

then add a new node at one end of the stack

this operation is called PUSH.

If the stack is not empty

then delete the node at its top.

This operation is called POP.

PUSH and POP are functions of stack used to fulfill the stack

operations.

TOP is the pointer locating the stack current position.

ARRAY IMPLEMENTATION IN C

Stacks can be represented in the memory arrays by

maintaining a linear array STACK and a pointer variable TOP

which contains the location of top element.

The Variable MAXSTACK gives

maximum number of elements held by the stack.

The TOP=NULL /0 will indicate that the stack is empty.

The operation of adding and removing an item in the stack can
be implemented using the PUSH and POP functions.

STACK ARRAY

REPRESENTATION

PICTORIAL DEPICTION OF

PUSHING ELEMENTS IN STACK

PICTORIAL DEPICTION OF

POPPING ELEMENTS IN STACK

DISADVANTAGE OF STACK

USING ARRAYS

The array representation of stack suffers from the drawbacks of

the array’s size, that cannot be increased or decreased once it

is declared .

The space is wasted, if not used , or, there is shortage of space

if needed.

APPLICATION OF STACKS

Reversing a list.

Conversion of Infix to Postfix Expression.

Evaluation of Postfix Expression.

Conversion of Infix to Prefix Expression.

Evaluation of Prefix Expression.

CONVERSION OF INFIX TO

POSTFIX EXPRESSION

While evaluating an infix expression, operations are executed

according to the order as follows:

Brackets / Parentheses.

Exponentiation.

Multiplication / Division.

Addition / Subtraction.

the operators with the same priority(e.g. * and /) are

evaluated from left to right.

STEPS TO CONVERT INFIX TO

POSTFIX EXPRESSION

Step 1: The actual evaluation is determined by inserting

braces.

Step 2: Convert the expression in the innermost braces into

postfix notation by putting the operator after the operands.

Step 3: Repeat the above step (2) until the entire expression is

converted into postfix notation.

EXAMPLE OF INFIX TO

POSTFIX CONVERSION

RECURSION IMPLEMENTATION

If a procedure contains either a call statement to itself/to a

second procedure that may eventually result in a cell statement

back to the original procedure. Then such a procedure is called

as recursive procedure.

Recursion may be useful in developing algorithms for specific

problems. The stack may be used to implement recursive

procedures.

QUEUE

QUEUE

Queue is a linear list of elements in which deletion of an

element can take place only at one end,

called the front

and insertion can take place only at the other end,

called the rear.

The first element in a queue will be the first one to be removed

from the list.

Therefore, queues are called FIFO lists.

QUEUE

QUEUE ADT

The definition of an abstract data type clearly states that for a

data structure to be abstract, it should have the two

characteristics as follows.

There should be a particular way in which components are

related to each other.

A statement of the operations that can be performed on

element of the abstract data type should specified.

QUEUE OPERATIONS

Queue overflow.

Insertion of the element into the queue.

Queue underflow.

Deletion of the element from the queue.

Display of the queue.

ARRAY IMPLEMENTATION IN C

Array is a data structure that stores a fixed number of

elements.

One of the major limitations of an array is that its size should

be fixed prior to using it.

The size of the queue keeps on changing as the elements are

either removed from the front end or added at the rear end.

The solution of this problem is to declare an array with a

maximum size.

QUEUE USING ARRAY

INSERTION AND DELETION IN

QUEUE USING ARRAYS

We consider two variables front and rear which are declared to

point to both the ends of the queue.

The array begins with index therefore , the maximum number
of elements that can be stored can be consider as MAX-1(n-1).

If the number of elements are already stored in the queue is
reported to be full.

If the elements are added then the rear is incremented using the
pointer and new item is stored in the array.

ADDING ELEMENTS IN AQUEUE

The front and rear variables are initially set to -1, which

denotes that the queue is empty.

If the item being added is the first element then as the item is

added, .the queue front is set to 0 indicating that the queue is

now full.

DELETING ELEMENTS IN A

QUEUE

For deleting elements from the queue, the function first checks

if there are any elements for deletion. If not , the queue is said

to be empty otherwise an element is deleted.

APPLICATION OF QUEUE

Job scheduling.

Categorizing data.

Random number generation.

TYPES OF QUEUES

Circular queue.

De queue (double ended queue).

Priority queue.

CIRCULAR QUEUE

Circular queues are implemented in circular form rather than

in a straight line.

This form over come the problem of unutilized space in linear

queue implemented as an array.

In the array implementation there is a possibility that the queue

is reported full even though slots of the queue are empty.

CIRCULAR QUEUE

Suppose an array x of n elements is used to implement a

circular queue. If we go on adding elements to the queue we

may reach x[n-1].

In a queue array if the elements reach the end then it reports

the queue is full even some slots are empty but in circular

queue ,it would not report as full until all the slots are

occupied.

REPRESENTATION OF

CIRCULAR QUEUE

ADDING ELEMENTS INTO

CIRCULAR QUEUE

The conditions that are checked before inserting the elements :

If the front and rear are in adjacent locations(i.e. rare following

front)the message ‘Queue is full’ is displayed.

If the value of front is -1 then it denotes that the queue is

empty and that the element to be added would be the first

element in the queue . The value of front and rear in such a

case are set to 0 and new element gets placed at 0Th position.

ADDING ELEMENTS INTO

CIRCULAR QUEUE

Some of the positions at the front end of the array might be
empty .

This happens if we have deleted some elements from the queue

,when the value of rear is MAX-1 and the value of front is
greater than 0.

In such a case value of rear is set to 0 and the element to be
added is added to this position.

The element is added at the rear position in case the value of
front is either equal to or greater than 0 and the value of rear is
less than MAX-1.

ADDING ELEMENTS IN

CIRCULAR QUEUE

DELETING ELEMENTS INTO

CIRCULAR QUEUE

The conditions that are checked before deleting the elements :

First it is checked whether the queue is empty or not . The
elements at the front position will be deleted.

Now , it is checked if the value of front is equal to rear . If it is,
then the element which will be deleted is the only element in
the queue .

If the element is removes, the queue will be empty and front
and rear are set to -1.

DELETING ELEMENTS IN

CIRCULAR QUEUE
On Deleting an element from the queue the value of front is set

to 0 if it is equal to MAX-1 otherwise front is simply

incremented by 1.

DOUBLE ENDED QUEUE

A deque is a linear list in which elements can be added or

removed at either end but not in the middle.

There are two variations of a deque an input restricted deque

and an output restricted deque which are intermediate between

deque and a regular queue.

An input restricted deque is a deque which allows insertions

at only one end of the list , but allows deletions at both ends of

the list

DOUBLE ENDED QUEUE

The output restricted deque is a deque which allows deletions

at only one end of the list but allows insertions at both ends of

the list.

The two possibilities that must consider while inserting

/deleting elements into the queue are:

When an attempt is made to insert an element into a deque

which is already full, an overflow occurs.

When an attempt is made to delete an element from a deque

which is empty, underflow occurs.

REPRESENTATION OF DEQUE

UNIT-3

LINKED LISTS

Linked lists: Introduction, singly linked list, representation of a

linked list in memory, operations on a single linked list.

Applications of linked lists: Polynomial representation and

sparse matrix manipulation.

Types of linked lists: Circular linked lists, doubly linked lists;

linked list representation and operations of Stack, linked list

representation and operations of queue.

LINKED LISTS

146

LIST

List is the collection of elements arranged in a sequential

manner.

There are two representations

1) list of sequentially stored elements----using arrays

2) list of elements with associated pointers---using linked list.

LIST REPRESENTATION

147

148

OPERATIONS ON AN ORDERED

LIST

1)display of list.

2)search an element in the list.

3) insert an element into the list.

4) delete an element from the list.

149

SINGLY LINKED LIST

In the single linked list, a node is connected to the next node

by a single link.

In this list a node contains two types of fields-

data: which holds a list element

next(pointer): which holds a link to the next node in the list.

The head of the pointer is used to gain access to the list and

the end of the list is denoted by a NULL pointer

STRUCTURE OF ASINGLE

LINKED LIST

struct node

{

int data;
struct node * next;

}

The list holds two members ,an integer type variable “data”
which h of type “node”,
which h

olds the elements and another member
as the variable next.

150

151

SINGLE LINKED LIST

OPERATIONS

Creating a linked list

Inserting in a linked list

Deleting a linked list

Searching an element in the linked list

Display the elements

Merging two linked list

Sorting a linked list

Reversing a list

152

CREATING A LINKED LIST

List can be created by using pointers and dynamic memory

allocation function such as malloc.

The head pointer is used to create and access unnamed nodes.

153

CREATING A LINKED LIST

struct list
{

int no;

struct list *next;
};

typedef struct list node;

node *head;

head=(node*) malloc (size of(node));

CREATING A LINKED LIST

The statement obtains memory to store a node and assigns its

address to head which is a pointer variable.

To store values in the member fields :
headno=10;
headnext=NULL;

The second node can be added as:
headnext=(node*)malloc(size_of(node));
headnextnumber=20;
headnextnext=NULL;

154

155

INSERTING AN ELEMENT

Insertion is done in three ways:

Insertion at the beginning of the list.

Insertion after any specified node.

Inserting node at the end of the list.

INSERTING AN ELEMENT

Function to insert a node at the beginning of the list:

156

157

INSERTING AN ELEMENT

Function to insert a node at the beginning of the list:

void add_beg(struct node **q, int no)
{

struct node *temp; /*add new node*/

tempdata=no;

tempnext=*q;t

*q=temp;

}
here temp variable is take and space is allocated using “malloc”
function.

158

INSERTING AN ELEMENT

Insertion after any specified node:

Inserting a node in the middle of the list,

if you consider to insert a node after the element then the

process is as follows.

