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UNIT-1



BASIC CONCEPTS



DATASTRUCTURE

The data structure can be defined as the collection of elements
and all the possible operations which are required for those set
of elements.

Or

Data structure 1S a combination of a set of elements and
corresponding set of operations.

The data structures can be implemented by building the suitable
algorithms for them.



TYPES OF DATASTRUCTURES

Data structures

/\

Primitive data structures
Ex: int, char,float

Non primitive data structure

/

linear data structures
Ex: lists, stack, queues

Non linear data structures
Ex : trees, graphs




OPERATIONS ON DATA
STRUCTURES

1. Traversing- It is used to access each data item exactly once so
that It can be processed.

2. Searching- It is used to find out the location of the data item if
It exists in the given collection of data items.

3. Inserting- It Is used to add a new data item in the given
collection of data items.

4. Deleting- It Is used to delete an existing data item from the
given collection of data items.

5. Sorting- It is used to arrange the data items in some order I.e.

In ascending or descending order in case of numerical data and
In dictionary order in case of alphanumeric data.

6. Merging- It is used to combine the data items of two sorted
files into single file in the sorted form.



ABSTRACT DATATYPE

An abstract data type, sometimes abbreviated ADT, is a logical

description of how we view the data and the operations that are

allowed without regard to how they will be implemented. This
means that we are concerned only with what the data is

representing and not with how it will eventually be
constructed.



ALGORITHM

An algorithm Is a step by step representation or a procedure for
solving a problem.

or

It is a method of finding a right solution to a problem or to a
different problem or to a different problem breaking into
simple cases.



PROPERTIES OF AN
ALGORITHM

Finiteness: An algorithm should terminate at finite number of
steps.
Definiteness: Each step of an algorithm must be precisely stated.

Effectiveness: It consists of basic instructions that are realizable.

This means that the instructions can be performed by using the
given inputs in a finite amount of time.

Input: An algorithm accepts zero or more inputs.
Output: It produces at least one output.



DIFFERENT APPROACHESTO
DESIGN ANALGORITHM

1 Various design techniques exist:

Classifying algorithms based on design ideas or
commonality.

General-problem solving strategies.
Brute force
Divide-and-conquer
 Decrease-and-conquer
« Transform-and-conquer
« Space-and-time tradeoffs
« Dynamic programming
» Greedy technigues



DIFFERENT APPROACHESTO
DESIGN ANALGORITHM

« Brute force
Selection sort, Brute-force string matching, Convex hull problem

Exhaustive search: Traveling salesman, Knapsack, and
Assignment problems

« Divide-and-conquer
Master theorem, Mergesort, Quicksort, Quickhull
 Decrease-and-conquer

Insertion sort, Permutations (Minimal change approach, Johnson-
Trotter algorithm)

Fake-coin problem (Ternary search), Computing a median,
Topological sorting



DIFFERENT APPROACHESTO
DESIGN ANALGORITHM

e Transform-and-conquer

Gaussian elimination, Heaps and Heapsort, Problem reduction
« Space-and-time tradeoffs

String matching: Horspool’s algorithm, Boyer-Moore algorithm
* Dynamic programming

Warshall’s algorithm for transitive closure

Floyd’s algorithms for all-pairs shortest paths



DIFFERENT APPROACHESTO
DESIGN ANALGORITHM

« Greedy techniques

MST problem: Prim’s algorithm, Kruskal’s algorithm (Sets and
set operations)

Dijkstra’s algorithm for single-source shortest path problem
Huffman tree and code

* More on algorithms.



RECURSIVE ALGORITHM

A recursive routine i1s one whose design includes a call to
itself.

Or

A function that calls itself is known as recursive function and
this technique is known as recursion in C programming.



EXAMPLES

Factorial of a number
Algorithm factorial(a)
Int a;
{
Int fact=1

If(a>1)

Fact = a* factorial(a-1);

Return(fact);



SEARCHING TECHNIQUES



LINEAR SEARCH - EXAMPLE

Array numlist contains:

17 23 5 11 2 29 3

Searching for the the value 11, linear search examines 17, 23,
5,and 11

Searching for the the value 7, linear search examines 17, 23, 5,
11, 2, 29, and 3



LINEAR SEARCH

PROS

Easy to understand
Array can be of any order

CONS
Ineffiencient for an array of N elements



BINARY SEARCH

A binary search looks for an item in a list using a divide-and-
conquer strategy.



BINARY SEARCH

Requires array elements to be in order

1. Divides the array into three sections:

2.

— middle element
— elements on one side of the middle element
— elements on the other side of the middle element

If the middle element is the correct value, done. Otherwise, go

to step 1. using only the half of the array that may contain the
correct value.

Continue steps 1. and 2. until either the value is found or there
are no more elements to examine



BINARY SEARCH

left + right
mid =

2



BINARY SEARCH

bool BinSearch(double list[ ], int n, double item, int&index)
{

Int left=0;

Int right=n-1;

Int mid;

while(left<=right)

mid=(left+right)/2;



BINARY SEARCH

If(item> list [mid]){ left=mid+1; }

else if(item< list [mid]){right=mid-1;}
else{
Iitem= list [mid];
Index=mid,;
return true; }

HI while

return false;

}



BINARY SEARCH

Array numlist2 contains:

Searching for the the value 11, binary search examines 11 and
stops

Searching for the the value 7, binary search examines 11, 3,
5, and stops



BINARY SEARCH

* Benefits:

— Much more efficient than linear search. For array of N
elements, performs at most log,N comparisons

« Disadvantages:
— Requires that array elements be sorted



FIBONACCI SEARCH

A possible improvement in binary search is not to use the
middle element at each step, but to guess more precisely where
the key being sought falls within the current interval of
Interest.

This improved version is called fibonacci search. Instead of
splitting the array in the middle, this implementation splits the
array corresponding to the fibonacci numbers, which are
defined In the following manner.

F,=0,F,=1F,=F,+F,,forn>=2,



FIBONACCI SEARCH

 Fibonacci search is used to search an element of a sorted array
with the help of Fibonacci numbers. It studies the locations
whose addresses have lower dispersion. Fibonacci number is
subtracted from the index thereby reducing the size of the list.

 When the search element has non-uniform access memory
storage, the Fibonacci search algorithm reduces the average
time needed for accessing a storage location.

« Time complexity:-0(log (n))



FIBONACCI SEARCH

* 0123569111516 1822

|

Searching element



13
271

34

10
11

11
15
16
13
22




13
21

34

e

10
11

11
15
16
13
22




QN |W (N | (=

o
A 2
2 3
3 £}
S S
= =
= F
11 =
15 9
16 10
18 11
22 12

13
21
34

O(RIN[O |V |R[W|N |

11=157
11<15
then shift right by s

RIGHT MIEAN DOWN IN THIS



13
271

34

10
11
12

15

16
13
22




o
i 2
2 3
3 i
S S
= =
o 4
15 =
16 10
13 11
22 12

|

then shift left by s

00N (WIN [k |-

13

271

349

OOIN(O (0 |&|W(N[H

18=15"7"7
18=15

LEFT MEAN UP IN THIS




13
21

34

10

15
16

2>




O

1 2
2 3
3 4q
5 5
5 5
9 ra
15 9
16 10
22

0N (WIN ([ |=

13
21
34

VOIN|O |0 (& [W|N|R

15=157
15=15
then will be answer A(9)



SORTING TECHNIQUES



SORTING

« Toarrange a set of items in sequence.

* It is estimated that 25~50% of all computing power is used for
sorting activities.

 Possible reasons:
— Many applications require sorting;
— Many applications perform sorting when they don't have to;
— Many applications use inefficient sorting algorithms.



SORTING

Sorting: an operation that segregates items into groups
according to specified criterion.

A={3162134590}

A={0112334569}

38



SORTING

e Internal Sort

— The data to be sorted is all stored in the computer’s main
memory.

 External Sort

— Some of the data to be sorted might be stored in some
external, slower, device.

* |n Place Sort

— The amount of extra space required to sort the data is
constant with the input size.



SORTING

There are many, many different types of sorting algorithms,

but the primary ones are:

. Bubble Sort .Radix Sort
. Selection Sort . Swap Sort
. Insertion Sort .Heap Sort

. Merge Sort

-Quick Sort

. Shell Sort

40



INSERTION SORT

 |dea: like sorting a hand of playing cards

— Start with an empty left hand and the cards facing down on
the table.

— Remove one card at a time from the table, and insert it into
the correct position in the left hand



INSERTION SORT

« compare it with each of the cards already in the hand,
from right to left
— The cards held in the left hand are sorted

* these cards were originally the top cards of the pile on
the table



INSERTION SORT

To insert 12, we need to make
room for it by moving first 36
and then 24.

. 4
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INSERTION SORT

e ¢
. 4




INSERTION SORT

K
4




INSERTION SORT

input array

at each iteration, the array is divided in two sub-arrays:

left sub-array right sub-array

2\ l;j 6 1 3

—

sorted unsorted
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INSERTION SORT
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INSERTION SORT

* Running time analysis:

— Worst case: O(N?)
— Best case: O(N)



SELECTION SORT

1. We have two group of items:
— sorted group, and

— unsorted group
2. Initially, all items are in the unsorted group. The sorted group
IS empty.
— Weassume that items in the unsorted group unsorted.
— Wk have to keep items in the sorted group sorted.



SELECTION SORT

1. Select the “best” (eg. smallest) item from the unsorted group,
then put the “best” item at the end of the sorted group.

2. Repeat the process until the unsorted group becomes empty.



SELECTION SORT

Comparison
Data Movement

Sorted




SELECTION SORT
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SELECTION SORT
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SELECTION SORT
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SELECTION SORT
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SELECTION SORT
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SELECTION SORT
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SELECTION SORT

1 3 4 5

T
Largest

Comparison
Data Movement

Sorted
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SELECTION SORT
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SELECTION SORT

DONE!
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SELECTION SORT

* Running time:
— Worst case: O(N?)
— Best case: O(N?)



QUICKSORT

 Basic Concept: divide and conquer

 Select a pivot and split the data into two groups: (< pivot)
and (> pivot):

|\l¢’t

« Recursively apply Quicksort to the subgroups

91



QUICKSORT

Start with all data
in an array, and

consideritunsorted ([




QUICKSORT

Step 1, select a pivot
(it is arbitrary)

We will select the first
element, as presented in the
original algorithm by

C.A.R. Hoare in 1962.

pivot

33

35

29

19

12

22




QUICKSORT

Step 2, start process of pivot
dividing data into LEFT l
and RIGHT groups: > | 260(33 |35 |29 | 19 [ 12 | 22
The LEFT group will _ left ﬂgL
have elements less than
the pivot.

The RIGHT group will have
elements greater that the pivot.

Use markers left and right



QUICKSORT

Step 3, pivot

If left element belongs l

to LEFT group, then increment > 26 133 | 35 |29 | 19 | 12 | 22

left index. T T
Sht — left right

If right index element belongs == ngnt

to RIGHT, then decrement right.

Exchange when you find
elements that belong to the other

group.




Step 4:

Element 33 belongs
to RIGHT group.

Element 22 belongs
to LEFT group.

Exchange the two
elements.

QUICKSORT

pivot

> 2}3 33 35 (29 | 19 | 12 | 22
pivot
2i 22 |35 |29 | 19 | 12 | 33




Step 5:

After the exchange,
increment left marker,
decrement right marker.

QUICKSORT

'\

.

pivot

29

19

12
A

33

<

left

right

97



Step 6:

Element 35 belongs
to RIGHT group.

Element 12 belongs
to LEFT group.

Exchange,
increment left, and
decrement right.

QUICKSORT

pivot
>~ 26 §(22 | 35 | 29 | 19 | 12 | 33
— left right
pivot
26 §(22 | 12 | 29 | 19 | 35 | 33




Step 7:

Element 29 belongs
to RIGHT.

Element 19 belongs
to LEFT.

Exchange,
increment left,
decrement right.

QUICKSORT

) pivot
> 2(15 12 |29 |19 |35 |33
pivot
zi 22 |12 |19 | 29 | 35 | 33
riglt IeTft
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QUICKSORT

Step 8:
When the left and right
markers pass each other,

we are done WIth the

partition task. _

Swap the right with pivot.

pivot
26 12 |19 | 29 | 35 | 33
|ghtT Ilj
pivot
26
19 | 22 | 12 29 | 35 | 33
LEFT RIGHT

100



Step 9:

Apply Quicksort
to the LEFT and
RIGHT groups,
recursively.

QUICKSORT

\

.

Assemble parts when done

previous pivot

Quicksort

| 19
pivot

i

26

0y

Quicksort

| 29|35 [ 3]

pivot

e

101



QUICKSORT

The partitioning of an array into two parts is O(n)

The number of recursive calls to Quicksort depends on how
many times we can split the array into two groups.

