

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	MICROCONTROLLER AND DIGITAL SIGNAL PROCESSING						
Course Code	AEC022						
Programme	B.Tech						
Semester	VI EEE						
Course Type	Foundation						
Regulation	IARE - R16						
			Theory		Practic	cal	
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits	
	3		1	4	3	2	
Chief Coordinator	Ms. J. Sravana, Assistant Professor						
Course Faculty	Ms. J. S	Srava	na, Assistant Pro	fessor			

I. COURSE OVERVIEW:

Microcontrollers and digital signal processing course is intended to introduce the architecture, programming of microprocessors, microcontrollers and interfacing various hardware circuits to microprocessors and microcontrollers. The topics covered are architecture, addressing modes, instruction set of 8086 and 8051. Understand need of microprocessors, microcontrollers in development of various projects and to know complete architectural, programming, interfacing details of 8086 microprocessor-8051 microcontroller.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AEC019	IV	Digital and pulse circuits

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Microcontroller and digital signal processing	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marka			
Type of Assessment	CIE Exam	Quiz	AAT	I Otal Warks	
CIA Marks	20	05	05	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Lectures, Assignment s
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Assignments.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Lab related Exercises
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Seminars

3 = High; **2** = Medium; **1** = Low

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Problem Solving : Exploit the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.	1	Seminar
PSO 2	Professional Skills: Identify the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.	-	-
PSO 3	Modern Tools in Electrical Engineering: Comprehend the technologies like PLC, PMC, process controllers, transducers and HMI and design, install, test, maintain power systems and industrial applications.	-	-

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES :

The cour	The course should enable the students to:						
Ι	Enrich the knowledge of evolution of processor.						
II	Apply the concept of assembly language programs for different applications.						
III	Analyze and apply the concepts of discrete signals using discrete fourier transform.						
IV	Analyze and design IIR and FIR digital filters.						

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Apply a basic concept of digital fundamentals	CLO 1	Understand and Describe the evolution and basic architecture of 8086
to Microprocessor based personal computer system		CLO 2	Discuss the segmentation and programming model and List out the register organization
		CLO 3	Understand the difference between microprocessors and microcontrollers
CO 2	Describe the architecture and instruction set of 8051 microcontroller	CLO 4	Understand and describe input/output ports of 8051 and register organization

COs	Course Outcome	CLOs	Course Learning Outcome
		CLO 5	Describe different types of memory like special function register for program memory and data memory
		CLO 6	Discuss the addressing modes of 8051 microcontroller
		CLO 7	Discuss the instruction set of 8051 microcontroller
		CLO 8	Develop assembly language program for 8051 based operations.
CO 3	Describe the architecture and instruction set of	CLO 9	Discuss and illustrate the Timers/counters, serial communication
	8051 microcontroller Design and implement 8051 microcontroller based systems.	CLO 10	Understand and discuss external memory
		CLO 11	Understand and discuss clock circuits and i/o memory
			Develop assembly code for real time control.
		CLO 13	Develop assembly code for real time control to interfacing ADC and DAC
CO 4	Analyze the fundamentals and concepts in assess the effect of LTI systems on signals passing through them in frequency and time domains	CLO 14	Understand the frequency domain representation and discrete Fourier transforms
CO 5	Discriminate the Fourier,	CLO 15	Understand the FFT and FFT algorithms, inverse FFT and FFT with general radix- N
	as appropriate for various signals and systems	CLO 16	Analyze and design of FIR digital filters
		CLO 17	Analyze and design of IIR filters and digital filters using window techniques

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEC022.01	CLO 1	Understand and Describe the evolution and basic architecture of 8086	PO 1 PO 2	2
AEC022.02	CLO 2	Discuss the segmentation and programming model and List out the register organization	PO 1 PO 2	2
AEC022.03	CLO 3	Understand the difference between microprocessors and microcontrollers	PO 1	3
AEC022.04	CLO 4	Understand and describe input/output ports of 8051 and register organization	PO 1	2
AEC022.05	CLO 5	Describe different types of memory like special function register for program memory and data memory	PO 2	2
AEC022.06	CLO 6	Discuss the addressing modes of 8051 microcontroller	PO 1	3
AEC022.07	CLO 7	Discuss the instruction set of 8051 microcontroller	PO 1	3
AEC022.08	CLO 8	Develop assembly language program for 8051 based operations.	PO 1	2
AEC022.09	CLO 9	Discuss and illustrate the Timers/counters, serial communication	PO 1	2
AEC022.10	CLO 10	Understand and discuss external memory	PO 1 PO 12	3