INSERTING AN ELEMENT

159

160

INSERTING AN ELEMENT
Function to insert a node at the middle of the list:

Void add_after(struct node *q, int loc, int no)

{

struct node *temp, *r;

int l;

temp=q;/*skip to desire portion*/

for(i=0;i<loc;i++)

{

temp=tempnext;

161

INSERTING AN ELEMENT

}

if(temp==NULL)
{

printf(“\n there are less than %d elements in list”,loc);
return;

}

?/*insert new node*/
r=malloc(sizeof(struct node));

rdata=n0;

rnext=tempnext;

tempnext=r;

INSERTING AN ELEMENT

Inserting node at the end of the list:

162

163

INSERTING AN ELEMENT

Inserting node at the end of the list:

void create(struct node **q, int no)

{

struct node *temp,*r;

if(*q==NULL) /*if the list is empty,create first node*/

{

temp=malloc(sizeof(struct node));

tempdata=no;

164

INSERTING AN ELEMENT

tempnext=NULL;

*q=temp;

}

else

{

temp=*q; /* go to last node*/

while(tempnext!=NULL)

165

INSERTING AN ELEMENT

temp=tempnext;

r=malloc(sizeof(struct node));

rdata=no;

rnext=NULL;

tempnext=r;

}

}

DELETING AN ELEMENT

166

167

DELETING AN ELEMENT

We traverse through the entire linked list to check each node

whether it has to be deleted.

if we want to delete the first node in the list then we shift the

structure type pointer variable to the next node and then delete

the entire node.

if the node is a intermediate node then the various pointers the

linked list before and after deletion should be taken care of

168

DISPLAYING THE CONTENTS

OF THE LINKED LIST

Displays the elements of the linked list contained in the data

part.

Function to display the contents of the linked list.

void display(struct node *start)

{

printf(“\n”);

169

DISPLAYING THE CONTENTS

OF THE LINKED LIST

/*traverse the entire list*/

while(start!=NULL)

{

printf(“%d”,startdata);

start=startnext;

}

}

170

OTHER OPERATIONS OF

SINGLY LINKED LIST

Searching the linked list:

Searching means finding information in a given linked list.

Reversing a linked list:

The reversing of the linked list that last node becomes the first

node and first becomes the last.

171

OTHER OPERATIONS OF

SINGLY LINKED LIST

Sorting the list:

In sorting function the node containing the largest element is

removed from the linked list and is appended to the new list in

the ascending order.

Merging the two linked list:

Merging two list pointed by two pointers into a third list.

While merging be ensure that the elements common to the lists

appear only once in the third list.

APPLICATIONS OF LINKED

LISTS

POLYNOMIAL

REPRESENTATION

A Polynomial has mainly two fields. exponent and

coefficient.

Node of a Polynomial:

For example 3x^2 + 5x + 7 will represent as follows.

POLYNOMIAL

REPRESENTATION

In each node the exponent field will store the corresponding

exponent and the coefficient field will store the

corresponding coefficient. Link field points to the next item

in the polynomial.

Addition and multiplication of polynomials is possible.

POLYNOMIAL

REPRESENTATION

Addition of two Polynomials

Addition of two polynomials using linked list requires

comparing the exponents, and wherever the exponents are

found to be same, the coefficients are added up.

For terms with different exponents, the complete term is

simply added to the result thereby making it a part of

addition result.

POLYNOMIAL

REPRESENTATION

Multiplication of two Polynomials

Multiplication of two polynomials however requires

manipulation of each node such that the exponents are added

up and the coefficients are multiplied.

After each term of first polynomial is operated upon with

each term of the second polynomial, then the result has to be

added up by comparing the exponents and adding the

coefficients for similar exponents and including terms as

such with dissimilar exponents in the result.

SPARSE MATRIX

MANIPULATION

In computer programming, a matrix can be defined with a 2-

dimensional array.

Any array with 'm' columns and 'n' rows represents a mXn

matrix.

There may be a situation in which a matrix contains more

number of ZERO values than NON-ZERO values.

Such matrix is known as sparse matrix.

SPARSE MATRIX

MANIPULATION
When a sparse matrix is represented with 2-dimensional array,

we waste lot of space to represent that matrix. For example,

consider a matrix of size 100 X 100 containing only 10 non-

zero elements. In this matrix, only 10 spaces are filled with

non-zero values and remaining spaces of matrix are filled with

zero. That means, totally we allocate 100 X 100 X 2 = 20000

bytes of space to store this integer matrix. And to access these

10 non-zero elements we have to make scanning for 10000

times.

SPARSE MATRIX

MANIPULATION

by using TWOA sparse matrix can be represented

representations, those are as follows...

Triplet Representation

Linked Representation

SPARSE MATRIX

MANIPULATION

Linked Representation

In linked representation, we use linked list data structure to

represent a sparse matrix. In this linked list, we use two

different nodes namely header node and element node.

Header node consists of three fields and element node consists

of five fields as shown in the image...

TYPES OF LINKED LISTS

182

CIRCULAR LINKED LIST

A linked list in which last node points to the header node is

called the circular linked list.

The list have neither a beginning nor an end.

In this list the last node contains a pointer back to the first

node rather than the NULL pointer.

183

CIRCULAR LINKED LIST

The structure defined for circular linked list

struct node

{

int data;

struct node *next;

}

CIRCULAR LINKED LIST

A circular linked list is represented as follows:

A circular linked list can be used to represent a stack and aqueue.

184

185

OPERATION OF CIRCULAR

LINKED LIST

Adding elements in the circular linked list.

Deleting element from the circular list.

Displaying elements from the circular list.

186

ADDING ELEMENTS IN THE

CIRCULAR LINKED LIST

Ciradd():

this function accepts three parameters:

receives the address of the pointer to the first node.

receives the address of the pointer to the last node.

holds the data items that need to add in the list.

187

DELETING ELEMENTS FROM

THE CIRCULAR LINKED LIST

delcirq():

this function receives two parameters.

the pointer to the front .

the pointer to the rear .

188

DELETING ELEMENTS FROM

THE CIRCULAR LINKED LIST

The condition is checked for the empty list.

If the list is not empty,

then it is checked whether the front and rear

point to the same node or not.

If they point to the same node,

then the memory occupied by the node

is released and front and rear are both

assigned a NULL value.

189

DISPLAYING THE CIRCULAR

LIST

Cirq_disp():

the function receives the pointer to the first node in the list as

a parameter.

The q is also made to point to the first node in the list.

The entire list is traversed using q.

Another pointer p is set to NULL initially.

The circular list is traversed through a loop till the time it

reach the first node again.

It reach first node again when q equals p.

190

DOUBLY LINKED LIST

The doubly linked list uses double set of pointer’s, one

pointing to the next item and the other pointing to the

preceding item.

It can traverse in two directions:

from the beginning of the list to the end

or

In the backward direction from the end of the list to the

beginning.

DOUBLY LINKED LIST

191

192

DOUBLY LINKED LIST

Each node contains three parts:

An information field which contains the data.

A pointer field next which contains the location of thenext
node n the list.

A pointer field prev which contains the location of the
preceding node in the list.

Structure to define DLL:
struct node
{ int data;

struct node *next;
struct node *prev;

}

193

CREATING A DLL

To create DLL at the nodes to the existing list:

To create the list the function d_create can be used before

creating the list the function checks if the list is empty.

Here the function accepts two parameters.

s of type struct dnode ** which contains the address of the

pointer to the first node of the list.

parameter num is an integer which is to be added in the list.

194

CREATING A DLL

To create DLL at the nodes to the existing list:

To create the list the function d_create can be used before

creating the list the function checks if the list is empty.

Here the function accepts two parameters.

s of type struct dnode ** which contains the address of the

pointer to the first node of the list.

parameter num is an integer which is to be added in the list.

195

OPERATIONS OF DLL
Adding a node in the beginning of DLL:

To add the node at the beginning of the list the function

d_addatbeg() is used .

This function takes two parameters:

s of type dounode ** which contains the address of the pointer

to the first node .

num is an integer to be added in the list.

196

OPERATIONS OF DLL

The allocation of memory for the new node is done whose

address is stored in q.

The num is the data part of the node.

A NULL value is stored in the prev part of new node a this is

the first node in the list.

197

OPERATIONS OF DLL
Function to add a node at the beginning of list.

Void d_addatbeg(struct dnode **s,int num)

{

struct dnode *q;

q=malloc(sizeof(struct dnode));

qprev=NULL;

qdata=num;

qnext=*s;

(*s)prev=q;

*s=q;

}

198

OPERATIONS OF DLL
Adding a node in the middle of the list:

To add the node in the middle of the list we use the function

d_addafter().

The function accepts three parameters.

q points to the first node of the list.

loc specifies the node number after which new node must be

inserted.

num which is to be added to the list.

To reach to the position where node is to be inserted, a loop is

executed.

199

OPERATIONS OF DLL
Deleting a node from DLL:

This function deletes a node from the list if the data part

matches a with num.

The function receives two parameters

the address of the pointer to the first node.

the number to be deleted.

To traverse the list ,a loop is run.

The data part of each node is compared with the num.

If the num value matches the data part, then the position of the

node to be deleted is checked

200

OPERATIONS OF DLL

Display the contents of DLL.

to display the contents of the doubly linked list, we follow the

same algorithm that had used in the singly linked list.

Here q points to the first node in the list and the entire list is

traversed .

Function to display the DLL.

void d_disp(struct dnode *q)

{ printf(“\n”);

while(q!=NULL)

{ printf(“%2d”,qdata);

q=qnext;

}

}

STACK USING LINKED LIST

The major problem with the stack implemented using array is,

it works only for fixed number of data values.

A stack data structure can be implemented by using linked list

data structure.

The stack implemented using linked list can work for

unlimited number of values.

STACK USING LINKED LIST

In linked list implementation of a stack, every new element is

inserted as 'top' element.

Whenever we want to remove an element from the stack,

simply remove the node which is pointed by 'top' by moving

'top' to its next node in the list.

The next field of the first element must be always NULL.

STACK USING LINKED LIST

STACK USING LINKED LIST

To implement stack using linked list, we need to set the

following things before implementing actual operations.