On average this is O (log, n)

The overall Quicksort efficiency is O(n) = n log,n

What is the worst-case efficiency?
Compare this to the worst case for the heapsort.



Non-
Comparison

Comparison Sort

Sort

COMPARISON OF SORTING
METHODS

Bubble Sort

Modified Bubbtle Sort

Selection Sort

Insertion Sort

Quick Sort
Randomized Quick Sort

Merge Sort

- Heap Sort

Counting Sort

Radix Sort

Bucket Sort

Time Complexity

Best Worst Avg.
0O(n"2) 0(n"2) 0O(n"2)
o(n) o[n*2) | 0O(nA2)
0(n”2) 0O(n"2) O(n"2)
0O(n) 0O(n"2) 0O(n*2)
O(n.lg(n))  O(n*2)  Of(n.ig(n))
O(n.lg(n))  Ofn.lg(n))  Ofin.lg(n))
Oln.lg(n))  Ofn.lg(n)) | O(n.lg(n))
Ofn.lg(n))  Ofn.lg(n)) = Of(n.Ig(n))
O(n+k) O(n+k) O(n+k)

 O(n.k/s)  Of2%s.nk/s) Ofn.k/s)

O(n.k)

O(n"2.k)

o(n.)

Space

0(1)

0(1)
0(1)

0(1)

0(1)
O(1)

Ol(n)
0(1)

- O(n+2"k)

O(n)
0O(n.k)

Stable

Yes

Yes

Yes

Yes

Yes
Yes

Yes

No

Yes

No

Yes

Comments
For each pair of indices, swap the elements if they are

| out of order

At each Pass check if the Array is already sorted, Best

| Case-Array Aiready sorted

Swap happens only when once in a Single pass
Very small constant factor even if the complexity is
0O(n"2).

Best Case: Array already sorted

| Worst Case: sorted in reverse order

Best Case: when pivot divide in 2 equal halves
Worst Case: Array already sorted - 1/n-1 partition

Pivot chosen randomly

Best to sort linked-list (constant extra space).
Best for very large number of elements which cannot

| fitin memory (External sorting)

| k= Range of Numbers in the list

MCN Professionals: Training & Placement division of Mindcracker Nerwork
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UNIT-2

LINEAR DATASTRUCTURES

Stacks: Primitive operations, implementation of stacks using
Arrays, applications of stacks arithmetic expression
conversion and evaluation.

Queues: Primitive operations; Implementation of queues using
Array, applications of linear queue, circular queue and double
ended queue (deque).



STACKS



STACKS

A stack 1Is a linear structures in which addition or deletion of
elements takes place at the same end.

Or

The stack Is an ordered list in which insertion and deletion is
done at the same end.

The end is called the top of stack.
Insertion and deletion cannot be done from the middle.

A technique of Last In First Out is followed.

Stack can be implemented by using both arrays and linked
lists.



STACKS

Push

7
o




STACKADT

Stacks can also be defined as Abstract Data Types(ADT).

A stack of elements of any particular type is a finite sequence
of elements of that type together with specific operations.

Therefore, stacks are called LIFO lists.



STACK OPERATIONS

The primitive operations on stack are

To create a stack.
To insert an element on to the stack.

To delete an element from the stack.

To check which element is at the top of the stack.
To check whether a stack Is empty or not.



STACK OPERATIONS

If Stack is not full ,
then add a new node at one end of the stack

this operation is called PUSH.

If the stack is not empty
then delete the node at its top.
This operation is called POP.

PUSH and POP are functions of stack used to fulfill the stack
operations.

TOP is the pointer locating the stack current position.



ARRAY IMPLEMENTATION IN C

Stacks can be represented in the memory arrays by
maintaining a linear array STACK and a pointer variable TOP
which contains the location of top element.

The Variable MAXSTACK gives
maximum number of elements held by the stack.

The TOP=NULL /0 will indicate that the stack is empty.

The operation of adding and removing an item in the stack can
be implemented using the PUSH and POP functions.



STACK ARRAY

REPRESENTATION
ITEM1 (ITEM2 |ITEM 3
1 2 | 3 5 6 T H
TOP T MAXSTACK T

ARRAY REPRESENTATION OF A STACK




PICTORIAL DEPICTION OF
PUSHING ELEMENTS IN STACK

Push D Push E
/\' /_\l

E

D D

i C C
B E B
A | A A

Pushing Elements in Stack



PICTORIAL DEPICTION OF
POPPING ELEMENTS IN STACK

Pl]l] E Pl]l] D

e

D
C C
= |

“l m| | O] H

A A

Popping Elements from stack



DISADVANTAGE OF STACK
USING ARRAYS

The array representation of stack suffers from the drawbacks of

the array’s size, that cannot be increased or decreased once it
IS declared .

The space Is wasted, if not used , or, there is shortage of space
If needed.



APPLICATION OF STACKS

Reversing a list.

Conversion of Infix to Postfix Expression.
Evaluation of Postfix Expression.

Conversion of Infix to Prefix Expression.
Evaluation of Prefix Expression.



CONVERSION OF INFIX TO
POSTFIX EXPRESSION

While evaluating an infix expression, operations are executed
according to the order as follows:

Brackets / Parentheses.
Exponentiation.
Multiplication / Division.
Addition / Subtraction.

the operators with the same priority(e.g. * and /) are
evaluated from left to right.



STEPS TO CONVERT INFIX TO
POSTFIX EXPRESSION

Step 1. The actual evaluation is determined by inserting
braces.

Step 2. Convert the expression in the innermost braces into
postfix notation by putting the operator after the operands.

Step 3: Repeat the above step (2) until the entire expression is
converted into postfix notation.



EXAMPLE OF INFIX TO

POSTFIX CONVERSION
Il Postfix
A+H AR+
12+60-23 1260+23-
A+BMC-D0) AB+CD-7

AB*C-D+EF ABCD-EFH




RECURSION IMPLEMENTATION

If a procedure contains either a call statement to itself/to a
second procedure that may eventually result in a cell statement
back to the original procedure. Then such a procedure is called
as recursive procedure.

Recursion may be useful in developing algorithms for specific
problems. The stack may be used to implement recursive
procedures.



QUEUE



QUEUE

Queue Is a linear list of elements in which deletion of an
element can take place only at one end,

called the front
and insertion can take place only at the otherend,

called the rear.

The first element in a queue will be the first one to be removed
from the list.

Therefore, queues are called FIFO lists.



QUEUE




QUEUE ADT

The definition of an abstract data type clearly states that for a
data structure to be abstract, it should have the two

characteristics as follows.

There should be a particular way in which components are
related to each other.

A statement of the operations that can be performed on
element of the abstract data type should specified.



QUEUE OPERATIONS

Queue overflow.

Insertion of the element into the queue.
Queue underflow.
Deletion of the element from the queue.

Display of the queue.



ARRAY IMPLEMENTATION IN C

Array 1s a data structure that stores a fixed number of
elements.

One of the major limitations of an array is that its size should
be fixed prior to using it.

The size of the queue keeps on changing as the elements are
either removed from the front end or added at the rear end.

The solution of this problem is to declare an array with a
maximum size.



QUEUE USING ARRAY

X[0] X[ Xp2]  X3]  X[M] X[3]  X[6]  X[T]

43 95 62 1 2 4 6

-3

T T'

Front Rear




INSERTION AND DELETION IN
QUEUE USING ARRAYS

We consider two variables front and rear which are declared to
point to both the ends of the queue.

The array begins with index therefore , the maximum number
of elements that can be stored can be consider as MAX-1(n-1).

If the number of elements are already stored in the queue is
reported to be full.

If the elements are added then the rear is incremented using the
pointer and new item is stored in the array.



ADDING ELEMENTS IN AQUEUE

The front and rear variables are initially set to -1, which
denotes that the queue is empty.

If the item being added is the first element then as the item is
added, .the queue front is set to O indicating that the queue Is
now full.

A B i D A E i D E F
Front Rear Front Rear

Before adding elements After adding elements



DELETING ELEMENTS INA
QUEUE

For deleting elements from the queue, the function first checks
If there are any elements for deletion. If not , the queue Is said
to be empty otherwise an element is deleted.

I AlB|clD]E ‘ B | C ‘ D] E
| b |
Front Rear Front Rear

BEefore deleting elements After deleting elements



APPLICATION OF QUEUE

Job scheduling.
Categorizing data.

Random number generation.



TYPES OF QUEUES

Circular queue.

De queue (double ended queue).

Priority queue.



CIRCULAR QUEUE

Circular queues are implemented in circular form rather than
In a straight line.

This form over come the problem of unutilized space in linear
queue implemented as an array.

In the array implementation there is a possibility that the queue
Is reported full even though slots of the queue are empty:.



CIRCULAR QUEUE

Suppose an array x of n elements is used to implement a
circular queue. If we go on adding elements to the queue we
may reach x[n-1].

In a queue array if the elements reach the end then it reports
the queue is full even some slots are empty but in circular
queue ,it would not report as full until all the slots are
occupled.



REPRESENTATION OF
CIRCULAR QUEUE

Hear

Front

Circular gqueue



ADDING ELEMENTS INTO
CIRCULAR QUEUE

The conditions that are checked before inserting the elements::

If the front and rear are in adjacent locations(i.e. rare following
front)the message ‘Queue Is full’ is displayed.

If the value of front is -1 then it denotes that the queue Is
empty and that the element to be added would be the first
element In the queue . The value of front and rear in such a
case are set to 0 and new element gets placed at 0Th position.



ADDING ELEMENTS INTO
CIRCULAR QUEUE

Some of the positions at the front end of the array might be
empty .

This happens if we have deleted some elements from the queue
when the value of rear iIs MAX-1 and the value of front is
greater than O.

In such a case value of rear is set to 0 and the element to be
added is added to this position.

The element is added at the rear position in case the value of
front is either equal to or greater than 0 and the value of rear is
less than MAX-1.



ADDING ELEMENTS IN
CIRCULAR QUEUE

S

A —— Front

s

C

Circular quene after adding & elements



DELETING ELEMENTS INTO
CIRCULAR QUEUE

The conditions that are checked before deleting the elements :

First it i1s checked whether the queue Is empty or not . The
elements at the front position will be deleted.

Now , it is checked if the value of front is equal to rear . If it is,
then the element which will be deleted is the only element in
the queue .

If the element Is removes, the queue will be empty and front
and rear are set to -1.



DELETING ELEMENTS IN
CIRCULAR QUEUE

On Deleting an element from the queue the value of front is set
to O if it is equal to MAX-1 otherwise front is simply
Incremented by 1.

s >
Fear > F
0
%( 5o
e
FrInt

Circular queus After deleting 2 elements



DOUBLE ENDED QUEUE

A deque is a linear list in which elements can be added or
removed at either end but not in the middle.

There are two variations of a deque an input restricted deque
and an output restricted deque which are intermediate between
deque and a regular queue.

An input restricted deque is a deque which allows insertions
at only one end of the list, but allows deletions at both ends of
the list



DOUBLE ENDED QUEUE

The output restricted deque is a deque which allows deletions
at only one end of the list but allows insertions at both ends of
the list.

The two possibilities that must consider while Inserting
/deleting elements into the queue are:

When an attempt is made to insert an element into a deque
which is already full, an overflow occurs.

When an attempt is made to delete an element from a deque
which i1s empty, underflow occurs.



REPRESENTATION OF DEQUE

Deletion Tnsertion

Deletion

Front Rear
Represention of a deque



UNIT-3

LINKED LISTS

Linked lists: Introduction, singly linked list, representation ofa
linked list in memory, operations on a single linked list.

Applications of linked lists: Polynomial representation and
sparse matrix manipulation.

Types of linked lists: Circular linked lists, doubly linked lists;
linked list representation and operations of Stack, linked list
representation and operations of queue.



LINKED LISTS



LIST

List is the collection of elements arranged in a sequential
manner.

There are two representations
1) list of sequentially stored elements----using arrays

2) list of elements with associated pointers---using linked list.



LIST REPRESENTATION
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list of sequentially stored elements using arrays
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OPERATIONS ON AN ORDERED
LIST

1)display of list.
2)search an element in the list.
3) insert an element into the list.

4) delete an element from the list.



SINGLY LINKED LIST

In the single linked list, a node Is connected to the next node
by a single link.

In this list a node contains two types of fields-
data: which holds a list element

next(pointer): which holds a link to the next node in the list.