Step 1: Include all the header files which are used in the
program. And declare all the user defined functions.

Step 2: Define a 'Node' structure with two
members data and next.

Step 3: Define a Node pointer 'top' and set it to NULL.

Step 4: Implement the main method by displaying Menu with
list of operations and make suitable function calls in
the main method.

STACK USING LINKED LIST

Operations

push(value) - Inserting an element into the Stack

We can use the following steps to insert a new node into the
stack...

Step 1: Create a newNode with given value.

Step 2: Check whether stack is Empty (top == NULL)

Step 3: If it is Empty, then set newNode → next = NULL.

Step 4: If it is Not Empty, then set newNode → next = top.

Step 5: Finally, set top = newNode.

STACK USING LINKED LIST

Operations

pop() - Deleting an Element from a Stack

We can use the following steps to delete a node from the stack...

Step 1: Check whether stack is Empty (top == NULL).

Step 2: If it is Empty, then display "Stack is Empty!!! Deletion
is not possible!!!" and terminate the function

Step 3: If it is Not Empty, then define a Node pointer 'temp' and
set it to 'top'.

Step 4: Then set 'top = top → next'.

Step 5: Finally, delete 'temp' (free(temp)).

STACK USING LINKED LIST

Operations

display() - Displaying stack of elements

We can use the following steps to display the elements (nodes) of
a stack...

Step 1: Check whether stack is Empty (top == NULL).

Step 2: If it is Empty, then display 'Stack is Empty!!!' and
terminate the function.

Step 3: If it is Not Empty, then define a Node pointer 'temp' and
initialize with top.

Step 4: Display 'temp → data --->' and move it to the next node.
Repeat the same until temp reaches to the first node in the
stack (temp → next != NULL).

Step 4: Finally! Display 'temp → data ---> NULL'.

QUEUE USING LINKED LIST

A queue data structure can be implemented using linked list

data structure. The queue which is implemented using linked

list can work for unlimited number of values.

The Queue implemented using linked list can organize as many

data values as we want.

In linked list implementation of a queue, the last inserted node

is always pointed by 'rear' and the first node is always pointed

by 'front'.

QUEUE USING LINKED LIST

QUEUE USING LINKED LIST

To implement queue using linked list, we need to set the
following things before implementing actual operations.

Step 1: Include all the header files which are used in the
program. And declare all the user defined functions.

Step 2: Define a 'Node' structure with two
members data and next.

Step 3: Define two Node pointers 'front' and 'rear' and set
both to NULL.

Step 4: Implement the main method by displaying Menu of
list of operations and make suitable function calls in
the main method to perform user selected operation.

QUEUE USING LINKED LIST

Operations
enQueue(value) - Inserting an element into the Queue
We can use the following steps to insert a new node into the

queue...
Step 1: Create a newNode with given value and set 'newNode

→ next' to NULL.
Step 2: Check whether queue is Empty (rear == NULL)
Step 3: If it is Empty then,

set front = newNode and rear = newNode.
Step 4: If it is Not Empty then, set rear →

next = newNode and rear = newNode.

QUEUE USING LINKED LIST

Operations

deQueue() - Deleting an Element from Queue

We can use the following steps to delete a node from the queue...

Step 1: Check whether queue is Empty (front == NULL).

Step 2: If it is Empty, then display "Queue is Empty!!!

Deletion is not possible!!!" and terminate from the function

Step 3: If it is Not Empty then, define a Node pointer 'temp' and

set it to 'front'.

Step 4: Then set 'front = front → next' and delete 'temp'

(free(temp)).

QUEUE USING LINKED LIST

• Operations
• display() - Displaying the elements of Queue
• We can use the following steps to display the elements (nodes) of a

queue...
• Step 1: Check whether queue is Empty (front == NULL).
• Step 2: If it is Empty then, display 'Queue is Empty!!!' and

terminate the function.
• Step 3: If it is Not Empty then, define a Node pointer 'temp' and

initialize with front.
• Step 4: Display 'temp → data --->' and move it to the next node.

Repeat the same until 'temp' reaches to 'rear' (temp →
next != NULL).

• Step 4: Finally! Display 'temp → data ---> NULL'.

UNIT-4

NON LINEAR DATASTRUCTURES

Trees: Basic concept, binary tree, binary tree representation,

array and linked representations, binary tree traversal, binary

search tree, tree variants, application of trees.

Graphs: Basic concept, graph terminology, graph

implementation, graph traversals, Application of graphs,

Priority Queue.

TREES

216

DEFINITION OF TREE

A tree is a finite set of one or more nodes such that:

There is a specially designated node called the root.

The remaining nodes are partitioned into n>=0 disjoint sets
T1, ...,Tn, where each of these sets is a tree.

We call T1, ..., Tn the subtrees of the root.

T
0

T
4 T

5

T
1

T
3

T
2

T
6

REPRESENTATION OF TREE

3Fig.Tree 1
217

Level

1

2

A

E

B C

F H

D

G

TERMINOLOGY

Fig.Tree 2
218

219

internal nodes.Here B and D are internal nodes.

ROOT:
This is the unique node in the tree to which further subtrees are
attached.in the above fig node A is a root node.

Degree of the node:
The total number of sub-trees attached to the node is called the
degree of the node.

degree
3
0

Node
A
E

Leaves:
These are terminal nodes of the tree.The nodes with degree 0 are
always the leaf nodes.In above given tree E,F,G,C and H are the leaf
nodes.

Internal nodes:
The nodes other than the root node and the leaves are called the

220

Parent nodes:
The node which is having further sub-trees(branches)is called the
parent node of those sub-trees. In the given example node B is parent
node of E,F and G nodes.

Predecessor:
While displaying the tree ,if some particular node occurs previous to
some other node then that node is called the predecessor of the other
node.In above figure E is a predecessor of the node B.

successor:
The node which occurs next to some other node is a successor node.In
above figure B is successor of F and G.

Level of the tree:
The root node is always considered at level 0,then its adjacent children
are supposed to be at level 1 and so on.In above figure the node A is at
level 0,the nodes B,C,D are at level 1,the nodes E,F,G,H are at level 2.

Height of the tree:
The maximum level is the height of the tree.Here height of the
tree is 3.The height of the tree is also called depth of the tree.

Degree of tree:
The maximum degree of the node is called the degree of the
tree.

The degree of a node is the number of subtrees of the node

– The degree of A is 3; the degree of C is 1.

 The node with degree 0 is a leaf or terminal
node.

 A node that has subtrees is the parent of the
roots of the subtrees.

 The roots of these subtrees are the children of
the node.

 Children of the same parent are siblings.

 The ancestors of a node are all the nodes
along the path from the root to the node. 221

222

BINARY TREES

 A binary tree is a finite set of nodes that is
either empty or consists of a root and two
disjoint binary trees called the left subtree
and the right subtree.

 Any tree can be transformed into binary tree.

– by left child-right sibling representation

 The left subtree and the right subtree are
distinguished.

BINARY TREES

223

BINARY TREES

224

BINARY TREES

225

BINARY TREES

226

227

TYPES OF BINARYTREES

There are three types of binary trees

•Left skewed binary tree

•Right skewed binary tree

•Complete binary tree

•Full binary tree

LEFT SKEWED BINARY TREE

• If the right subtree is missing in every node of a tree
we cal it as left skewed tree.

A

B

C

228

RIGHT SKEWED BINARY TREE

• If the left subtree is missing in every node of a
tree we call it as right subtree.

A

B

C

229

COMPLETE BINARY TREE

E

CB

D F G

• The tree in which degree of each node is at the most two is
called a complete binary tree.In a complete binary tree there
is exactly one node at level 0,twonodes at level 1 and four
nodes at level 2 and so on.so we can say that a complete
binary tree of depth d will contains exactly 2l nodes at each
level l,where l is from 0 to d.

A

230

FULL BINARYTREE

E

CB

D

A

231

232

ABSTRACT DATATYPE

BINARY_TREE

structure Binary_Tree(abbreviated BinTree) is

objects: a finite set of nodes either empty or
consisting of a root node, left Binary_Tree,
and right Binary_Tree.

functions:

for all bt, bt1, bt2  BinTree, item  element

Bintree Create()::= creates an empty binary tree

Boolean IsEmpty(bt)::= if (bt==empty binary
tree) return TRUE else return FALSE

233

BinTree MakeBT(bt1, item, bt2)::= return a binary
tree

whose left subtree is bt1, whose right subtree is
bt2,

and whose root node contains the data item
Bintree Lchild(bt)::= if (IsEmpty(bt)) return error

else return the left subtree of bt
element Data(bt)::= if (IsEmpty(bt)) return error

else return the data in the root node
of bt
Bintree Rchild(bt)::= if (IsEmpty(bt)) return error

else return the right subtree of bt

234

MAXIMUM NUMBER OF NODES

IN BT
 The maximum number of nodes on level i of a

binary tree is 2i-1, i>=1.

 The maximum nubmer of nodes in a binary tree
of depth k is 2k-1, k>=1.

k

Prove by induction.

 2i1  2k

i1

1

235

BINARY TREE REPRESENTATION

•Sequential(Arrays) representation

•Linked representation

236

ARRAY REPRESENTATION OF

BINARY TREE

This representation uses only a single linear
array tree as follows:

i)The root of the tree is stored in tree[0].

ii)if a node occupies tree[i],then its left child is
stored in tree[2*i+1],its right child is stored in
tree[2*i+2],and the parent is stored in tree[(i-
1)/2].

SEQUENTIAL

REPRESENTATION

A

B C

GE

I

D

H

F

A

B

C

D
E

F

G
H

I
.
.
.
.

237

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
.
.
.
.

55

44 66

50

22

33

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

238

55
44

66

33
50

22

SEQUENTIAL

REPRESENTATION

239

ADVANTAGES OF SEQUENTIAL

REPRESENTATION

The only advantage with this type of representation is that the

direct access to any node can be possible and finding the parent

or left right children of any particular node is fast because of

the random access.

240

DISADVANTAGES OF

SEQUENTIALREPRESENTATION

• The major disadvantage with this type of representation is

wastage of memory.

• The maximum depth of the tree has to be fixed.

• The insertions and deletion of any node in the tree will be

costlier as other nodes has to be adjusted at appropraite

positions so that the meaning of binary tree can be preserved.

LINKED REPRESENTATION

left_child data right_child

struct node

{

int data;

struct node * left_child, *right_child;

};
data

left_child

241

right_child

Linked Representation

22

33

44

X X 50 X

XX

X 66 X

root

55

242

55,44,66,33,50,22

243

ADVANTAGES OF LINKED

REPRESENTATION

•This representation is superior to our
representation as there is no wastage of memory.
•Insertions and deletions which are the most
common operations can be done without moving the
other nodes.

244

DISADVANTAGES OF LINKED

REPRESENTATION

• This representation does not provide direct
access to a node and special algorithms are
required.

• This representation needs additional space in
each node for storing the left and right sub-
trees.

FULL BT VS COMPLETEBT

k

B

GE

I

D

H

F

 A binary tree with n nodes and depth k is
complete iff its nodes correspond to the nodes
numbered from 1 to n in the full binary tree of
depth k.

 A full binary tree of depth k is a binary tree of
depth k having 2 -1 nodes, k>=0.

A
A

C B C

GED F

I J KH M N OL
245

complete binary tree of depth 4full binary tree

246

BINARY TREE TRAVERSALS

The process of going through a tree in such a way that each node is

visted once is tree traversal.several method are used for tree

traversal.the traversal in a binary tree involves three kinds of basic

activities such as:

Visiting the root

Traverse left subtree

Traverse right subtree

We will use some notations to traverse a given binary
tree as follows:

L means move to the Left child.

R means move to the Right child.
D means the root/parent node.

The only difference among the methods is the order
in which these three operations are performed.

There are three standard ways of traversing a non
empty binary tree namely :

Preorder

Inorder
Postorder

247

Preorder(also known as depth-first order)

1.Visit the root(D)

2.Traverse the left subtree in preorder(L)

3.Traverse the right subtree in preorder(R)

Print 1st

Print 2nd

Print 3rd

A-B-C-D-E is the preorder traversal of the
above figure.

A

B D

EC

Print 4th

248

Print at the last

Inorder(also known as symmetric order)

1.Traverse the left subtree in Inorder(L)

2.Visit the root(D)

3.Traverse the right subtree in Inorder(R)

Print 3rd

Print 2nd

Print 1st

C-B-A-D-E is the Inorder traversal of the above
figure.

A

B D

EC

Print 4th

249

Print at the last

Postorder

1.Traverse the left subtree in postorder(L)

2.Traverse the right subtree in postorder(R)

3.Visit the root(D)

Print at the last

Print 3rd

Print 1st

C-D-B-E-A is the postorder traversal of the
above figure.

A

B D

EC

Print 4th

250

Print 2nd

BINARY TREE TRAVERSALS

B C

GE

I

D

H

F

K
J

A
A

B C

GE

I

D

H

F

J

FIG(a) FIG(b)

preorder :ABDHIEJCFGPreorder:ABDHIECFJKG
Inorder:HDIBEAJFKCG
Postorder:HIDEBJKFGCA

inorder: HDIBJEAFCG
postorder:HIDJEBFGCA

251

ARITHMETIC EXPRESSION

USING BT

+

*

A

*

/

E

D

C

B

inorder traversal
A / B * C * D + E

252

infix expression
preorder traversal
+ * * / A B C D E
prefix expression
postorder traversal
A B / C * D * E +
postfix expression
level order traversal
+ * E * D / C A B

253

INORDER TRAVERSAL

(RECURSIVE VERSION)
void inorder(tree_pointer ptr)

/* inorder tree traversal */

{

if (ptr) {

inorder(ptr->left_child);

printf(“%d”, ptr->data);

indorder(ptr->right_child);

}

}

A / B * C * D + E

}

} 254

PREORDER TRAVERSAL

(RECURSIVE VERSION)
void preorder(tree_pointer ptr)

/* preorder tree traversal */

{

if (ptr) {

printf(“%d”, ptr->data);

preorder(ptr->left_child);

predorder(ptr->right_child);

+ * * / A B C D E

}

} 255

POSTORDER TRAVERSAL

(RECURSIVE VERSION)
void postorder(tree_pointer ptr)

/* postorder tree traversal */

{

if (ptr) {

postorder(ptr->left_child);

postdorder(ptr->right_child);

printf(“%d”, ptr->data);

A B / C * D * E +

256

TRACE OPERATIONS OF INORDER

TRAVERSAL
Call of inorder Value in root Action Call of inorder Value in root Action

1 + 11 C

2 * 12 NULL

3 * 11 C printf

4 / 13 NULL

5 A 2 * printf

6 NULL 14 D

5 A printf 15 NULL

7 NULL 14 D printf

4 / printf 16 NULL

8 B 1 + printf

9 NULL 17 E

8 B printf 18 NULL

10 NULL 17 E printf

3 * printf 19 NULL

257

THREADED BINARY TREES

 Two many null pointers in current representatio
of binary trees

n: number of nodes
number of non-null links: n-1
total links: 2n
null links: 2n-(n-1)=n+1

 Replace these null pointers with some useful
“threads”.

258

THREADED BINARY TREES

If ptr->left_child is null,

replace it with a pointer to the node that would be
visited before ptr in an inorder traversal

If ptr->right_child is null,

replace it with a pointer to the node that would be
visited after ptr in an inorder traversal

A THREADED BINARYTREE

A

B C

GE

I

D

H

F

root

259

dangling

dangling

inorder traversal:
H, D, I, B, E, A, F, C, G

 FALSE

DATA STRUCTURES

FOR THREADED BT

short int right_thread; };

left_thread left_child data right_child typedef

struct threaded_tree *threaded_pointer;

typedef struct threaded_tree {

short int left_thread;

threaded_pointer left_child;

char data;

threaded_pointer right_child;

right_thread

FALSE: child

TRUE 

TRUE: thread

260

261

MEMORY REPRESENTATION OF

A THREADED BT

f f--

f fA

f fCf fB

t tE t tF t Gf fD

t tIt tH

root

262

NEXT NODE IN THREADED BT

threaded_pointer insucc(threaded_pointer

tree)

{

threaded_pointer temp;

temp = tree->right_child;

if (!tree->right_thread)

while (!temp->left_thread)

temp = temp->left_child;

return temp;

}

263

INORDER TRAVERSAL OF

THREADED BT

void tinorder(threaded_pointer tree)

{

/* traverse the threaded binary tree

inorder */

threaded_pointer temp = tree;

for (;;) {

temp = insucc(temp);

if (temp==tree) break;

printf(“%3c”, temp->data);

}

}
O(n)(timecomplexity)

264

INSERTING NODES INTO

THREADED BTS

 Insert child as the right child of node parent

– change parent->right_thread to FALSE

– set child->left_thread and child->right_thread
to TRUE

– set child->left_child to point to parent

– set child->right_child to parent->right_child

– change parent->right_child to point to child

EXAMPLES

parent

A

B

C D
child

A

B

C child

empty

265

Insert a node D as a right child of B.

root root

(1)

D
(2)

parent

(3)

*Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree (p.217)

nonempty

266

(1)

(3)

(4)

(2)

267

RIGHT INSERTION IN THREADED

child->left_thread = TRUE;

}

BTS
void insert_right(threaded_pointer parent,

threaded_pointer child)

{
threaded_pointer temp;

(1) child->right_child = parent->right_child;
child->right_thread = parent->right_thread;

(2) child->left_child = parent; case (a)

(3)parent->right_child = child;
parent->right_thread = FALSE;
if (!child->right_thread) { case (b)

(4) temp = insucc(child);
temp->left_child = child;

}

HEAP
 A max tree is a tree in which the key value in

each node is no smaller than the key values in
its children. A max heap is a complete binary
tree that is also a max tree.

 A min tree is a tree in which the key value in
each node is no larger than the key values in
its children. A min heap is a complete binary
tree that is also a min tree.

 Operations on heaps

– creation of an empty heap

– insertion of a new element into the heap;

– deletion of the largest element from the heap268

Sample max heaps

[4]

14

12 7

10

9

6 3

5

30

25

[1]

269

[2] [3]

[5] [6]

8 6

[1]

[2] [3]

[4]

[1]

[2]

Property:
The root of max heap contains
the largest .

2

7 4

810

10

20 83

50

11

21

[1]

279

[2] [3]

[5] [6]

6

[1]

[2] [3]

[4]

[1]

[2]

[4]

Sample min heaps

Property:
The root of min heap contains
the smallest.