The head of the pointer is used to gain access to the list and
the end of the list is denoted by a NULL pointer
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STRUCTURE OF ASINGLE
LINKED LIST

struct node

{
Int data;
struct node * next;
}
The list holds two members an inteser tvne variable “data”
which h of type “node”,
which h _ mode




SINGLE LINKED LIST
OPERATIONS

Creating a linked list

Inserting In a linked list

Deleting a linked list

Searching an element in the linked list
Display the elements

Merging two linked list

Sorting a linked list

Reversing a list



CREATING A LINKED LIST

List can be created by using pointers and dynamic memory
allocation function such as malloc.

The head pointer Is used to create and access unnamed nodes.



CREATING A LINKED LIST

struct list

{

INt NO;

struct list *next:

¢
typedef struct list node;

node *head:

head=(node*) malloc (size of(node));



CREATING A LINKED LIST

The statement obtains memory to store a node and assigns its

address to head which is a pointer variable.

head node

1

I mext

To store values 1n the member fields :
head—>no=10;
head—>next=NULL.:

The second node can be added as:
head—->next=(node*)malloc(size_of(node));
head-> next->number=20:;
head—> next->next=NULL;



INSERTING AN ELEMENT

Insertion is done in three ways:

Insertion at the beginning of the list.

Insertion after any specified node.

Inserting node at the end of the list.



INSERTING AN ELEMENT

Function to insert a node at the beginning of the list:




INSERTING AN ELEMENT

Function to insert a node at the beginning of the list:
void add_beg(struct node **qg, int no)

{ struct node *temp; [*add new node*/
temp->data=no;
temp-2>next=*q;t
*g=temp;

}

here temp variable is take and space is allocated using “malloc”
function.



INSERTING AN ELEMENT

Insertion after any specified node:

Inserting a node in the middle of the list,

If you consider to insert a node after the element then the

process Is as follows.



INSERTING AN ELEMENT
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INSERTING ANELEMENT

Function to insert a node at the middle of the list;

\Void add_after(struct node *q, int loc, int no)

{

struct node *temp, *r;
Int I;
temp=q;/*skip to desire portion*/
for(i=0;i<loc;i++)
{

temp=temp->next;



INSERTING AN ELEMENT

If(temp==NULL)
{

printf(“\n there are less than %d elements in list”,loc);
return;

}

?/*Insert new node*/
r=malloc(sizeof(struct node));

r->data=n0:

r->next=temp->next;

temp-> next=r;



INSERTING AN ELEMENT

Inserting node at the end of the list:

o)
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\Ltemp &L I
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INSERTING AN ELEMENT

Inserting node at the end of the list:

void create(struct node **q, int no)

{

struct node *temp,*r;

If(*g==NULL) I*1f the list is empty,create first node™*/

{

temp=malloc(sizeof(struct node));

temp—->data=no;



INSERTING AN ELEMENT

temp->next=NULL,
*g=temp;

}

else
{
temp=*q; /* go to last node*/

while(temp-2>next!=NULL)



INSERTING AN ELEMENT

temp=temp->next;

r=malloc(sizeof(struct node));

r->data=no:
r->next=NULL;

temp-> next=r;

¥



DELETING ANELEMENT
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DELETING ANELEMENT

We traverse through the entire linked list to check each node
whether it has to be deleted.

If we want to delete the first node in the list then we shift the

structure type pointer variable to the next node and then delete
the entire node.

If the node Is a intermediate node then the various pointers the
linked list before and after deletion should be taken care of



DISPLAYING THE CONTENTS
OF THE LINKED LIST

Displays the elements of the linked list contained in the data
part.

Function to display the contents of the linked list.

void display(struct node *start)

{
printf(‘“\n”);



DISPLAYING THE CONTENTS
OF THE LINKED LIST

[*traverse the entire list*/

while(start!=NULL)

{
printf(*“%d”,start—=>data);

start=start-> next;

¥



OTHER OPERATIONS OF
SINGLY LINKED LIST

Searching the linked list:

Searching means finding information in a given linked list.

Reversing a linked list:

The reversing of the linked list that last node becomes the first
node and first becomes the last.



OTHER OPERATIONS OF
SINGLY LINKED LIST

Sorting the list:

In sorting function the node containing the largest element is
removed from the linked list and is appended to the new list In
the ascending order.

Merging the two linked list:

Merging two list pointed by two pointers into a third list.
While merging be ensure that the elements common to the lists
appear only once in the third list.



APPLICATIONS OF LINKED
LISTS



POLYNOMIAL
REPRESENTATION

A Polynomial has mainly two fields. exponent and
coefficient.

Node of a Polynomial:

Exp | Coef |link

For example 3x*2 + 5x + 7 will represent as follows.

S 12 +—=! 5| 1 +—a=! 7 | 0 INULL




POLYNOMIAL
REPRESENTATION

In each node the exponent field will store the corresponding
exponent and the coefficient field will store the
corresponding coefficient. Link field points to the next item

In the polynomial.

Addition and multiplication of polynomials is possible.



POLYNOMIAL
REPRESENTATION

Addition of two Polynomials

Addition of two polynomials using linked list requires
comparing the exponents, and wherever the exponents are
found to be same, the coefficients are added up.

For terms with different exponents, the complete term is

simply added to the result thereby making it a part of
addition result.



POLYNOMIAL
REPRESENTATION

Multiplication of two Polynomials

Multiplication of two polynomials however requires
manipulation of each node such that the exponents are added
up and the coefficients are multiplied.

After each term of first polynomial is operated upon with
each term of the second polynomial, then the result has to be
added up by comparing the exponents and adding the
coefficients for similar exponents and including terms as
such with dissimilar exponents in the result.



SPARSE MATRIX
MANIPULATION

In computer programming, a matrix can be defined with a 2-
dimensional array.

Any array with 'm' columns and 'n' rows represents a mXn
matrix.

There may be a situation in which a matrix contains more
number of ZERO values than NON-ZERO values.

Such matrix Is known as sparse matrix.



SPARSE MATRIX
MANIPULATION

When a sparse matrix is represented with 2-dimensional array,
we waste lot of space to represent that matrix. For example,
consider a matrix of size 100 X 100 containing only 10 non-
zero elements. In this matrix, only 10 spaces are filled with
non-zero values and remaining spaces of matrix are filled with
zero. That means, totally we allocate 100 X 100 X 2 = 20000
bytes of space to store this integer matrix. And to access these

10 non-zero elements we have to make scanning for 10000
times.



SPARSE MATRIX
MANIPULATION

A sparse matrix can be represented by using TWO
representations, those are as follows...

Triplet Representation
Linked Representation



SPARSE MATRIX
MANIPULATION

Linked Representation

In linked representation, we use linked list data structure to
represent a sparse matrix. In this linked list, we use two
different nodes namely header node and element node.
Header node consists of three fields and element node consists

of five fields as shown in the image...

Header Node Element Node



TYPES OF LINKED LISTS



CIRCULAR LINKED LIST

A linked list in which last node points to the header node is
called the circular linked list.

The list have neither a beginning nor an end.

In this list the last node contains a pointer back to the first
node rather than the NULL pointer.



CIRCULAR LINKED LIST

The structure defined for circular linked list

struct node

{

Int data;

struct node *next;



CIRCULAR LINKED LIST

A circular linked list is represented as follows:

A circular linked list can be used to represent a stack and aqueue.

ﬁldata next %(data next |— data | next F—4 day | next —y dafa | next




OPERATION OF CIRCULAR
LINKED LIST

Adding elements in the circular linked list.

Deleting element from the circular list.

Displaying elements from the circular list.



ADDING ELEMENTS IN THE
CIRCULAR LINKED LIST

Ciradd():

this function accepts three parameters:

receives the address of the pointer to the first node.
receives the address of the pointer to the last node.

holds the data items that need to add in the list.



DELETING ELEMENTS FROM
THE CIRCULAR LINKED LIST

delcirqg():

this function receives two parameters.

the pointer to the front.

the pointer to the rear .



DELETING ELEMENTS FROM
THE CIRCULAR LINKED LIST

The condition is checked for the empty list.
If the list is not empty,

then it 1s checked whether the front and rear
point to the same node or not.

If they point to the same node,

then the memory occupied by the node
IS released and front and rear are both
assigned a NULL value.



DISPLAYING THE CIRCULAR
LIST

Cirq_disp():
the function receives the pointer to the first node in the list as

a parameter.
The ¢ 1s also made to point to the first node in the list.

The entire list is traversed using q.
Another pointer p Is set to NULL initially.

The circular list is traversed through a loop till the time it
reach the first node again.

It reach first node again when g equals p.



DOUBLY LINKED LIST

The doubly linked list uses double set of pointer’s, one
pointing to the next item and the other pointing to the
preceding item.

It can traverse In two directions:

from the beginning of the list to the end
or

In the backward direction from the end of the list to the

beginning.



DOUBLY LINKED LIST

NTLL DOUBLY LINKED LIST



DOUBLY LINKED LIST

Each node contains three parts:
An information field which contains the data.

A pointer field next which contains the location of the next
node n the list.

A pointer field prev which contains the location ofthe
preceding node in the list.

Structure to define DLL:
struct node
{ Int data;
struct node *next;
struct node *prev;

¥



CREATING ADLL

To create DLL at the nodes to the existing list:

To create the list the function d create can be used before
creating the list the function checks if the list is empty.

Here the function accepts two parameters.

s of type struct dnode ** which contains the address of the
pointer to the first node of the list.

parameter num is an integer which is to be added in the list.



CREATING ADLL

To create DLL at the nodes to the existing list:

To create the list the function d create can be used before
creating the list the function checks if the list is empty.

Here the function accepts two parameters.

s of type struct dnode ** which contains the address of the
pointer to the first node of the list.

parameter num is an integer which is to be added in the list.



OPERATIONS OF DLL

Adding a node in the beginning of DLL.:

To add the node at the beginning of the list the function
d addatbeg() is used .

This function takes two parameters:

s of type dounode ** which contains the address of the pointer
to the first node .

num is an integer to be added in the list.



OPERATIONS OF DLL

The allocation of memory for the new node is done whose
address is stored in g.

The num is the data part of the node.

A NULL value is stored in the prev part of new node a thisis
the first node in the list.



OPERATIONS OF DLL

Function to add a node at the beginning of list.

\Void d_addatbeg(struct dnode **s,int num)
{

struct dnode *q;
g=malloc(sizeof(struct dnode));
q—=>prev=NULL,;

—>data=num;
=2 next==s;
(*s)—>prev=q;
*S:q;

¥



OPERATIONS OF DLL

Adding a node in the middle of the list:

To add the node in the middle of the list we use the function
d_addafter().

The function accepts three parameters.

g points to the first node of the list.

loc specifies the node number after which new node must be
Inserted.

num which is to be added to the list.

To reach to the position where node is to be inserted, a loop Is
executed.



OPERATIONS OF DLL

Deleting a node from DLL.:

This function deletes a node from the list if the data part
matches a with num.

The function receives two parameters
the address of the pointer to the first node.
the number to be deleted.

To traverse the list ,a loop is run.
The data part of each node is compared with the num.

If the num value matches the data part, then the position of the
node to be deleted is checked



OPERATIONS OF DLL

Display the contents of DLL.

to display the contents of the doubly linked list, we follow the
same algorithm that had used in the singly linked list.

Here g points to the first node in the list and the entire listis
traversed .

Function to display the DLL.
void d_disp(struct dnode *q)
{ printf(“\n”);
while(g!'=NULL)
{ printf(“%2d”,q—>data);
g=g->next;
}
}



STACK USING LINKED LIST

The major problem with the stack implemented using array is,
It works only for fixed number of data values.

A stack data structure can be implemented by using linked list
data structure.

The stack implemented using linked list can work for
unlimited number of values.



STACK USING LINKED LIST

In linked list implementation of a stack, every new element is
Inserted as 'top' element.
Whenever we want to remove an element from the stack,

simply remove the node which is pointed by 'top' by moving
'top' to Its next node in the list.

The next field of the first element must be always NULL.



STACK USING LINKED LIST




STACK USING LINKED LIST

To implement stack using linked list, we need to set the
following things before implementing actual operations.

Step 1: Include all the header files which are used in the
program. And declare all the user defined functions.

Step 2: Define a 'Node' structure with two
members data and next.

Step 3: Define a Node pointer 'top' and set it to NULL.

Step 4: Implement the main method by displaying Menu with
list of operations and make suitable function calls In
the main method.



STACK USING LINKED LIST

Operations

push(value) - Inserting an element into the Stack

We can use the following steps to insert a new node into the
stack...

Step 1: Create a newNode with given value.
Step 2: Check whether stack is Empty (top == NULL)

Step 3: If it iIs Empty, then set newNode — next = NULL.
Step 4: If it 1s Not Empty, then set newNode — next = top.
Step 5: Finally, set top = newNode.