271

ADT FOR MAX HEAPstructure MaxHeap
objects: a complete binary tree of n > 0 elements organized so that

the value in each node is at least as large as those in its children
functions:
for all heap belong to MaxHeap, item belong to Element, n,
max_size belong to integer

MaxHeap Create(max_size)::= create an empty heap that can
hold a maximum of max_size elements

Boolean HeapFull(heap, n)::= if (n==max_size) return TRUE
else return FALSE

MaxHeap Insert(heap, item, n)::= if (!HeapFull(heap,n)) insert
item into heap and return the resulting heap

else return error
Boolean HeapEmpty(heap, n)::= if (n>0) return FALSE

else return TRUE
Element Delete(heap,n)::= if (!HeapEmpty(heap,n)) return one

instance of the largest element in the heap
and remove it from the heap

else return error

272

EXAMPLE OF INSERTION TO MAX

HEAP

20

215

14 10

initial location of new node

21

2015

14 10 2

insert 21 into heap

20

515

14 10 2

insert 5 into heap

273

INSERTION INTO A MAX HEAP

void insert_max_heap(element item, int *n)

{

int i;

if (HEAP_FULL(*n)) {

fprintf(stderr, “the heap is full.\n”);

exit(1);

}

i = ++(*n);

while ((i!=1)&&(item.key>heap[i/2].key)) {

heap[i] = heap[i/2];

i /= 2;

}

}

2k-1=n ==> k=log2(n+1)

heap[i]= item; O(log2n)

EXAMPLE OF DELETION FROM

MAX HEAP

14 10 14

remove

20 10 15

15 2 15 2 14 2

10

274

275

DELETION FROM A MAXHEAP
element delete_max_heap(int *n)

{

int parent, child;

element item, temp;

if (HEAP_EMPTY(*n)) {

fprintf(stderr, “The heap is empty\n”);

exit(1);

}

/* save value of the element with the
highest key */

item = heap[1];

/* use last element in heap to adjust heap

temp = heap[(*n)--];

parent = 1;

child = 2;

276

while (child <= *n) {

/* find the larger child of the current
parent */

if ((child < *n)&&
(heap[child].key<heap[child+1].key))

child++;
if (temp.key >= heap[child].key) break;

/* move to the next lower level */
heap[parent] = heap[child];
child *= 2;

}

heap[parent] = temp;
return item;

}

277

GRAPHS

WHAT IS A GRAPH

• A data structure that consists of a set of nodes
(vertices) and a set of edges that relate the nodes
to each other

• The set of edges describes relationships among
the vertices

278

279

FORMAL DEFINITION OF GRAPHS

• A graph G is defined as follows:

G=(V,E)

V(G): a finite, nonempty set of vertices

E(G): a set of edges (pairs of vertices)

DIRECTED VS. UNDIRECTED

GRAPHS

• When the edges in a graph have no
direction, the graph is called undirected

280

DIRECTED VS. UNDIRECTED

GRAPHS

• When the edges in a graph have a direction,
the graph is called directed (or digraph)

E(Graph2) = {(1,3) (3,1) (5,9) (9,11) (5,7)

281

TREES VS GRAPHS

• Trees are special cases of graphs!!

282

GRAPH TERMINOLOGY

• Adjacent nodes: two nodes are adjacent if
they are connected by an edge

• Path: a sequence of vertices that connect two
nodes in a graph

• Complete graph: a graph in which every vertex
is directly connected to every other vertex

5 is adjacent to 7
7 is adjacent from 5

283

GRAPH TERMINOLOGY

• What is the number of edges in a complete
directed graph with N vertices?

N * (N-1)

O(N 2)

284

GRAPH TERMINOLOGY

• What is the number of edges in a complete
undirected graph with N vertices?

N * (N-1) / 2

O(N2)

285

GRAPH TERMINOLOGY

• Weighted graph: a graph in which each edge
carries a value

286

GRAPH IMPLEMENTATION

• Array-based implementation

– A 1D array is used to represent the vertices

– A 2D array (adjacency matrix) is used to
represent the edges

287

288

GRAPH IMPLEMENTATION

• Linked-list implementation

– A 1D array is used to represent the vertices

– A list is used for each vertex v which contains the

vertices which are adjacent from v (adjacency list)

289

290

291

ADJACENCY MATRIX VS.
ADJACENCY LIST
REPRESENTATION

• Adjacency matrix
– Good for dense graphs --|E|~O(|V|2)

– Memory requirements: O(|V| + |E|) = O(|V|2)

– Connectivity between two vertices can be tested
quickly

• Adjacency list
– Good for sparse graphs -- |E|~O(|V|)

– Memory requirements: O(|V| + |E|)=O(|V|)

– Vertices adjacent to another vertex can be found
quickly

292

DEPTH-FIRST-SEARCH (DFS)

• What is the idea behind DFS?

– Travel as far as you can down a path

– Back up as little as possible when you reach a
"dead end" (i.e., next vertex has been "marked"
or there is no next vertex)

• DFS can be implemented efficiently using a
stack

293

DEPTH-FIRST-SEARCH (DFS)

Set found to false
stack.Push(startVertex)
DO
stack.Pop(vertex)
IF vertex == endVertex
Set found to true
ELSE

Push all adjacent vertices onto stack
WHILE !stack.IsEmpty() AND !found

IF(!found)
Write "Path does not exist"

(initialization)

294

295

296

(continues)

297

template <class ItemType>

void DepthFirstSearch(GraphType<VertexType> graph, VertexType
startVertex, VertexType endVertex)

{

StackType<VertexType> stack;

QueType<VertexType> vertexQ;

bool found = false;

VertexType vertex;

VertexType item;

graph.ClearMarks();

stack.Push(startVertex);

do {

stack.Pop(vertex);

if(vertex == endVertex)

found = true;

(continues)

298

else {

if(!graph.IsMarked(vertex)) {

graph.MarkVertex(vertex);

graph.GetToVertices(vertex, vertexQ);

while(!vertexQ.IsEmpty()) {

vertexQ.Dequeue(item);

if(!graph.IsMarked(item))

stack.Push(item);

}

}

} while(!stack.IsEmpty() && !found);

if(!found)

cout << "Path not found" << endl;

}

299

template<class VertexType>

void GraphType<VertexType>::GetToVertices(VertexType vertex,

QueTye<VertexType>& adjvertexQ)

{

int fromIndex;

int toIndex;

fromIndex = IndexIs(vertices, vertex);

for(toIndex = 0; toIndex < numVertices; toIndex++)

if(edges[fromIndex][toIndex] != NULL_EDGE)

adjvertexQ.Enqueue(vertices[toIndex]);

}

300

BREADTH-FIRST-SEARCHING

(BFS)

• What is the idea behind BFS?

– Look at all possible paths at the same depth
before you go at a deeper level

– Back up as far as possible when you reach a
"dead end" (i.e., next vertex has been
"marked" or there is no next vertex)

BREADTH-FIRST-SEARCHING

(BFS)
• BFS can be implemented efficiently using a queue

Set found to false
queue.Enqueue(startVertex)
DO
queue.Dequeue(vertex)
IF vertex == endVertex
Set found to true
ELSE

Enqueue all adjacent vertices onto queue
WHILE !queue.IsEmpty() AND !found

• Should we mark a vertex when it is enqueued or
when it is dequeued ?

301

(initialization)

302

next:

303

304

305

template<class VertexType>
void BreadthFirtsSearch(GraphType<VertexType> graph,

VertexType startVertex, VertexType endVertex);
{
QueType<VertexType> queue;
QueType<VertexType> vertexQ;//

bool found = false;
VertexType vertex;
VertexType item;

graph.ClearMarks();
queue.Enqueue(startVertex);
do {
queue.Dequeue(vertex);
if(vertex == endVertex)
found = true;

(continues)

306

else {

if(!graph.IsMarked(vertex)) {

graph.MarkVertex(vertex);

graph.GetToVertices(vertex, vertexQ);

while(!vertxQ.IsEmpty()) {

vertexQ.Dequeue(item);

if(!graph.IsMarked(item))

queue.Enqueue(item);

}

}

}

} while (!queue.IsEmpty() && !found);

if(!found)

cout << "Path not found" << endl;

}

307

SINGLE-SOURCE SHORTEST-

PATH PROBLEM

• There are multiple paths from a source
vertex to a destination vertex

• Shortest path: the path whose total weight
(i.e., sum of edge weights) is minimum

• Examples:

1560– Austin->Houston->Atlanta->Washington:
miles

– Austin->Dallas->Denver->Atlanta->Washington:
2980 miles

SINGLE-SOURCE SHORTEST-

PATH PROBLEM

• Common algorithms: Dijkstra's algorithm,
Bellman-Ford algorithm

• BFS can be used to solve the shortest graph
problem when the graph is weightless or all
the weights are the same

(mark vertices before Enqueue)

308

UNIT-5

BINARY TREES AND HASHING

Binary search trees: Binary search trees, properties and

operations.

Balanced search trees: AVL trees

Introduction to M-Way search trees, B trees.

Hashing and collision: Introduction, hash tables, hash

functions, collisions, applications of hashing.

310

311

312

COMPARISION BETWEEN

BINARY TREE &

BINARY SEARCH TREE
• A binary search tree is a binary tree in which it has

at most two children, the key values in the left node

is less than the root and the key values in the right

node is greater than the root.

* It doesn't have any order.

Note : * Every binary search tree is a binary tree.

* All binary trees need not be a binary search tree.

EXAMPLE OF BINARY SEARCH

TREE

A binary search tree Not a binary search tree

313

BINARY SEARCH TREES
The same set of keys may have different BSTs

314

BST OPERATIONS

The 3 basic BST operations are: search, insert, and

delete; and develop algorithms for searches,

insertion, and deletion.

•Searches

• Insertion

• Deletion

315

316

THREE BST SEARCH ALGORITHMS

• Find the smallest node

• Find the largest node

• Find a requested node

317

30 30

30 30

318

319

320

321

Delete operation:

• Deletion operation is the complex operation in the

Binary search tree. To delete an element, consider the

following three possibilities.

• CASE 1 Node with no children (Leaf node)

If the node is a leaf node, it can be deleted

immediately.

322

Delete operation:

CASE 2 : - Node with one child

If the node has one child, it can be deleted by

adjusting its parent pointer that points to its child

node

323

Delete operation:

• Case 3 : Node with two children

It is difficult to delete a node which has two children.

The general strategy is to replace the data of the node

to be deleted with its smallest data of the right subtree

and recursively delete that node.

27 27

27 27

324

325

AVLTREES

These are self-adjusting, height-balanced binary

search trees and are named after the inventors:

Adelson- Velskii and Landis.

Definition:

The height of a binary tree is the maximum path

length from the root to a leaf. A single-node

binary tree has height 0, and an empty binary

tree has height -1

326

AVLTREES
• An AVL tree is a binary search tree in which every

node is height balanced, that is, the difference in the
heights of its two subtrees is at most 1.

• The balance factor of a node is the height of its right
subtree minus the height of its left subtree. An
equivalent definition, then, for an AVL tree is that it is
a binary search tree in which each node has a balance
factor of -1, 0, or +1.

• Note :balance factor of -1 means that the subtree is
left-heavy, and

• a balance factor of +1 means that the subtree is right-
heavy.