STACK USING LINKED LIST

Operations

pop() - Deleting an Element from a Stack
We can use the following steps to delete a node from the stack...
Step 1: Check whether stack is Empty (top == NULL).

Step 2: If it is Empty, then display ""Stack is Empty!!! Deletion
IS not possible!!!" and terminate the function

Step 3: If it Is Not Empty, then define a Node pointer ‘temp' and
set it to 'top".

Step 4: Then set 'top = top — next'.

Step 5: Finally, delete 'temp' (free(temp)).



STACK USING LINKED LIST

Operations

display() - Displaying stack of elements

We can use the following steps to display the elements (nodes) of
a stack...

Step 1: Check whether stack is Empty (top == NULL).

Step 2: If it is Empty, then display 'Stack is Empty!!!" and
terminate the function.

Step 3: If it is Not Empty, then define a Node pointer 'temp" and
Initialize with top.

Step 4: Display 'temp — data --->' and move it to the next node.
Repeat the same until temp reaches to the first node in the
stack (temp — next '= NULL).

Step 4: Finally! Display 'temp — data ---> NULL".



QUEUE USING LINKED LIST

A queue data structure can be implemented using linked list
data structure. The queue which is implemented using linked
list can work for unlimited number of values.

The Queue implemented using linked list can organize as many
data values as we want.

In linked list implementation of a queue, the last inserted node
IS always pointed by 'rear' and the first node is always pointed
by front'.



QUEUE USING LINKED LIST
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QUEUE USING LINKED LIST

To implement queue using linked list, we need to set the
following things before implementing actual operations.

Step 1: Include all the header files which are used in the
program. And declare all the user defined functions.

Step 2: Define a 'Node' structure with two

members data and next.

Step 3: Define two Node pointers 'front' and 'rear' and set
both to NULL.

Step 4: Implement the main method by displaying Menu of
list of operations and make suitable function calls in
the main method to perform user selected operation.



QUEUE USING LINKED LIST

Operations
enQueue(value) - Inserting an element into the Queue

We can use the following steps to insert a new node into the
queue...

Step 1: Create a newNode with given value and set 'newNode
- next' to NULL.

Step 2: Check whether queue is Empty (rear == NULL)
Step 3: If it is Empty then,
set front = newNode and rear = newNode.

Step 4: If it is Not Empty then, set rear -
next = newNode and rear = newNode.



QUEUE USING LINKED LIST

Operations
deQueue() - Deleting an Element from Queue

We can use the following steps to delete a node from the queue...

Step 1: Check whether queue is Empty (front == NULL).

Step 2: If it iIs Empty, then display ""Queue is Empty!!!
Deletion is not possible!!!"" and terminate from the function

Step 3: If it Is Not Empty then, define a Node pointer ‘temp' and
set it to ‘front'.

Step 4: Then set 'front = front — next' and delete 'temp'
(free(temp)).



QUEUE USING LINKED LIST

Operations
display() - Displaying the elements of Queue

We can use the following steps to display the elements (nodes) of a
queue...

Step 1: Check whether queue is Empty (front == NULL).
Step 2: If it is Empty then, display 'Queue is Empty!!!' and
terminate the function.

Step 3: If it is Not Empty then, define a Node pointer '‘temp' and
initialize with front.

Step 4: Display 'temp -» data --->' and move it to the next node.
Repeat the same until 'temp' reaches to 'rear' (temp =

next != NULL).

Step 4: Finally! Display 'temp - data ---> NULL'.



UNIT-4

NON LINEAR DATASTRUCTURES

Trees. Basic concept, binary tree, binary tree representation,
array and linked representations, binary tree traversal, binary
search tree, tree variants, application of trees.

Graphs:  Basic concept, graph terminology, graph
Implementation, graph traversals, Application of graphs,
Priority Queue.



TREES



DEFINITION OF TREE

A tree 1s a finite set of one or more nodes such that:
There is a specially designated node called the root.

The remaining nodes are partitioned into n>=0 disjoint sets
T1, ...,Tn, where each of these sets Is a tree.

Wecall T1, ..., Tn the subtrees of the root.



REPRESENTATION OF TREE

LeveI

Fig.Tree 1



TERMINOLOGY

A

Fig.Tree 2



> ROOT:

This is the unique node in the tree to which further subtrees are
attached.in the above fig node A is a root node.
» Degree of the node:

The total number of sub-trees attached to the node is called the
degree of the node.

Node degree
A 3

E 0

» Leaves:

These are terminal nodes of the tree.The nodes with degree O are
always the leaf nodes.In above given tree E,F,G,Cand H are the leaf

nodes.
> Internal nodes:

The nodes other than the root node and the leaves are called the
internal nodes.Here B and D are internal nodes.



Parent nodes:

The node which is having further sub-trees(branches)is called the
parent node of those sub-trees. In the given example node B is parent
node of E,F and G nodes.

Predecessor:

While displaying the tree ,if some particular node occurs previous to
some other node then that node is called the predecessor of the other
node.ln above figure E is a predecessor of the node B.

successor.
The node which occurs next to some other node is a successor node.In
above figure B is successor of F and G.

Level of the tree:

The root node is always considered at level 0,then its adjacent children
are supposed to be at level 1 and so on.In above figure the node A is at
level O,the nodes B,C,D are at level 1,the nodes E,F,G,H are at level 2.



Height of the tree:

The maximum level is the height of the tree.Here height of the
tree is 3.The height of the tree is also called depth of the tree.

Degree of tree:

The maximum degree of the node is called the degree of the
tree.

The degree of a node is the number of subtrees of the node
— The degree of A'is 3; the degree of Cis 1.

m The node with degree O is a leaf or terminal
node.

= A node that has subtrees is the parent of the
roots of the subtrees.

m The roots of these subtrees are the children of
the node.

m Children of the same parent are siblings.

m The ancestors of a node are all the nodes
along the path from the root to the node.



BINARY TREES

m= A binary tree is a finite set of nodes that is
either empty or consists of a root and two
disjoint binary trees called the left subtree
and the right subtree.

= Any tree can be transformed into binary tree.
— by left child-right sibling representation

m The left subtree and the right subtree are
distinguished.



BINARY TREES
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BINARY TREES
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TYPES OF BINARY TREES

There are three types of binary trees
e Left skewed binary tree

eRight skewed binary tree
eComplete binary tree

eFull binary tree



LEFT SKEWED BINARY TREE

* If the right subtree is missing in every node of a tree
we cal it as left skewed tree.

228



RIGHT SKEWED BINARY TREE

* |f the left subtree is missing in every node of a
tree we call it as right subtree.
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COMPLETE BINARY TREE

 The tree in which degree of each node is at the most two is
called a complete binary tree.In a complete binary tree there
is exactly one node at level O,twonodes at level 1 and four
nodes at level 2 and so on.so we can say that a complete

binary tree of depth d will contains exactly 2! nodes at each
level |, where | is from O to d.
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FULL BINARY TREE
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ABSTRACT DATATYPE
BINARY TREE

structure Binary Tree(abbreviated BinTree) is

objects: a finite set of nodes either empty or
consisting of a root node, left Binary Tree,
and right Binary_Tree.

functions:
for all bt, bt1, bt2 € BinTree, item € element
Bintree Create()::= creates an empty binary tree

Boolean |sEmpty(bt)::= if (bt==empty binary
tree) return TRUE else return FALSE



BinTree MakeBT(bt1, item, bt2)::= return a binary
tree
whose left subtree is bt1, whose right subtree is
bt2,
and whose root node contains the data item
Bintree Lchild(bt)::= if (IsEmpty(bt)) return error
else return the left subtree of bt
element Data(bt)::= if (IsEmpty(bt)) return error
else return the data in the root node
of bt
Bintree Rchild(bt)::= if (IsEmpty(bt)) return error
else return the right subtree of bt



MAXIMUM NUMBER OF NODES
INBT

®m The maximum number of nodes on level i of a
binary tree is 21, i>=1.

® The maximum nubmer of nodes in a binary tree
of depth k is 2%-1, k>=1.

Prove by induction.

22|1 2k_1

=1
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BINARY TREE REPRESENTATION

eSequential(Arrays) representation

eLinked representation



ARRAY REPRESENTATION OF
BINARY TREE

This representation uses only a single linear
array tree as follows:

i)The root of the tree is stored in tree[0].

ii)if a node occupies tree[i],then its left child is
stored in tree[2*i+1],its right child is stored in
tree[2*i+2],and the parent is stored in tree[(i-

1)/2].



SEQUENTIAL
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ADVANTAGES OF SEQUENTIAL
REPRESENTATION

The only advantage with this type of representation is that the
direct access to any node can be possible and finding the parent

or left right children of any particular node Is fast because of
the random access.



DISADVANTAGES OF
EQUENTIALREPRESENTATION

« The major disadvantage with this type of representation is
wastage of memory.

« The maximum depth of the tree has to be fixed.

« The insertions and deletion of any node in the tree will be
costlier as other nodes has to be adjusted at appropraite
positions so that the meaning of binary tree can be preserved.



struct node

LINKED REPRESENTATION

{
int data;
struct node * left_child, *right_child;
b
left_child | data | right_child

/

left_child

right_child



Linked Representation
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ADVANTAGES OF LINKED
REPRESENTATION

*This representation is superior to our
representation as there is no wastage of memory.
e|nsertions and deletions which are the most
common operations can be done without moving the

other nodes.



DISADVANTAGES OF LINKED
REPRESENTATION

* This representation does not provide direct
access to a node and special algorithms are
required.

* This representation needs additional space in
each node for storing the left and right sub-
trees.



FULL BT VS COMPLETEBT

= A binary tree with n nodes and depth k is

complete iff its nodes correspond to the nodes

numbered from 1 to n in the full binary tree of
depth k.

= A full binary tree of depth k is a binary tree of

depth kél)aving 2 -1 nodes, k>=0.

O N
L &5

full binary tree

complete binary tree of depth 4



BINARY TREE TRAVERSALS

The process of going through a tree in such a way that each node is
visted once is tree traversal.several method are used for tree
traversal.the traversal in a binary tree involves three kinds of basic
activities such as:

Visiting the root
Traverse left subtree

Traverse right subtree



We will use some notations to traverse a given binary
tree as follows:

. means move to the Left child.

R means move to the Right child.
D means the root/parent node.

The only difference among the methods is the order
in which these three operations are performed.

There are three standard ways of traversing a non
empty binary tree namely :

Preorder

Inorder
Postorder



Preorder(also known as depth-first order)

1.Visit the root(D)
2. Traverse the left subtree in preorder(L)
3.Traverse the right subtree in preorder(R)

Print 1st 5‘

Print 2nd
Print 4th

% Print at the last

Print 3rd

A-B-C-D-E is the preorder traversal of the
above figure.



Inorder(also known as symmetric order)

1.Traverse the left subtree in Inorder(L)
2 Visit the root(D)

3.Traverse the right subtree in Inorder(R)

Print 3rd H’

Print 2nd Print 4th

% Print at the last

Print 1st

C-B-A-D-E is the Inorder traversal of the above
figure.



Postorder

1.Traverse the left subtree in postorder(L)
2.Traverse the right subtree in postorder(R)
3.Visit the root(D)

Print at the last H;

Print 3rd Print 4th

% Print 2nd

Print 1st

C-D-B-E-A is the postorder traversal of the
above figure.



BINARY TREE TRAVERSALS
®
®

LR AR
66@?&) éC\D@)@@

FIG(a) FIG(b)
Preorder:ABDHIECFIKG preorder :ABDHIEJCFG
Inorder:HDIBEAJFKCG inorder: HDIBJEAFCG

Postorder:HIDEBJKFGCA postorder:HIDJEBFGCA



ARITHMETIC EXPRESSION

=

USING BT

()
6\
Sy

N

il

= nn

inorder traversal
A/B*C*D+E
infix expression
preorder traversal
+** /ABCDE
prefix expression
postorder traversal
AB/C*D*E+
postfix expression
level order traversal
+*E*D/CAB
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INORDER TRAVERSAL
(RECURSIVE VERSION)

void inorder (tree pointer ptr)

/* inorder tree traversal */

{

if (ptr) { A/B*C*D+E

inorder (ptr->left child);
printf (“3d”, ptr->data);
indorder (ptr->right child);



PREORDER TRAVERSAL
it oreoRECURSIVE VERSION)

ree_pointer pt

/* preorder tree traversal */

{

if (ptr) {
printf(“%d”, ptr->data);

preorder(ptr->left_child);
predorder(ptr->right_child);

+**/ABCDE




POSTORDER TRAVERSAL
(RECURSIVE VERSION)

void postorder(tree_pointer ptr)

/* postorder tree traversal */

{

if (ptr) {
oostorder(ptr->left_child);

oostdorder(ptr->right_child);
orintf(“%d”, ptr->data);

AB/C*D*E+




TRACE OPERATIONS OF INORDER
TRAVERSAL

Call of inorder Value inroot Action |Call of inorder Value inroot Action
1 + 11 C

2 * 12 NULL

3 * 11 C printf
4 / 13 NULL

5 A 2 * printf
6 NULL 14 D

5 A printf |15 NULL

7 NULL 14 D printf
4 / printf |16 NULL

8 B 1 + printf
9 NULL 17 E

8 B printf 18 NULL

10 NULL 17 E printf
3 * printf |19 NULL




THREADED BINARY TREES

= Two many null pointers in current representatio
of binary trees
n: number of nodes
number of non-null links: n-1
total links: 2n
null links: 2n-(n-1)=n+1

= Replace these null pointers with some useful
“threads”.
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THREADED BINARY TREES

Ifptr->1left childisnull,

replace it with a pointer to the node that would be
visited before ptr in aninorder traversal

If ptr->right childisnull,
replace it with a pointer to the node that would be
visited after ptr in an inorder traversal



A THREADED BINARY TREE

root >
A A .
dangling

<
dangling 2 X .....................................