327

AVLTREE

Definition

• Binary Search tree.

• If T is a nonempty binary Search tree with TL and TR

as its left and right subtrees, then T is an AVL tree iff

1. TL and TR are AVL trees,and

2. |hL – hR|  1 where hL and hR are the heights of TL

and TR, respectively

328

BALANCE FACTOR

• AVL trees are normally represented using the linked

representation

• To facilitate insertion and deletion, a balance factor

(bf) is associated with each node.

• The balance factor bf(x) of a node x is defined

as height(xleftChild) –

height(xrightChild)

• Balance factor of each node in an AVL tree must be

–1, 0, or 1

7

3 12

2 10 20

9 11

00

0 0
0

11

-1
30

329

22 62

44 95

51 97

5

Eg with balance factors
-1

0
0

-10
1

1 0

Not an AVL TREE

70

330

150

130 18030
80

140
10 40

1

100

0

0

36

1

-1

0

2
1

-1
0

0

332

Inserting into an AVL Search Trees
• If we insert an element into an AVL search tree, the

result may not be an AVLtree

• That is, the tree may become unbalanced

• If the tree becomes unbalanced, we must adjust the

tree to restore balance - this adjustment is called

rotation.

• There are Four Models of rotations:

333

Inserting into an AVL Search Trees
• There are four models about the operation of AVL

Tree:

1. LL: new node is in the left subtree of the left subtree

of A

2. LR: new node is in the right subtree of the left

subtree of A

3. RR: new node is in the right subtree of the right

subtree ofA

4. RL: new node is in the left subtree of the right

subtree of A

334

Rotation
Definition

• To switch children and parents among two or three

adjacent nodes to restore balance of a tree.

• A rotation may change the depth of some nodes, but

does not change their relative ordering.

335

Single and Double Rotations
• Single rotations: the transformations done to correct

LL and RR imbalances

• Double rotations: the transformations done to correct
LR and RL imbalances

• The transformation to correct LR imbalance can be
achieved by an RR rotation followed by an LL
rotation

• The transformation to correct RL imbalance can be
achieved by an LL rotation followed by an RR
rotation

Left – Left Rotation
Definition

• In a binary search tree, pushing a node A down and to the
right to balance the tree.

• A's left child replaces A, and the left child's right child
becomes A's left child.

15

12 22

Right Rotation

15 9

22 49

124

A

336

Right- Right Rotation
Definition

• In a binary search tree, pushing a node A down and to the left
to balance the tree.

• A's right child replaces A, and the right child's left child
becomes A's right child.

Left Rotation

22

124

9 15

4 15 9

12 22

A

337

• AVL property destroyed by insertion of 6,
then fixed by a single rotation.

• BST node structure needs an additional
field for height.

Single Rotation-Example I

338

Single Rotation-Example II
• Start with an initially empty tree and insert items 1

through 7 sequentially. Dashed line joins the two nodes
that are the subject of the rotation.

339

e

n

Insert 6.
Balance
problem at th
root. So a
single rotatio
is performed.

Finally, Insert
7 causing
another
rotation.

Single Rotation-Example III

340

341

Left -Right Rotation
Definition

the changed• The left subtree’s right child will be
root position.

will be

will be left child

• The left subtree’s root
the left child in the changed tree.

• The left subtrees’s left child
of the left subtree in the changed tree.

• The root node’s left child’s right child’s left child
will be

• the right child of the left child of the root in the changed
tree

• The root node’s left child’s right child’s right child

will be

the right child’s left child in the changed tree.

342

Right -left Rotation
Definition

• The root node’s right child ‘s left child will be the changed root position.

• The root node’s right child

changed tree.

will be the right child in the

• The root nodes left child’s left child

changed tree.

will be left child of the

• The root node’s left child’s right child’s left child

will be

• the right child of the left child of the root in the changed tree

• The root node’s left child’s right child’s right child

will be

the right child’s left child in the changed tree.

Double Rotation Example - I
• Continuing our example, suppose keys 8 through

15 are inserted in reverse order. Inserting 15 is
easy but inserting 14 causes a height imbalance
at node 7. The double rotation is an RL type and
involves 7, 15, and 14.

343

Double Rotation Example - II
• insert 13: double rotation is RL that will involve

6, 14, and 7 and will restore the tree.

344

Double Rotation Example - III
• If 12 is now inserted, there is an imbalance at the

root. Since 12 is not between 4 and 7, we know
that the single rotation RR will work.

345

Double Rotation Example - IV
• Insert 11: single rotation LL; insert 10: single

rotation LL; insert 9: single rotation LL; insert 8:
without a rotation.

346

347

examples

348

349

350

351

352

353

354

355

356

357

358

Inserting into an AVL Search Tree

29

359

Insert(29)

1

0 0

-1 10

1 40

1 30 45 -1

-1 20 0 35

0
25

0
60

7

3 8

0 1 0 5

• Where is 29 going to be inserted into?

- use the AVL-search-tree-insertion algorithm

in Figure 15.6)

• After the insertion, is the tree still anAVL

search tree? (i.e., still balanced?)

-2

290

360

1

0 0

Inserting into an AVL Search Tree
-1 10

45 -1

20 0 35

25-1

0
60

7 1 40

3 8 1 30

0 1 0 5

•What are the new balance factors for 20,

25, 29?

•What type of imbalance do we have?

•RR imbalance  new node is in the right

subtree of right subtree of node 20 (node

with bf = -2)  what rotation do we need?

•What would the left subtree of 30 look like

after RR rotation?

1

361

0

0 0

0

After RR Rotation
-1 10

45 -1

0
60

7 1 40

3 8 1 30

1 5

0
20

0 25 0 35

0
29

• After the RR rotation, is the resulting tree an AVL search tree?

362

Deletion from an AVL Search Tree

Deletion procedure is more complex than insertion in 2 ways:

• 1)More number of cases for rebalancing may arise in
deletion;

• 2)In insertion there is only one rebalancing, but in deletion
there can be as many rebalancing as the length of the path
from the deleted node to the root.

AVL Tree Example:

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

14

1711

7 53

4

363

14

177

4 5311

13

AVL Tree Example:

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

1

364

-1 -1

-10

AVL Tree Example:

• Now insert 12

14

177

4 5311

13

12

-2

365

AVL Tree Example:

• Now insert 12

14

177

4 5311

12

13

-2

366

AVL Tree Example:

• Now the AVL tree is balanced.

14

177

4 5312

1311

0

367

AVL Tree Example:

• Now insert 8

14

177

4 5312

1311

8

-2

368

AVL Tree Example:

• Now insert 8

14

177

4 5311

128

13

-2

369

AVL Tree Example:

• Now the AVL tree is balanced.

14

17

7

4

53

11

12

8 13

370

AVL Tree Example:

• Now remove 53

14

17

7

4

53

11

12

8 13

371

14

17

7

4

11

12

8 13

AVL Tree Example:

• Now remove 53, unbalanced

-2

372

AVL Tree Example:

• Balanced! Remove 11

14

17

7

4

11

128

13

373

AVL Tree Example:

• Remove 11, replace it with the largest in its left branch

14

17

7

4

8

12

13

374

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

375

AVL Tree Example:

• Remove 8, unbalanced

14

17

4

7

12

13

376

AVL Tree Example:

• Balanced!!

14

174

7

12

13

377

378

Exercise

• Build an AVL tree with the following values:

15, 20, 24, 10, 13, 7, 30, 36, 25

15

15, 20, 24, 10, 13, 7, 30, 36, 25

20

24

15

20

24

10

13

15

20

24

13

10

13

20

24

1510

379

13

20

24

1510

15, 20, 24, 10, 13, 7, 30, 36, 25

7

13

20

2415

10

7

30

3613

20

3015

10

7

3624

380

13

20

3015

10

7

3624

15, 20, 24, 10, 13, 7, 30, 36, 25

25

13

20

30

15

10

7

36

24

2513

24

36

20

10

7

25

30

15

381

Remove 24 and 20 from the AVL tree.

13

24

36

20

10

7

25

30

15

13

20

36

15

10

7

25

30

13

15

36

10

7

25

30

13

30

36

10

7

25

15

382

TREES

384

B-tree of order n

• Every B-tree is of some "order n", meaning nodes
contain from n to 2n keys (so nodes are always at
least half full of keys), and n+1 to 2n+1 pointers,
and n can be any number.

• Keys are kept in sorted order within each node. A
corresponding list of pointers are effectively
interspersed between keys to indicate where to
search for a key if it isn't in the current node.

385

• A B-tree of order n is a multi-way search tree
with two properties:

• 1.All leaves are at the same level

• 2.The number of keys in any node lies
between n and 2n, with the possible
exception of the root which may have fewer
keys.

386

Other definition

A B-tree of order m is a m-way tree that satisfies the following
conditions.

• Every node has < m children.

• Every internal node (except the root) has <m/2 children.

• The root has >2 children.

• An internal node with k children contains (k-1) ordered keys.
The leftmost child contains keys less than or equal to the
first key in the node. The second child contains keys greater
than the first keys but less than or equal to the second key,

and so on.

A B-tree of order 2

387

388

• A multi-way (or m-way) search tree of order m is a tree in which

– Each node has at-most m sub trees, where the sub trees may
be empty.

– Each node consists of at least 1 and at most m-1 distinct keys

– The keys in each node are sorted.

• The keys and sub trees of a non-leaf node are

ordered as: T0, k1, T1, k2, T2, . . . , km-1, Tm-1 such

that:

– All keys in sub tree T0 are less than k1.

– All keys in sub tree Ti , 1 <= i <= m - 2, are greater than ki but less
than ki+1.

– All keys in sub tree Tm-1 are greater than km-1

km-2
. . .k3k2k1

T0 T1 T2 Tm-2 Tm-1

key < k1 k1 < key < k2 k2 < key < k3 km-2 < key < km-1 key > km-1

km-1

Multi-way tree

389

390

What is B-tree?

• B-tree of order m (or branching factor m), where m > 2, is either an
empty tree or a multiway search tree with the following
properties:

–The root is either a leaf or it has at least two non-empty
subtrees and at most m non-empty subtrees.

–Each non-leaf node, other than the root, has at least
m/2 non-empty subtrees and at most m non-empty
subtrees. (Note: x is the lowest integer > x).

–The number of keys in each non-leaf node is one less
than the number of non-empty subtrees for that node.

–All leaf nodes are at the same level; that is the tree is
perfectly balanced

• For a non-emptyWB-threaetofisordaerBm-:tree?

391

Example: A B-tree of order 4

Example: A B-tree of order 5

Note:

392

The data references are not shown.

• The leaf references are to empty subtrees

Height of B-Trees

• For n greater than or equal to one, the height
of an n-key b-tree T of height h with a
minimum degree t greater than or equal to 2

393

394

Operations of B-Trees

• B-Tree-Search(x, k)
– The search operation on a b-tree is similar to a search

on a binary tree. The B-Tree-search runs in time O(logt

n).

• B-Tree-Create(T)
–The B-Tree-Create operation creates an empty b-tree by

allocating a new root node that has no keys and is a leaf
node. Only the root node is permitted to have these
properties; all other nodes must meet the criteria
outlined previously. The B-Tree-Create operation runs in
time O(1).

395

Operations of B-Trees

• B-Tree-Split-Child(x, i, y)
–If is node becomes "too full," it is necessary to perform

a split operation. The split operation moves the median
key of node x into its parent y where x is the ith child of
y. A new node, z, is allocated, and all keys in x right of
the median key are moved to z. The keys left of the
median key remain in the original node x. The new
node, z, becomes the child immediately to the right of
the median key that was moved to the parent y, and the
original node, x, becomes the child immediately to the
left of the median key that was moved into the parent.
The B-Tree-Split-Child algorithm will run in time O(t) , T
is constrain

396

Operations of B-Trees
• B-Tree-Insert(T, k)

• B-Tree-Insert-Nonfull(x, k)

To perform an insertion on a b-tree, the appropriate
node for the key must be located using an algorithm
similiar to B-Tree-Search. Next, the key must be
inserted into the node.

 If the node is not full prior to the insertion, no
special action is required; however, if the node is
full, the node must be split to make room for the
new key. Since splitting the node results in moving
one key to the parent node, the parent node must
not be full or another split operation is required.
This process may repeat all the way up to the root
and may require splitting the root node.

 This approach requires two passes. The first pass
locates the node where the key should be inserted;
the second pass performs any required splits on the
ancestor nodes. runs in time O(t logt n)

397

 OVERFLOW CONDITION:
A root-node or a non-root node of a B-tree of order m overflows if,
after a key insertion, it contains m keys.

 Insertion algorithm:

If a node overflows, split it into two, propagate the "middle" key
to the parent of the node. If the parent overflows the process
propagates upward. If the node has no parent, create a new root
node.

 Note: Insertion of a key always starts at a leaf node.

Insertion in B-Trees

• Insertion in a B-tree of odd order

• Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this

order in an initially empty B-tree of order3

Insertion

398

Insertion in B-Trees
• Insertion in a B-tree of even order

• right-bias: The node is split such that its right subtree has more keys than the

left subtree.

• left-bias: The node is split such that its left subtree has more keys than the

right subtree.

• Example: Insert the key 5 in the following B-tree of order 4:

399

Insertion

• Insert the keys in the folowing order into a B-tree of order 5.

• A, G, F, B, K, D, H, M, J, E, S, I, R, X, C, L, N, T, U, P.

400

401

402

Searching

Searching for an Item in a B-Tree:

1.Make a local variable, i, equal to the first index such that
data[i] >= target. If there is no such index, then set i equal to
data_count, indicating that none of the entries is greater than
or equal to the target.

2. if (we found the target at

data[i]) return true;

else if (the root has no children)

return false;

else

return subset[i]->contains (target);

Searching (cont.)

• Example:

2 3

19 22

target = 10

6 17

1610 18 20 25

12

5

4

403

Deletion form a B-Tree

• 1. detete h, r :

s promote s and•

• delete form leaf

j

c f

g i

d ea b k l n p

m r

g h i

t u x

s t u x

404

Deletion (cont.)

• 2. delete p :
•

•

•

t pull s down;

pull t up

j

g i n pk ld ea b

m sc f

t u x

n s

405

Deletion (cont.)

• 3. delete d:

• Combine:

j

c f

g id ea b k l n s u x

m t

406

Deletion (cont.)

• combine :

f

j

u xn sk lg i

g i k l n s u x

m t

a b c e

f j m t

a b c e

407

408

Deleting from a B-Tree

• To delete a key value x from a B-tree, first search to
determine the leaf node that contains x.

• If removing x leaves that leaf node with fewer than
the minimum number of keys, try to adopt a
key from a neighboring node. If that’s possible, then
you’re finished.

409

Deleting from a B-Tree (continued)

• If the neighboring node is already at its minimum,
combine the leaf node with its neighboring node,
resulting in one full leaf node.

• This will require restructuring the parent node since
it has lost a child

• If the parent now has fewer than the minimum keys,

adopt a key from one of its neighbors. If that’s not

possible, combine the parent with its neighbor.

410

Deleting from a B-Tree (continued)

• This process may percolate all the way to the
root.

• If the root is left with only one child, then
remove the root node and make its child the
new root.

• Both insertion and deletion are O(h), where h
is the height of the tree.

Delete 18

411

Delete 5

412

Delete 19

413

Delete 12

414

415

Deletion in B-Tree

• B-Tree-Delete

• UNDERFLOW CONDITION

• A non-root node of a B-tree of order m
underflows if, after a key deletion, it contains m /
2 - 2 keys

• The root node does not underflow. If it contains
only one key and this key is deleted, the tree
becomes empty.

416

Deletion in B-Tree

• There are five deletion cases:
1.The leaf does not underflow.

2. The leaf underflows and the adjacent right sibling has at least m / 2 

keys.

perform a left key-rotation

3. The leaf underflows and the adjacent left sibling has at least m / 2 

keys.

perform a right key-rotation

4.The leaf underflows and each of the adjacent right sibling and the
adjacent left sibling has at least m / 2  keys.

perform either a left or a right key-rotation& perform a merging

5. The leaf underflows and each adjacent sibling has m / 2 - 1 keys.

• Case1: The leaf does not underflow.

• Example : B-tree ofDoredelre4tion in B-Tree

Delete 140

417

Deletion in B-Tree
• Case2: The leaf underflows and the adjacent right sibling has at least

m/2 keys.

• Example : B-tree of order 5

Delete 113

418

Deletion in B-Tree
• Case 3: The leaf underflows and the adjacent left sibling has at least m / 2 keys.

• Example : B-tree of order 5

Delete 135

419

An example B-Tree

51 6242

6 12

26

55 60 7064 9045

1 2 4 7 8 13 15 18 25

27 29 46 48 53

A B-tree of order 5
containing 26 items

Note that all the leaves are at the same level

421

422

• Suppose we start with an empty B-tree and keys
arrive in the following order:1 12 8 2 25 5 14
28 17 7 52 16 48 68 3 26 29 53 55 45

• We want to construct a B-tree of order 5
• The first four items go into the root:

• To put the fifth item in the root would violate
condition 5

• Therefore, when 25 arrives, pick the middle key
to make a new root

Constructing a B-tree

1 2 8 12

Constructing a B-tree (contd.)

8

1 2 12 25

6, 14, 28 get added to the leaf nodes:

8

1 2 6 12 14 25 28

423

Constructing a B-tree (contd.)

Adding 17 to the right leaf node would over-fill it, so we take the

middle key, promote it (to the root) and split the leaf

8 17

12 14 25 281 2 6

7, 52, 16, 48 get added to the leaf nodes

8 17

12 14 16 25 28 48 521 2 6 7

424

Constructing a B-tree (contd.)

Adding 68 causes us to split the right most leaf, promoting 48 to the

root, and adding 3 causes us to split the left most leaf, promoting 3

to the root; 26, 29, 53, 55 then go into the leaves

3 8 17 48

52 53 55 6825 26 28 291 2 6 7 12 14 16

25 26 28 29

425

Adding 45 causes a split of

and promoting 28 to the root then causes the root to split

Constructing a B-tree (contd.)

17

3 8 28 48

1 2 6 7 12 14 16 52 53 55 6825 26 29 45

426

427

Inserting into a B-Tree

• Attempt to insert the new key into a leaf

• If this would result in that leaf becoming too big, split
the leaf into two, promoting the middle key to the
leaf’s parent

• If this would result in the parent becoming too big, split
the parent into two, promoting the middle key

• This strategy might have to be repeated all the way to
the top

• If necessary, the root is split in two and the middle key
is promoted to a new root, making the tree one level
higher

428

Exercise in Inserting a B-Tree

• Insert the following keys to a 5-way B-tree:

• 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4,
31, 35, 56

429

Removal from a B-tree

• During insertion, the key always goes into a leaf.
For deletion we wish to remove from a leaf.
There are three possible ways we can do this:

• 1 - If the key is already in a leaf node, and
removing it doesn’t cause that leaf node to have
too few keys, then simply remove the key to be
deleted.

• 2 - If the key is not in a leaf then it is guaranteed
(by the nature of a B-tree) that its predecessor or
successor will be in a leaf -- in this case we can
delete the key and promote the predecessor or
successor key to the non-leaf deleted key’s
position.

430

Removal from a B-tree (2)

• If (1) or (2) lead to a leaf node containing less than the
minimum number of keys then we have to look at the
siblings immediately adjacent to the leaf in question:
– 3: if one of them has more than the min. number of keys

then we can promote one of its keys to the parent and
take the parent key into our lacking leaf

– 4: if neither of them has more than the min. number of
keys then the lacking leaf and one of its neighbours can be
combined with their shared parent (the opposite of
promoting a key) and the new leaf will have the correct
number of keys; if this step leave the parent with too few
keys then we repeat the process up to the root itself, if
required

Type #1: Simple leaf deletion

12 29 52

2 7 9 15 22 31 43 56 69 72

Delete 2: Since there are enough
keys in the node, just delete it

Assuming a 5-way
B-Tree, as before...