: A
inorder traversal:
. H @ H D I,BEAEC G




DATASTRUCTURES

FOR THREADED BT
: |
TRUE: thread FALSE: child

left_thread left _child data right_child typedef
struct threaded_tree *threaded_pointer;
typedef struct threaded tree {

short int left_thread,;

threaded_pointer left_child;

char data;

threaded_pointer right_child;

short int right_thread; };

right_thread




MEMORY REPRESENTATION OF
A THREADED BT




NEXT NODE IN THREADED BT

threaded pointer insucc(threaded pointer

tree) A~

{ _
threaded pointer temp; //A\

temp = tree->right child;

if ('tree->right thread) i
while (!temp->left thread)
temp = temp->left child;

return temp;



INORDER TRAVERSAL OF
THREADED BT

void tinorder (threaded pointer tree)

{

/* traverse the threaded binary tree
inorder */

threaded pointer temp = tree;
for (;;) |
temp = insucc (temp) ;
if (temp==tree) break;
printf (“%3c”, temp->data);

O(n)(timecomplexity)



INSERTING NODES INTO
THREADED BTS

® Insert child as the right child of node parent

— change parent->right threadto FALSE

—setchild->left threadand child->right threac
to TRUE

— setchild->left childto point to parent
—Setchild->right childtoparent->right child
— change parent->right childtopointtochild



EXAMPLES

Insert a node D as a right child of B.
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*Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree (p.217)

child

before

nonempty (b)

after
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RIGHT INSERTION IN THREADED
BTS

void insert right(threaded pointer parent,
threaded pointer child)

{
threaded pointer temp;

(1)child—>right_child = parent->right child;
child->right thread = parent->right thread;

(Z)Ch?ld—>left_¢hildw=jparent; case (a)
child->left thread = TRUE;

(3)parent—>right_child = child;

parent->right thread = FALSE;
1f ('child->right thread) { case (b)

(4) temp = insucc(child) ;
temp->left child = child;
}
}



HEAP

m A max tree is a tree in which the key value in
each node is no smaller than the key values in
its children. A max heap is a complete binary
tree that is also a max tree.

m A min tree is a tree in which the key value in
each node is no larger than the key values in
its children. A min heap is a complete binary
tree that is also a min tree.

= Operations on heaps
— creation of an empty heap

— insertion of a new element into the heap;
— deletion of the largest element from the heap™



Sample max heaps

[11 [1] [1]

[21 [31\@ m(@/ [31\@ l21@§/
et
Property:

The root of max heap contains
the largest .



Sample min heaps

[1] [1] [1]

2] o [31 [3& [2] @9/
[4] [5] [4]
oY e

Property:
The root of min heap contains
the smallest.



structure MaxHe’%DT FOR MAX HEAP

objects: a complete binary tree of n > 0 elements organized so that
the value in each node is at least as large as those in its children

functions:

for all heap belong to MaxHeap, item belong to Element, n,
max_size belong to integer

MaxHeap Create(max_size)::= create an empty heap that can
hold a maximum of max_size elements
Boolean HeapFull(heap, n)::= if (h==max_size) return TRUE
else return FALSE
MaxHeap Insert(heap, item, n)::= if (\HeapFull(heap,n)) insert

item into heap and return the resulting heap
else return error

Boolean HeapEmpty(heap, n)::= if (n>0) return FALSE
else return TRUE

Element Delete(heap,n)::=if (IHeapEmpty(heap,n)) return one
instance of the largest element in the heap
and remove it from the heap

else return error



EXAMPLE OF INSERTION TO MAX
HEAP

éé@é @éé@@é é%@é

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn



INSERTION INTO A MAXHEAP

void insert max heap (element item, int *n)
{
int 1;
if (HEAP FULL(*n)) {
fprintf (stderr, “the heap is full.\n”);
exit(1l);
}
i = ++(*n);
while ((i'=l)&&(item.key>heap[i/2] .key)) {
heap[i] = heap[i/2];
\ i/=2; 2k-1=n ==> k=|_|og2(n+1)_‘
heap[i]= item; O(log,n)
}



EXAMPLE OF DELETION FROM
MAX HEAP

@{.b @g.B s .E)
5 \.



DELETION FROM A MAXHEAP

element delete max heap(int *n)
{
int parent, child;
element item, temp;
if (HEAP_EMPTY(*n)) {
fprintf (stderr, “The heap is empty\n”);
exit(1l);
}

/* save value of the element with the
highest key */

item = heap[l]:;

/* use last element in heap to adjust heap

temp = heap[ (*n)--];

parent = 1;

child = 2;



while (child <= *n) {
/* find the larger child of the current
parent */
if ((child < *n) &é&
(heap[child] . key<heap[child+1l] .key))
child++;
if (temp.key >= heap[child] .key) break;
/* move to the next lower level */
heap[parent] = heap[child];
child *= 2;
}
heap[parent] = temp;
return item;

}



GRAPHS



WHAT IS AGRAPH

e A data structure that consists of a set of nodes
(vertices) and a set of edges that relate the nodes
to each other

* The set of edges describes relationships among
the vertices

/ |
Start at Austin l

Washington
here ' Denver \
Atlanta

M,J a

Houston



FORMAL DEFINITION OF GRAPHS

A graph G is defined as follows:
G=(V,E)
V(G): a finite, nonempty set of vertices

E(G): a set of edges (pairs of vertices)



DIRECTED VS. UNDIRECTED
GRAPHS

* When the edges in a graph have no
direction, the graph is called undirected

ected graph.

&

V(Graphl) ={A,B,C, D}
E(Graphl) = { (A, B), (A, D), (B, ©), (B, D) |
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DIRECTED VS. UNDIRECTED
GRAPHS

* When the edges in a graph have a direction,
the graph is called directed (or digraph)

(b) Graph2 is a directed graph.

%

V(Graph2)=1{1,3,5,7,9,11}
E(Graph2) ={(1,3) (3,1) (5,9) (9,11) (5,7)  1),(9,9), (11, 1) ]



TREES VS GRAPHS

* Trees are special cases of graphs!!

(c) Graph3 is a directed graph.

/@K

PR
58

V(Graph3)={A,B,C,D,E,EG,H,1]}
E(CraphB) ((G, D), (G,)), (D, B), (D, F) (1, H), (1,]), (B, A), (B, ), (E E) }
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GRAPH TERMINOLOGY

* Adjacent nodes: two nodes are adjacent if
they are connected by an edge

@ 5is adjacentto 7
Q 7 is adjacent from 5
e Path: a sequence of vertices that connect two

nodes in a graph

* Complete graph: a graph in which every vertex
is directly connected to every other vertex



GRAPH TERMINOLOGY

 What is the number of edges in a complete
directed graph with N vertices?

N * (N-1)

O(NZ) @ >@

o

(a) Complete directed graph.
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GRAPH TERMINOLOGY

 What is the number of edges in a complete
undirected graph with N vertices?

N *(N-1)/2

O(N?)

L M

(b) Complete undirected graph.
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GRAPH TERMINOLOGY

 Weighted graph: a graph in which each edge
carries a value

Dallas

QL
7
Austin 8 Washington
Y 6 .
Denver 140\ % 00
Atlanta
Q
&
N

Houston



GRAPH IMPLEMENTATION

* Array-based implementation
— A 1D array is used to represent the vertices

— A 2D array (adjacency matrix) is used to
represent the edges




or [l 2 Bl [ 5 6l 71 8 [9]
(Array positions marked 'e' are undefined)
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GRAPH IMPLEMENTATION

* Linked-list implementation

— A 1D array is used to represent the vertices

— A list is used for each vertex v which contains the
vertices which are adjacent from v (adjacency list)




(a)

[5]
(6]
(7]
(8]
[9]

Index of Eoer
edge nodes ) Weight tonext  e—
adjacent vertex
edge node
graph - A -
"Atlanta "| e+——| 5| 800 | e—> 600
"Austin "| e+——| 3| 200 | o+—> 160
"Chicago "| e+—| 4 | 1000
"Dallas " o4—| 1| 200 | e+—» 900 | e 4| 780
"Denver ot+—| 0]1400 | @f— 1000
"Houston "| e4——| 0| 800
"Washington"| e4+—| 0| 600 | e<—| 3 | 1300

290



ADJACENCY MATRIXVS.
ADJACENCY LIST
REPRESENTATION

— Good for dense graphs --| E|~O(| V| ?)
— Memory requirements: O(|V| + |E] ) = O(]| V]|?)

— Connectivity between two vertices can be tested
quickly

— Good for sparse graphs -- |E|[~O(|V|)
— Memory requirements: O(/V/] + [E[)=0O([V])

— Vertices adjacent to another vertex can be found
quickly



DEPTH-FIRST-SEARCH (DFS)

* What is the idea behind DFS?

— Travel as far as you can down a path

— Back up as little as possible when you reach a
"dead end" (i.e., next vertex has been "marked"
or there is no next vertex)

* DFS can be implemented efficiently using a



DEPTH-FIRST-SEARCH (DFS)

Set found to false
stack.Push(startVertex)
DO

stack.Pop(vertex)

IF vertex == endVertex

Set found to true

ELSE

Push all adjacent vertices onto stack

WHILE !Istack.IsEmpty() AND !found

IF(!found)
Write "Path does not exist"



(initialization)

pop  Austin
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(oricago)

pop  Houston

Atlarta

Dallas

pop Atlanta

Washington

Dallas
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S et s
6’

CGricago Couston)

pop  Washington

Dallas
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template <class IltemType>

void (GraphType<VertexType> graph, VertexType
startVertex, VertexType endVertex)

{
StackType<VertexType> stack;

QueType<VertexType> vertexQ;

bool found = false;
VertexType vertex;
VertexType item,;

graph.ClearMarks();
stack.Push(startVertex);
do {
stack.Pop(vertex);
If(vertex == endVertex)
found = true;



else {
if('graph.IsMarked(vertex)) {

graph.MarkVertex(vertex);
graph.GetToVertices(vertex, vertexQ);

while(lvertexQ.IsEmpty()) {
vertexQ.Dequeue(item);
If(!graph.IsMarked(item))
stack.Push(item);

}

}
} while(!stack.IsEmpty() && !found);

if('found)
cout << "Path not found" << end!:



template<class VertexType>
void GraphType<VertexType>:. (VertexType vertex,

QueTye<VertexType>& adjvertexQ)
{
int fromindex;
Int tolndex;

fromindex = Indexls(vertices, vertex);
for(tolndex = O; tolndex < numVertices;tolndex++)

if(edges[fromIndex][toindex] != NULL EDGE)
adjvertexQ.Enqueue(vertices[tolndex]);

}



BREADTH-FIRST-SEARCHING
(BFS)

e What is the idea behind BFS?

— Look at all possible paths at the same depth
before you go at a deeper level

— Back up as far as possible when you reach a
"dead end" (i.e., next vertex has been
"marked" or there is no next vertex)



BREADTH-FIRST-SEARCHING
(BFS)

* BFS can be implemented efficiently using a queue

Set found to false

gueue.Enqueue(startVertex)
DO

queue.Dequeue(vertex)
IF vertex == endVertex

Set found to true
ELSE

Enqueue all adjacent vertices onto queue
WHILE !'queue.IsEmpty() AND !found

* Should we mark a vertex when it is enqueued or
when it is dequeued ?



(initialization)

dequeuse

Aus

tin

(Gricage)

Dallas | Houston

ver | Atlarta
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dequeue Chicago

Denver

Atlanta

Denver

.