431

Type #2: Simple non-leaf deletion

5
2

5
6

69 727 9 15 22 31 43

Delete 52

Borrow the predecessor
or (in this case) successor

12 29 56

432

Type #4: Too few keys in node and its
siblings

12 29 56

7
2

7 9 15 22 31 43 69

Delete 72

Too few keys!

Join back together

433

Type #4: Too few keys in node and its
siblings

12 29

7 9 15 22 31 43 56 69

434

Type #3: Enough siblings

12 29

7 9 15 2
2

Demote root key and
promote leaf key

31 43 56 69

435

Type #3: Enough siblings

7 9 15 29

12 31

43 56 69

436

437

Summary
• The B-tree is a tree-like structure that helps us to

organize data in an efficient way.

• The B-tree index is a technique used to minimize the disk
I/Os needed for the purpose of locating a row with a
given index key value.

• Because of its advantages, the B-tree and the B-tree
index structure are widely used in databases nowadays.

• In addition to its use in databases, the B-tree is also used
in file systems to allow quick random access to an
arbitrary block in a particular file. The basic problem is
turning the file block i address into a disk block.

Secondary Storages

MS/Dos - FAT (File allocation table)

•entry for each disk block
•entry identifies whether its block is used by a file
•which block (if any) is the next disk block of the same file
•allocation of each file is represented as a linked list in the table

438

rightRotate(y)

RB Trees: Rotation

y

x C

x

A y

A B B C

● Answer: A lot of pointer manipulation

■ x keeps its left child

■ y keeps its right child

■ x’s right child becomes y’s left child

■ x’s and y’s parents change

● What is the running time?
439

Splay Trees: Example – 40 is accessed

80

70 85

60 75

50 65

40 55

30 45

(a)

80

70 85

7540

30 50

45

(b)

60

55 65

After Zig-zig

70

50

40

30

45 60

55 65

80

75 85

(c)
After Zig-zig

440

441

Comparison of Search Trees

Tree
Worst Case Expected

Search Insert Remove Search Insert Remove

BST n n n log n log n log n

AVL tree log n log n log n log n log n log n

red-black tree log n log n log n log n log n log n

splay tree n n n log n log n log n

B-trees log n log n log n log n log n log n

442

Concept of Hashing

• In CS, a hash table, or a hash map, is a data
structure that associates keys (names) with
values (attributes).

– Look-Up Table

–Dictionary

–Cache

– Extended Array

Example

443

444

Search vs. Hashing

• Search tree methods: key comparisons

– Time complexity: O(size) or O(log n)

• Hashing methods: hash functions

– Expected time: O(1)

• Types

– Static hashing (section 8.2)

– Dynamic hashing (section 8.3)

445

Static Hashing

• Key-value pairs are stored in a fixed size table
called a hash table.

–A hash table is partitioned into many
buckets.

– Each bucket has many slots.

– Each slot holds one record.

–A hash function f(x) transforms the
identifier (key) into an address in the hash
table

Hash table

. . .

.

.

.

.

.

.

.

.

.

. . .

b
b

u
ckets

0

1

b-1

0 1 s-1

s slots

446

447

Data Structure for Hash Table

#define MAX_CHAR 10

#define TABLE_SIZE 13

typedef struct {

char key[MAX_CHAR];

/* other fields */

} element;

element hash_table[TABLE_SIZE];

448

Some Issues

• Choice of hash function.

–Really tricky!

– To avoid collision (two different pairs are
in the same the same bucket.)

– Size (number of buckets) of hash table.

• Overflow handling method.

–Overflow: there is no space in the bucket
for the new pair.

Example (fig 8.1)

ymssynonyms:

char, ceil,

clock, ctime

overflow

449

Slot 0 Slot 1

0 acos atansynon

1

2 char ceilsynon

3 define

4 exp

5 float floor

6

…

25

yms

450

Choice of Hash Function

• Requirements

– easy to compute

–minimal number of collisions

• If a hashing function groups key values
together, this is called clustering of the keys.

• A good hashing function distributes the key
values uniformly throughout the range.

451

Some hash functions

• Middle of square

–H(x):= return middle digits of x^2

• Division

–H(x):= return x % k

• Multiplicative:

–H(x):= return the first few digits of the
fractional part of x*k, where k is a fraction.

452

Some hash functions II

• Folding:
– Partition the identifier x into several parts, and add the parts

together to obtain the hash address

– e.g. x=12320324111220; partition x into 123,203,241,112,20;
then return the address 123+203+241+112+20=699

– Shift folding vs. folding at the boundaries

• Digit analysis:
– If all the keys have been known in advance, then we could delete

the digits of keys having the most skewed distributions, and use
the rest digits as hash address.

453

Overflow Handling

• An overflow occurs when the home bucket
for a new pair (key, element) is full.

• We may handle overflows by:
– Search the hash table in some systematic

fashion for a bucket that is not full.
• .

454

• Linear probing (linear open addressing).
• Quadratic probing.
• Random probing.

– Eliminate overflows by permitting each
bucket to keep a list of all pairs for which it
is the home bucket.
• Array linear list.
• Chain

455

Linear probing (linear open
addressing)

• Open addressing ensures that all elements
are stored directly into the hash table, thus
it attempts to resolve collisions using various
methods.

• Linear Probing resolves collisions by placing
the data into the next open slot in the table.

456

Linear Probing – Get And Insert

• divisor = b (number of buckets) = 17.

• Home bucket = key % 17.

0 4 8 12 16

• Insert pairs whose keys are 6, 12, 34, 29,
28, 11, 23, 7, 0, 33, 30, 45

34 0 45 6 23 7 28 12 29 11 30 33

457

Linear Probing – Delete

0 4 8 12 16

34 0 45 6 23 7 28 12 29 11 30 33

• Delete(0)

0 4 8 12 16

34 45 6 23 7 28 12 29 11 30 33

• Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16

34 45 6 23 7 28 12 29 11 30 33

458

Linear Probing – Delete(34)

• Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16

0 45 6 23 7 28 12 29 11 30 33

0 4 8 12 16

0 45 6 23 7 28 12 29 11 30 33

0 4 8 12 16

34 0 45 6 23 7 28 12 29 11 30 33

0 4 8 12 16

0 45 6 23 7 28 12 29 11 30 33

459

Linear Probing – Delete(29)

• Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16

34 0 45 6 23 7 28 12 29 11 30 33

0 4 8 12 16

34 0 45 6 23 7 28 12 11 30 33

0 4 8 12 16

34 0 45 6 23 7 28 12 11 30 33

0 4 8 12 16

34 0 45 6 23 7 28 12 11 30 33

0 4 8 12 16

34 0 6 23 7 28 12 11 30 45 33

460

Performance Of Linear Probing

• Worst-case find/insert/erase time is (n), where
n is the number of pairs in the table.

• This happens when all pairs are in the same
cluster.

0 4 8 12 16

34 0 45 6 23 7 28 12 29 11 30 33

461

Problem of Linear Probing

• Identifiers tend to cluster together

• Adjacent cluster tend to coalesce

• Increase the search time

462

Quadratic Probing

• Linear probing searches buckets (H(x)+i2)%b

• Quadratic probing uses a quadratic function
of i as the increment

• Examine buckets H(x), (H(x)+i2)%b, (H(x)-
i2)%b, for 1<=i<=(b-1)/2

• b is a prime number of the form 4j+3, j is an
integer

463

Random Probing

• Random Probing works incorporating with
random numbers.

– H(x):= (H’(x) + S[i]) %b

– S[i] is a table with size b-1

– S[i] is a random permuation of integers
[1,b-1].

464

Some Applications of Hash Tables

• Database systems: Specifically, those that require
efficient random access. Generally, database
systems try to optimize between two types of
access methods: sequential and random. Hash
tables are an important part of efficient random
access because they provide a way to locate data
in a constant amount of time.

465

Some Applications of Hash Tables

• Symbol tables: The tables used by compilers
to maintain information about symbols from a
program. Compilers access information about
symbols frequently. Therefore, it is important
that symbol tables be implemented very
efficiently.

466

Some Applications of Hash Tables

• Data dictionaries: Data structures that
support adding, deleting, and searching for
data. Although the operations of a hash table
and a data dictionary are similar, other data
structures may be used to implement data
dictionaries. Using a hash table is particularly
efficient.

467

Some Applications of Hash Tables

• Network processing algorithms: Hash tables
are fundamental components of several
network processing algorithms and
applications, including route lookup, packet
classification, and network monitoring.

• Browser Cashes: Hash tables are used to
implement browser cashes.

468

Problems for Which Hash Tables are
not Suitable

1.Problems for which data ordering is required.
Because a hash table is an unordered data structure,

certain operations are difficult and expensive.
Range queries, proximity queries, selection, and
sorted traversals are possible only if the keys are
copied into a sorted data structure. There are
hash table implementation that keep the keys in
order, but they are far from efficient.

469

Problems for Which Hash Tables are
not Suitable

• 2. Problems having multidimensional data.

• 3. Prefix searching especially if the keys are
long and of variable-lengths.

470

Problems for Which Hash Tables are
not Suitable

• 4. Problems that have dynamic data:
• Open-addressed hash tables are based on

1D-arrays, which are difficult to resize
• once they have been allocated. Unless you

want to implement the table as a
• dynamic array and rehash all of the keys

whenever the size changes. This is an
• incredibly expensive operation. An

alternative is use a separate-chained hash
tables or dynamic hashing.

471

Problems for Which Hash Tables are
not Suitable

• 5. Problems in which the data does not have
unique keys.

• Open-addressed hash tables cannot be used if
the data does not have unique keys. An
alternative is use separate-chained hash
tables.