(Cricage’

dequeue Atlanta

Denver

Atlanta

Washington

C o Washingion)
/
Chustin ) (Do

2
Cnoago

>

/.

dequeue Denver

Atlarnta

Denver

Atlanta

T g
Gy 2

A
(Gricage’

[ Alarta)

>

dequeue Denver,

Washington

Washington

Atlanta
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G Dalles 3 f‘“@

( Aarta

g g
A
(Gricago

(Houston

dequeue Washington

Washington
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template<class VertexType>

void (GraphType<VertexType> graph,
VertexType startVertex, Vertex1ype endVertex);
{

QueType<VertexType> queue;
QueType<VertexType> vertexQ;//

bool found = false;
VertexType vertex;
VertexType item,;

graph.ClearMarks();

gueue.Engqueue(startVertex);

do {
gueue.Dequeue(vertex);
if(vertex == endVertex)
found = true;



else {
If('graph.IsMarked(vertex)) {
graph.MarkVertex(vertex);
graph.GetToVertices(vertex, vertexQ);

while(lvertxQ.IsEmpty()) {
vertexQ.Dequeue(item);
If(!graph.IsMarked(item))
queue.Enqueue(item);

}

}

}
} while ('queue.IsEmpty() && !found);

if('found)
cout << "Path not found" << endl:

}



SINGLE-SOURCE SHORTEST-
PATH PROBLEM

* There are multiple paths from a source
vertex to a destination vertex

* Shortest path: the path whose total weight
(i.e., sum of edge weights) is minimum
 Examples:

— Austin->Houston->Atlanta->Washington: 1560
miles

— Austin->Dallas->Denver->Atlanta->Washington:
2980 miles



SINGLE-SOURCE SHORTEST-
PATH PROBLEM

* Common algorithms: Dijkstra’s algorithm,
Bellman-Ford algorithm

* BFS can be used to solve the shortest graph

problem when the graph is weightless or all
the weights are the same

(mark vertices before Enqueue)




UNIT-5

BINARY TREES AND HASHING

Binary search trees: Binary search trees, properties and
operations.

Balanced search trees: AVL trees

Introduction to M-Way search trees, B trees.

Hashing and collision: Introduction, hash tables, hash
functions, collisions, applications of hashing.



Binary Search Trees (BST)

. Hierarchical data structure with a single pointer to root no

2. Each node has at most two child nodes (a left and

a right child)

. Nodes are organized by the Binary Search property:

« Every node is ordered by some key data field(s)

« For every node in the tree, its key 1s greater than its
left child’s key and less than its right child’s key

root 25

15 50

10 22 39 70
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Some BST Terminology

. The Root node is the top node in the hierarchy
. A Child node has exactly one Parent node, a Parent node

has at most two child nodes, Sibling nodes share the same
Parent node (ex. node 22 1s a child of node 15)

. A Leaf node has no child nodes, an Interior node has at
least one child node (ex. 18 is a leaf node)

. Every node in the BST 1s a Subtree of the BST rooted at

that node
root
15
10 22
\
4 12 18

subtree
(a BST

- “'\‘ w/root 50)

\

70

\
\

125 B
- \
50
; /
~' 135
l! \
131 |44

\
90 1

-
-
\o—-—.— “.
- —
e R

311
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COMPARISION BETWEEN
BINARY TREE &
BINARY SEARCH TREE

* Abinary search tree is a binary tree in which it has
at most two children, the key values in the left node

IS less than the root and the key values in the right
node Is greater than the root.

* |t doesn't have any order.

Note : * Every binary search tree is a binary tree.
* All binary trees need not be a binary search tree.
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EXAMPLE OF BINARY SEARCH
TREE

A binary search tree

Not a binary search tree



BINARY SEARCH TREES

The same set of keys may have different BSTs

f:;z
/ ]\@\
/

ted

.

Pl

B
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BST OPERATIONS

The 3 basic BST operations are: search, insert, and
delete; and develop algorithms for searches,
insertion, and deletion.

«Searches

e INsertion

e Deletion
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THREE BST SEARCHALGORITHMS

 Find the smallest node

* Find the largest node

* Find a requested node
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Example: search for 45 in the tree:

|

2
3
4.

start at the root, 45 1s greater than 25, search in right subtree
45 1s less than 50, search in 50°s left subtree

45 1s greater than 35, search 1n 35°s right subtree

45 1s greater than 44, but 44 has no right subtree so 45 is

not
in the BST

root \ /(1)

25 (2)

15 50

3
( )\
10 22 35

70

(4)

\ \ )
4| 12 182“3144 669\0_\




newNode < root
00 left

newNode > root
go right

Subtree empty
Insert here

Trece of Recursive BST Insert
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Example: insert 60 in the tree:

1

2.
3.
4,

start at the root, 60 is greater than 25, search in right subtree
60 1s greater than 50, search in 50’s right subtree
60 1s less than 70, search in 70’s left subtree

60 1s less than 66, add 60 as 66’s left child

g

root

15

10

25

22

18

o~

(1)

35

50

31

(4)

(2)
(3)

60

319
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(c) Before inserting 38 (d) After inserting 38
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Delete operation:

 Deletion operation is the complex operation in the
Binary search tree. To delete an element, consider the
following three possibilities.

 CASE 1 Node with no children (Leaf node)

If the node Is a leaf node, It can be deleted
Immediately.
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Delete operation:

CASE 2 : - Node with one child

If the node has one child, it can be deleted by
adjusting its parent pointer that points to its child
node



Delete operation:

e Case 3 : Node with two children

It is difficult to delete a node which has two children.
The general strategy Is to replace the data of the node
to be deleted with its smallest data of the right subtree
and recursively delete that node.
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[Largest key on

left subtree

(a) Find ditKey (b) Find largest

Move largest
data here

Largest node
deleted

(c) Move largest data (d) Delete largest node

324
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AVL TREES

These are self-adjusting, height-balanced binary
search trees and are named after the inventors:
Adelson- Velskil and Landis.

Definition:

The height of a binary tree is the maximum path
length from the root to a leaf. A single-node
binary tree has height 0, and an empty binary
tree has height -1
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AVL TREES

An AVL tree Is a binary search tree in which every
node Is height balanced, that is, the difference in the
heights of its two subtrees is at most 1.

The balance factor of a node is the height of its right
subtree minus the height of its left subtree. An
equivalent definition, then, for an AVL tree Is that it Is
a binary search tree in which each node has a balance
factor of -1, 0, or +1.

Note :balance factor of -1 means that the subtree iIs
left-heavy, and

a balance factor of +1 means that the subtree Is right-
heavy.



AVL TREE
Definition
« Binary Search tree.

* If T Isanonempty binary Search tree with T, and T
as Its left and right subtrees, then T is an AVL tree iff

1. T and Tk are AVL trees,and

2. |hy — hg| <1 where h; and hg are the heights of T
and Tg, respectively
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BALANCE FACTOR

AVL trees are normally represented using the linked
representation

To facilitate insertion and deletion, a balance factor
(bf) Is associated with each node.

The balance factor bf(x) of a node x is defined
as height(x->leftChild) —
height(x=>rightChild)

Balance factor of each node in an AVL tree must be
-1,0,0r1
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Eg with balance factors
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Not an AVL TREE




Inserting into an AVL Search Trees

If we insert an element into an AVL search tree, the
result may not be an AVL tree

That Is, the tree may become unbalanced

If the tree becomes unbalanced, we must adjust the
tree to restore balance - this adjustment is called
rotation.

There are Four Models of rotations:



Inserting into an AVL Search Trees

« There are four models about the operation of AVL
Tree:

1. LL:new node is In the left subtree of the left subtree
of A

2. LR:new node is in the right subtree of the left
subtree of A

3. RR:new node is in the right subtree of the right
subtree of A

4. RL: new node is In the left subtree of the right
subtree of A
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Rotation
Definition
 Toswitch children and parents among two or three
adjacent nodes to restore balance of a tree.

 Arrotation may change the depth of some nodes, but
does not change their relative ordering.



Single and Double Rotations

Single rotations: the transformations done to correct
_L and RR imbalances

Double rotations: the transformations done to correct
| R and RL imbalances

The transformation to correct LR imbalance can be
achieved by an RR rotation followed by an LL
rotation

The transformation to correct RL imbalance can be
achieved by an LL rotation followed by an RR
rotation
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Left — Left Rotation

Definition

* In abinary search tree, pushing a node A down and to the
right to balance the tree.

* A's left child replaces A, and the left child's right child
becomes A's left child.

\ nght Rotation
@ @ (15
12 @




Right- Right Rotation
Definition
* In abinary search tree, pushing a node A down and to the left
to balance the tree.

* A'sright child replaces A, and the right child's left child
becomes A's right child.

B
Left Rotation
— © 22

@/ (12




Single Rotation-Example |

* AVL property destroyed by insertion of 6,
then fixed by a single rotation.

e BST node structure needs an additional
field for height.
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Single Rotation-Example Il

e Start with an initially empty tree and insert items 1
through 7 sequentially. Dashed line joins the two nodes
that are the subject of the rotation.

"'l
b
"'l

""l.

LY

-

|.,

before after

before after
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Single Rotation-Example lli

Insert 6.
Balance
problem atthe
root. So a
single rotation
is performed.

Finally, Insert
7 causing
another
rotation.
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Left -Right Rotation

Definition

The left subtree’s right child  will be the changed
root position.

"he left subtree’s root will be
the left child in the changed tree.
The left subtrees’s left child will be left child

of the left subtree in the changed tree.
The root node’s left child’s right child’s left child
will be

the right child of the left child of the root in the changed
tree

The root node’s left child’s right child’s right child
will be
the right child’s left child in the changed tree.



Right -left Rotation

Definition

* The root node’s right child ‘s left child will be the changed root position.

« The root node’s right child will be the right child in the
changed tree.

« The root nodes left child’s left child will be left child of the

changed tree.

The root node’s left child’s right child’s left child
will be

the right child of the left child of the root in the changed tree
The root node’s left child’s right child’s right child

will be
the right child’s left child in the changed tree.



Double Rotation Example - |

* Continuing our example, suppose keys 8 through
15 are inserted in reverse order. Inserting 15 is
easy but inserting 14 causes a height imbalance
at node 7. The double rotation is an RL type and
involves 7, 15, and 14.




Double Rotation Example - Ii

* insert 13: double rotation is RL that will involve
6, 14, and 7 and will restore the tree.




Double Rotation Example - IlI

 If 12 is now inserted, there is an imbalance at the
root. Since 12 is not between 4 and 7, we know
that the single rotation RR will work.

before @ after

345



Double Rotation Example - IV

* Insert 11: single rotation LL; insert 10: single
rotation LL; insert 9: single rotation LL; insert 8:
without a rotation.
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Case 1: Insertion to right Case 2: insertion to /e

subtree of right child subtree of /eft child
Solution: Left rotation Solution: Right rotatiol

# ’ -
-
& N “

- n
. "
5

Case 3: Insertion to right Case 4: insertion to /e
subtree of /eft child subtree of right child

Solution: Left-right rotation Solution: Right-left rot:




examples
Left-Rotation

20

21 | 4

Case 1: insertion to right
subtree of right child

Solution: Left rotation

e
\D 'R

_ /@)
\. ‘,' \ -

s Left-Rotation



Left-Rotation

20} Left-Rotation A30 l::>
N :
(16) 22 29 (16)
2

Case 1: insertion to right
subtree of right child

Solution: Left rotation

=

AR o &
:> A A B

e
[.__Adg_.@M:> 20 30

(16) 22 29
@) (4

23

@




Right-Rotation

3

Case 2: insertion to /eft
subtree of /eft child

Solution: Right rotation

21 " Right-Rotation
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Case 2: insertion to left
subtree of /eft child

ngh t" RO t atl on Solution: R/ght rotation

25
= S
20 30 i 20 \30
[ Add 10 . =
16 22) 29 46) T @ >
12 (19 12 (18
(10
Right- Rotatlon
Right-Rotation
2 L >
(16) 22) (29 31

10

12 18

10



Case 3: insertion to right

Left- ng ht subtree of /eft child

) Solutionf Left-right rqtation
Rotation Chm R
AA .

17 A} 17
ED 23 Dga“{> g 23 l_ 9 23 [_—>

Left-Rotation

8




Left-Right
Rotation

35
(22

zz)

Case 3: insertion to right
subtree of /eft child

Solution: Left-right rotation

.—l\l 72

14)%fav\°n 39

11

B



Case 4: insertion to /eft

ng ht_Left subtree of rig/it child

Solution: Right-left rotation

Rotation £ /7\);3\

27
17 ﬂ C{G 7
- » [ > G ®» [ > G 27

Left-

Left-
Rotation \_ FERS
Ya s w 5 (28

28

Right-
Rotation
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Case 4: insertion to left

R| g ht- Left subtree of right child

Solution: Righi-left rotation

Rotation




How to identify rotations?

~_Z\2

é(1__7>>\
[Add 28 > % it onie [ LeftRotation

@9 L9

v Right Subtree

()

First find the node that cause the
imbalance (balance factor)

Then find the corresponding
child of the imbalanced node
(left node or right node)

Finally find the corresponding
subtree of that child (left or right) )
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How to identify rotations?

17

15

25

17

)

[ Add 12 I:> Right Rotation
-
(7))
— Left Child S—
[Add 1_€§> g [ > Left-Right Rotation

1@ Right Subtree

357
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Left Rotation

_--f. Right Subtree
4 358



Inserting into an AVL Search Tree

Insert(29)

* Where is 29 going to be inserted into?
- use the AVL-search-tree-insertion algorithm
In Figure 15.6)
» After the insertion, is the tree still an AVL
search tree? (i.e., still balanced?)
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Inserting into an AVL Search Tree

-130
1D 14Q
0(3 08 13 4D~
0
0D °B @Q 0@ %0
\What are the new balance factors for 20,
25, 297 '

*What type of imbalance do we have?

‘RR imbalance - new node is in the right ‘i’

subtree of right subtree of node 20 (node
with bf = -2) = what rotation do we need?
*\WWhat would the left subtree of 30 look like
after RR rotation?
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After RR Rotation

« After the RR rotation, is the resulting tree an AVL search tree?
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Deletion from an AVL Search Tree

Deletion procedure is more complex than insertion in 2 ways:

1)More number of cases for rebalancing may arise in
deletion;

2)In insertion there is only one rebalancing, but in deletion
there can be as many rebalancing as the length of the path
from the deleted node to the root.



AVL Tree Example:
e Insert 14,17, 11, 7, 53, 4, 13 into an empty AVL tree
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AVL Tree Example:
e Insert 14,17, 11, 7, 53, 4, 13 into an empty AVL tree
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AVL Tree Example:

e Now insert 12
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AVL Tree Example:

e Now insert 12
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AVL Tree Example:

e Now the AVL tree is balanced.
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AVL Tree Example:

e Now insert 8
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AVL Tree Example:

e Now insert 8
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AVL Tree Example:

e Now the AVL tree is balanced.
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AVL Tree Example:

e Now remove 53
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AVL Tree Example:

e Now remove 53, unbalanced

372



AVL Tree Example:

e Balanced! Removell
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AVL Tree Example:

e Remove 11, replace it with the largest in its left branch

374



AVL Tree Example:

e Remove 8, unbalanced

375



AVL Tree Example:

e Remove 8, unbalanced
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AVL Tree Example:

e Balanced!!

377



Exercise

* Build an AVL tree with the following values:
15, 20, 24, 10, 13, 7, 30, 36, 25



15, 20, 24, 10, 13, 7, 30, 36, 25

>

379



15, 20, 24, 10, 13, 7, 30, 36, 25

>

380



15, 20, 24, 10, 13, 7, 30, 36, 25

>
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Remove 24 and 20 from the AVL tree.

e,
ST
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B-tree of order n

* Every B-tree is of some "order n", meaning nodes
contain from n to 2n keys (so nodes are always at
least half full of keys), and n+1 to 2n+1 pointers,
and n can be any number.

* Keys are kept in sorted order within each node. A
corresponding list of pointers are effectively
interspersed between keys to indicate where to
search for a key if it isn't in the current node.



* A B-tree of order n is a multi-way search tree
with two properties:

e 1.All leaves are at the same level

e 2.The number of keys in any node lies
between n and 2n, with the possible
exception of the root which may have fewer
keys.



Other definition

A B-tree of order m is a m-way tree that satisfies the following
conditions.

* Every node has < m children.
* Every internal node (except the root) has <m/2 children.
The root has >2 children.

 Aninternal node with k children contains (k-1) ordered keys.
The leftmost child contains keys less than or equal to the
first key in the node. The second child contains keys greater
than the first keys but less than or equal to the second key,

and so on.



A B-tree of order 2

5101620

/

NN

234

089

111314

2123




A multi-way (or m-way) search tree of order mis atree in which
— Each node has at-most m sub trees, where the sub trees may
be empty.
— Each node consists of at least 1 and at most m-1 distinct keys
— The keys in each node are sorted.

The keys and sub trees of a non-leaf node are
orderedas: Ty, ky, T, Ky, Ty, « - o, K1y Tip SUCh
that:

— All keys in sub tree TO are less than k1.

— All keys in sub tree T;, 1 <= i <=m - 2, are greater than k; but less
than k;,,.

— All keys in sub tree T, ; are greater thank,



Multi-way tree

m-1

/ \
/=7

key <k, ki< key <k, k, < key < ks

Km-2 < key < kp_1

key > K1
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* B-tree of order m (or branching factor m), where m > 2, is either an
empty tree or a multiway search tree with the following
properties:

—The root is either a leaf or it has at least two non-empty
subtrees and at most m non-empty subtrees.

—Each non-leaf node, other than the root, has at least
|_m/2_| non-emptﬁ/ subtrees and at most m non-empty
subtrees. (Note: | x | is the lowest integer > x).

—The number of keys in each non-leaf node is one less
than the number of non-empty subtrees for that node.

—All leaf nodes are at the same level; that is the tree is
perfectly balanced



*  For a nonampy\/\/Bt receldfiSadoeBm-free?

Root niode Not-root ode
Minimum nuraber of keys 1 [m/2]-1
Minttaum fiumber of non-empty subtrees | 2 (/2]
Maximum number of keys m- 1 m-1
Mazimum number of non-etmpty subtrees | m fh
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Example: A B-tree of order4

E

¥ ¥

|II>
—

(es!
<

|2

Note: The data references are not shown.
e The leaf references are to empty subtrees
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* For n greater than or equal to one, the height
of an n-key b-tree T of height h with a
minimum degree t greater than or equal to 2

n+1
h < log, —r—



* B-Tree-Search(x, k)

— The search operation on a b-tree is similar to a search
on a binary tree. The B-Tree-search runs in time O(log,

n).
* B-Tree-Create(T)

—The B-Tree-Create operation creates an empty b-tree by
allocating a new root node that has no keys and is a leaf
node. Only the root node is permitted to have these
properties; all other nodes must meet the criteria
outlined previously. The B-Tree-Create operation runs in
time O(1).



* B-Tree-Split-Child(x, i, y)

—If is node becomes "too full," it is necessary to perform
a split operation. The split operation moves the median
key of node x into its parent y where x is the ith child of
y. A new node, z, is allocated, and all keys in x right of
the median key are moved to z. The keys left of the
median key remain in the original node x. The new
node, z, becomes the child immediately to the right of
the median key that was moved to the parenty, and the
original node, x, becomes the child immediately to the
left of the median key that was moved into the parent.
The B-Tree-Split-Child algorithm will runin time O(t) , T
Is constrain



B-Tree-Insert(T, k)
B-Tree-Insert-Nonfull(x, k)

To perform an insertion on a b-tree, the appropriate
node for the key must be located using an algorithm
similiar to B-Tree-Search. Next, the key must be

inserted into the node.

If the node is not full prior to the insertion, no
special action is required; however, if the node is
full, the node must be split to make room for the
new key. Since splitting the node resuits in moving
one key to the parent node, the parent node must
not be full or another split operation is required.
This process may repeat all the way up to the root
and may require splitting the root node.

This approach requires two passes. The first pass
locates the node where the key should be inserted;

the second pass performs any required splits on the
ancestor nodes. runs in time Off log, n)



¢ OVERFLOW CONDITION:

A root-node or a non-root node of a B-tree of order m overflows if,
after a key insertion, it contains m keys.

® |nsertion algorithm:

If a node overflows, split it into two, propagate the "middle" key
to the parent of the node. If the parent overflows the process

propagates upward. If the node has no parent, create a new root
node.

® Note: Insertion of a key always starts at a leaf node.



Insertion

* |Insertion in a B-tree of odd order

« Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this
order in an initially empty B-tree of order3

insert 78 insert 52 insert 81 insert 40
—> [ — " [s2]w]| — > |78 \ - 78
27 g 40 52 81
linsert33
78
insert 85 insert 90
40 85 -— 40 | 78 -— 40 | 78
5Zf ‘ ¥ __4£i; h 4
33 52 81 | 90 | 33 52 81 | 90 33 52
insert 20
v
i insert 38 78
40 85 »

33 40 85 |
20 | 33 52 81 | v \c x Em 398

20 38 52




Insertion in B-Trees

Insertion in a B-tree of even order

right-bias: The node is split such that its right subtree has more keys than the
left subtree.

left-bias: The node is split such that its left subtree has more keys than the
right subtree.

Example: Insert the key 5 in the following B-tree of order 4.

30

10 | 20 | 25 30 | 70

left-bias insertion

right-bias insertion

10 30 20 30

j / ¥
5 20 | 25 50 | 70 5 | 10 25 50 | 70
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Insertion

Insert the keys in the folowing order into a B-tree of order 5.

AIGIFIBIKI DIHI MIJI EISI Il RIXICILI NI-I-IUIP'

(1) Insert &, &, F and B

(27 Insert K .

(51 Imsert I, H and v

(47 Insert J .

2 BF G

2 B I

2 B D

5 H K IvI

= H




(5 Imsert E. 5. I and F

(6 Insert 2L

(1 Insert )

A BDVE

IVl B S

A BDVE

e

(a1 Imsert L, M, T and 1T,

(9 Insert P

o

=

L TWwI I

S T R I

=

= L




Searching

Searching for an Item in a B-Tree:

1.Make a local variable, i, equal to the first index such that
data[i] >= target. If thereis no such index, then seti equal to
data_count, indicating that none of the entries is greater than
or equal to the target.

2. if (we found the target at
data[i]) return true;
else if (the root has no children)
return false;
else

return subset[i]->contains (target);



Searching (cont.)

* Example: target =10
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Deletion form a B-Tree

e 1.deteteh, r:

promote s and
selete form leaf




Deletion (cont.)

e 2. deletep:

t pull sdown;
pull t up
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Deletion (cont.)

e 3. delete d:

e Combine:

406



Deletion (cont.)




Deleting from a B-Tree

* Todelete a key value x from a B-tree, first search to
determine the leaf node that contains x.

* If removing x leaves that leaf node with fewer than
the minimum number of keys, try to adopt a

key from a neighboring node. If that’s possible, then
you’re finished.



Deleting from a B-Tree (continued)

* If the neighboring node is already at its minimum,
combine the leaf node with its neighboring node,
resulting in one full leaf node.

* This will require restructuring the parent node since
it has lost a child

* If the parent now has fewer than the minimum keys,
adopt a key from one of its neighbors. If that’s not
possible, combine the parent with its neighbor.



Deleting from a B-Tree (continued)

* This process may percolate all the way to the
root.

* |f the root is left with only one child, then

remove the root node and make its child the
new root.

* Both insertion and deletion are O(h), where h
is the height of the tree.



Delete 18

13

510

16 20

234]1689

1112

1415|117 18

/

19212223

13

510

|

1620

234

689

1112

14 15

1719

212223




Delete 5

13
5\10 1620
2341689 |1 12|[14 15][1719 |R12223
13
5\10 16 20
2341[89 |[112[1413[1719 212223




Delete 19

13

610 16 20
/]
89 |1 12][1413[1719 |212223
13
610 1621
/|
234]] 89 |1 12][1415)[1720 2223




Delete 12

13
6 10 1621
|
23489 |[L12][14 151720 |2223
613 1621
N
234 891011 14 15((17 20 2223




e B-Tree-Delete
 UNDERFLOW CONDITION

* A non-root node of a B-tree of order m
underflows if, after a key deletion, it contains [ m /
2]-2 keys

* The root node does not underflow. If it contains
only one key and this key is deleted, the tree
becomes empty.



Deletion in B-Tree

* There are five deletion cases:

1.The leaf does not underflow.

2. The leaf underflows and the adjacent right sibling has at least [ m /2 ]
keys.

perform a left key-rotation

3. The leaf underflows and the adjacent left sibling has at least [m /2 ]
keys.

perform a right key-rotation

4.The leaf underflows and each of the adjacent right sibling and the
adjacent left sibling has at least [m /2 ] keys.

perform either a left or a right key-rotation& perform a merging
5. The leaf underflows and each adjacent sibling has Im/2]-1 keys.
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e (Casel: The leaf does not underflow.

 Example : B-tree d—ao-ctr4

¢

/lﬂz|ldﬂ J\.

[y90 yioo | [j105,110,] [)152 186/104
* + + + * * + Delete 140
\ *

102 152

v

[{90 y0 || [;105,110,] [[186 104,

YY VY YY VY OYY




* (Case2: The leaf ynderflows and the adjacent right sibling has at least
| m/2] keys.
 Example : B-tree of order 5

v

| | | | | | x | | | | | |
..-'-" “'\-.\__\_
A -
¥

node with underflow

........ 30,120 150 ).

l A
[ 128 135142 |

i s (R P

Delete 113



e Case 3: The leaf underflows and the adjacent left sibling has at least ‘m/2] keys.
 Example : B-tree of order5

v

X

- - " B
- a '
W
node with underflow

Delete 135

480 (120 ~1501-......

(90 1113 18] [ 126135, oo qusy) (120,226

e e A A vYY Y VY




An example B-Tree

26 A B-tree of order 5
6 o+ | | containing 26 items
| |
/ 42 |51 |62
1 (2 |4 13 |15 |18 |25 =
L~ L7 P e
27 |29 45 | 46 | 48 53 |55 |60 64 |70 190
| | | P

Note that all the leaves are at: the:same:level




Constructing a B-tree

Suppose we start with an empty B-tree and keys
arrive in the following order:1 12 8 2 25 5 14

28 17 7 52 16 48 68 3 26 29 53 55 45
We want to construct a B-tree of order 5

The first four items go into the root:

1 2 8 12

To put the fifth item in the root would violate
condition 5

Therefore, when 25 arrives, pick the middle key
to make a new root



Constructing a B-tree (contd.)

AN

6, 14, 28 get added to the leaf nodes:

25

8

Z)

14 | 25 | 28




Constructing a B-tree (contd.)

Adding 17 to the right leaf node would over-fill it, so we take the
middle key, promote it (to the root) and split the leaf

8 17
1 2 |6 12
7,52, 16, 48 get added to the leaf nodes

8 17

1 2 |6 |7 12 |14 |16 25 | 28 | 48 | 52

14 25 | 28




Constructing a B-tree (contd.)

Adding 68 causes us to split the right most leaf, promoting 48 to the
root, and adding 3 causes us to split the left most leaf, promoting 3
to the root; 26, 29, 53, 55 then go into the leaves

3 8
12 | 14 26 | 28 |29 52

Adding 45 causes a splitof |25 |26 |28 |29

17 | 48

1 2 6 7 16 25

53 | 55 | 68

and promoting 28 to the root then causes the root to split



Constructing a B-tree (contd.)

3 8

\

17

28

48

.

N

12

14

16

25

26

29

45

52

53

55

68




Inserting into a B-Tree

Attempt to insert the new key into a leaf

If this would result in that leaf becoming too big, split
the leaf into two, promoting the middle key to the
leaf’s parent

If this would result in the parent becoming too big, split
the parent into two, promoting the middle key

This strategy might have to be repeated all the way to
the top

If necessary, the root is split in two and the middle key
is promoted to a new root, making the tree one level
higher



Exercise in Inserting a B-Tree

* |nsert the following keys to a 5-way B-tree:

e 3,7,9,23,45,1,5, 14, 25, 24,13, 11, §, 19, 4,
31, 35, 56



Removal from a B-tree

* Duringinsertion, the key always goes into a leaf.

For deletion we wish to remove from a leaf.

There are three possible ways we can do this:
 1-Ifthe key is already in a leaf node, and

removing it doesn’t cause that leaf node to have

too few keys, then simply remove the key to be
deleted.

 2-Ifthe keyis not in a leaf then it is guaranteed
(by the nature of a B-tree) that its predecessor or
successor will be in a leaf -- in this case we can
delete the key and promote the predecessor or

successor key to the non-leaf deleted key’s
position.




Removal from a B-tree (2)

e If (1) or (2) lead to a leaf node containing less than the
minimum number of keys then we have to look at the
siblings immediately adjacent to the leaf in question:

— 3:if one of them has more than the min. number of keys
then we can promote one of its keys to the parent and
take the parent key into our lacking leaf

— 4: if neither of them has more than the min. number of
keys then the lacking leaf and one of its neighbours can be
combined with their shared parent (the opposite of
promoting a key) and the new leaf will have the correct
number of keys; if this step leave the parent with too few
keys then we repeat the process up to the root itself, if
required



Type #1: Simple leaf deletion

Assuming a 5-way
B-Tree, as before...

\

Delete 2: Since there are enough
keys in the node, just delete it
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Type

2: Simple non-leaf deletion

Borrow the predecessor
or (in this case) successor
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Type #4: Too few keys in node and its
siblings

Jain back

Too few keys!
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Type #4: Too few keys in node and its
siblings

719 69



Type #3: Enough siblings

Demote root key and
promote leaf key

OEER

435



Type #3: Enough siblings




Summary

The B-tree is a tree-like structure that helps us to
organize data in an efficient way.

The B-tree index is a technique used to minimize the disk
1/Os needed for the purpose of locating a row with a
given index key value.

Because of its advantages, the B-tree and the B-tree
index structure are widely used in databases nowadays.

In addition to its use in databases, the B-tree is also used
in file systems to allow quick random access to an
arbitrary block in a particular file. The basic problem is
turning the file block i address into a disk block.



MS/Dos - FAT (File allocation table)

*entry for each disk block

*entry identifies whether its block is used by a file

*which block (if any) is the next disk block of the same file
«allocation of each file is represented as a linked list in the table

disk track

magnetic e read/write
surface -— head

Secondary Storages
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RB Trees: Rotation

rightRotate (y)

C ~ A
A B B C

o Answer: A lot of pointer manipulation
m X keeps its left child
m y keeps its right child
m X's right child becomes y’s left child
m X's and y’s parents change

e What is the running time?

439



Splay Trees: Example — 40 is accessed

o & PN

?ﬁ:.

After Zig-zig ‘

/

(a) After Zig-zig . ()
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Comparison of Search Trees

Worst Case Expected
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Concept of Hashing

* In CS, a hash table, or a hash map, is a data
structure that associates keys (names) with
values (attributes).

— Look-Up Table
— Dictionary
—Cache

— Extended Array
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Example

Keys Indexes Key-value pairs
(records)
: 0
John Smith 1 | ———w| Lisa Smith +1-555-8976 |

872
873 > John Smith | +1-555-1234

Lisa Smith

SamDoe |— % ::2 ™| SamDoe |+1-555-5030
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Search vs. Hashing

* Search tree methods: key comparisons
— Time complexity: O(size) or O(log n)
* Hashing methods: hash functions
— Expected time: O(1)
* Types
— Static hashing (section 8.2)
— Dynamic hashing (section 8.3)
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Static Hashing

* Key-value pairs are stored in a fixed size table
called a hash table.

— A hash table is partitioned into many
buckets.

— Each bucket has many slots.
— Each slot holds one record.

— A hash function f(x) transforms the
identifier (key) into an address in the hash
table
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s19)9Nnq g

o

[EY

b-1

Hash table

s slots

s-1
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Data Structure for Hash Table

#tdefine MAX_CHAR 10
#tdefine TABLE _SIZE 13
typedef struct {
char key[MAX_CHAR];
/* other fields */
} element;
element hash _table[TABLE SIZE];
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Some Issues

* Choice of hash function.
— Really tricky!

—To avoid collision (two different pairs are
in the same the same bucket.)

—Size (number of buckets) of hash table.
* Overflow handling method.

— Overflow: there is no space in the bucket
for the new pair.
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synonyms:
char, ceil,
clock, ctime

T

overflow

Example (fig 8.1)

Slot 0 Slot 1
0 acos atansynon
1
2 char cellsynon
3 define
4 exp
5 float floor
6
25

yms

yms
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Choice of Hash Function

* Requirements
— easy to compute
— minimal number of collisions

* |f a hashing function groups key values
together, this is called clustering of the keys.

* A good hashing function distributes the key
values uniformly throughout the range.
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Some hash functions

 Middle of square

—H(x):= return middle digits of x"2
* Division

—H(x):= return x % k

* Multiplicative:

—H(x):= return the first few digits of the
fractional part of x*k, where k is a fraction.
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Some hash functions Il

* Folding:
— Partition the identifier x into several parts, and add the parts
together to obtain the hash address

— e.8.%x=12320324111220; partition x into 123,203,241,112,20;
then return the address 123+203+241+112+20=699

— Shift folding vs. folding at the boundaries
* Digit analysis:

— If all the keys have been known in advance, then we could delete
the digits of keys having the most skewed distributions, and use
the rest digits as hash address.
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Overflow Handling

* An overflow occurs when the home bucket
for a new pair (key, element) is full.

 We may handle overflows by:

—Search the hash table in some systematic
fashion for a bucket that is not full.
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* Linear probing (linear open addressing).
* Quadratic probing.
* Random probing.

— Eliminate overflows by permitting each
bucket to keep a list of all pairs for which it
is the home bucket.

* Array linear list.
* Chain



Linear probing (linear open

addressing)

* Open addressing ensures that all elements
are stored directly into the hash table, thus

it attempts to resolve collisions using various
methods.

* Linear Probing resolves collisions by placing
the data into the next open slot in the table.
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Linear Probing — Get And Insert

e divisor = b (number of buckets) = 17.
e Home bucket = key % 17.

0 4 8 12 16

* |[nsert pairs whose keys are 6, 12, 34, 29,
28,11, 23, 7,0, 33, 30, 45
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Linear Probing — Delete

0 4 8 12 16

e Delete(0)
0 4 8 12 16

« Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16
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Linear Probing — Delete(34)

0 4 8 12 16
134[0]45] | [ [6]23]7[ | [28]12[29]11]30]33]
0 4 8 12 16
- [of4s] | | [6]23[7] [ [28[12]29[11]30[33

e Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16
0 4 8 12 16
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Linear Probing — Delete(29)

0 4 8 12 16

0 4 8 12 16

e Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16

0 4 8 12 16

0 4 8 12 16
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Performance Of Linear Probing

0 4 8 12 16

* Worst-case find/insert/erase time is ®(n), where
n is the number of pairs in the table.

* This happens when all pairs are in the same
cluster.

460



Problem of Linear Probing

* |dentifiers tend to cluster together
* Adjacent cluster tend to coalesce

* Increase the search time
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Quadratic Probing

Linear probing searches buckets (H(x)+i2)%b

Quadratic probing uses a quadratic function
of i as the increment

Examine buckets H(x), (H(x)+i2)%b, (H(x)-
i2)%b, for 1<=i<=(b-1)/2

b is a prime number of the form 4j+3, j is an
Integer
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Random Probing

 Random Probing works incorporating with
random numbers.

— H(x):= (H’(x) + S[i]) % b
—SJi] is a table with size b-1

—S[i] is a random permuation of integers
[1,b-1].
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Some Applications of Hash Tables

* Database systems: Specifically, those that require
efficient random access. Generally, database
systems try to optimize between two types of
access methods: sequential and random. Hash
tables are an important part of efficient random
access because they provide a way to locate data
in a constant amount of time.
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Some Applications of Hash Tables

* Symbol tables: The tables used by compilers
to maintain information about symbols from a
program. Compilers access information about
symbols frequently. Therefore, it is important
that symbol tables be implemented very
efficiently.
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Some Applications of Hash Tables

* Data dictionaries: Data structures that
support adding, deleting, and searching for
data. Although the operations of a hash table
and a data dictionary are similar, other data
structures may be used to implement data
dictionaries. Using a hash table is particularly
efficient.
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Some Applications of Hash Tables

* Network processing algorithms: Hash tables
are fundamental components of several
network processing algorithms and
applications, including route lookup, packet
classification, and network monitoring.

e Browser Cashes: Hash tables are used to
implement browser cashes.
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Problems for Which Hash Tables are
not Suitable

1.Problems for which data ordering is required.

Because a hash table is an unordered data structure,
certain operations are difficult and expensive.
Range queries, proximity queries, selection, and
sorted traversals are possible only if the keys are
copied into a sorted data structure. There are
hash table implementation that keep the keys in
order, but they are far from efficient.

468



Problems for Which Hash Tables are
not Suitable

e 2. Problems having multidimensional data.

* 3. Prefix searching especially if the keys are
long and of variable-lengths.
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Problems for Which Hash Tables are
not Suitable

4. Problems that have dynamic data:

Open-addressed hash tables are based on
1D-arrays, which are difficult to resize

once they have been allocated. Unless you
want to implement the table as a

dynamic array and rehash all of the keys
whenever the size changes. This is an

incredibly expensive operation. An
alternative is use a separate-chained hash
tables or dynamic hashing.
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Problems for Which Hash Tables are
not Suitable

* 5. Problems in which the data does not have
unique keys.

* Open-addressed hash tables cannot be used if
the data does not have unique keys. An
alternative is use separate-chained hash
tables.
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