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEC022.11	CLO 11	Understand and discuss clock circuits and i/o memory	PO 1	1
AEC022.12	CLO 12	Develop assembly code for real time control.	PO 5 PO 12	1
AEC022.13	CLO 13	Develop assembly code for real time control to interfacing ADC and DAC	PO 1 PO 2	2
AEC022.14	CLO 14	Understand the frequency domain representation and discrete Fourier transforms	PO 1 PO 12	3
AEC022.15	CLO 15	Understand the FFT and FFT algorithms, inverse FFT and FFT with general radix- N.	PO 5	3
AEC022.16	CLO 16	Analyze and design of FIR digital filters	PO 2 PO 12	2
AEC022.17	CLO 17	Analyze and design of IIR filters and digital filters using window techniques	PO 2	2

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course	Program Outcomes (POs)								
(COs)	PO 1	PO 2	PO 4	PSO1					
CO 1	2	2							
CO 2			1						
CO 3	3	2		1					
CO 4	2			1					
CO 5	3	2	1	1					

XII. APPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	g Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2											1		
CLO 2	2	3											1		
CLO 3	3												1		
CLO 4															
CLO 5		2													
CLO 6													1		
CLO 7	3											2	1		
CLO 8	2														
CLO 9	2											2			
CLO 10	3														

Course Learning		Program Outcomes (POs)									Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 11	1											2	1		
CLO 12					1										
CLO 13	2	2										2			
CLO 14	3														
CLO 15	3				1										
CLO 16		2													
CLO 17		2													

3 = **High**; **2** = **Medium**; **1** = Low

XIII. SSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO4,PO12	SEE Exams	PO1, PO2, PO4,PSO1	Assignments	PO 1, PO 2	Seminars	PO12
Laboratory Practices	PO 5	Student Viva	-	Mini Project	-	Certification	-
Term Paper							

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I MICROPROCESSORS AND MICROCONTROLLER

Evaluation of processors, 8086 architecture, functional diagram, register organization, memory segmentation, microcontrollers, comparison of microprocessors and microcontrollers, microcontroller survey, 8051 architecture, pin diagram of 8051, I/O ports, memory organization, counters and timers, serial data input / output, interrupts

Unit-II INSTRUCTION SET AND PROGRAMMING OF 8051

Addressing modes, Instruction set of 8051, programming of 8051, timers and counters, serial communication.

Unit-III 8051 MICRO CONTROLLER DESIGN

Microcontroller design: External memory and memory space decoding, clock circuits, memory mapped I/O.

 Keyboard Interface, Seven segment numeric display interface, D/A and A/D converter interface to 8051.

 Unit-IV
 INTRODUCTION TO DIGITAL SIGNAL PROCESSING AND FAST FOURIER

 TRANSFORMS

Discrete time signals and sequences, linear shift invariant systems, stability and causality, frequency domain representation of discrete time signals and systems, review of discrete Fourier transforms, Fast Fourier transforms, radix2 decimation in time and decimation in frequency, FFT algorithms, inverse FFT

and FFT with general radix- N.

Unit-V IIR AND FIR DIGITAL FILTERS

Analog filter approximations, Butterworth and Chebyshev, design of IIR digital filters from analog filters, step and impulse invariant techniques, characteristics of FIR digital filters, frequency response; Design of FIR digital filters: Fourier method, digital filters using window techniques.

Text Books:

- 1. A K ray and K M Bhurchandani, "Advanced microprocessors and peripherals", Tata McGraw-Hill, 2nd Edition 2006.
- 2. John G Proakis, Dimitris G Manolakis, "Digital signal processing, principles, Algorithms and applications", Pearson Education / PHI, 4th Edition. 2007.

Reference Books:

- 1. Ajay V Deshmukh, "Microcontrollers and application", TMGH, 1st Edition, 2005.
- 2. Kenneth J Ayala, "The 8051 microcontroller", Cengage learning, 3rd Edition 2010.
- 3. Li tan Elsevier, "Digital signal processing: fundamentals and applications", 1st Edition, 2008.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be covered	Course	Reference
No	-	Learning	
		Outcomes	
		(CLOs)	
1-6	Introduction of MDSP, Architecture of 8086, Functional diagram	CLO 1	T1-2.1
			R1-2.3
7-9	Register organization of 8086, flag register structure, Memory	CLO 2	T1-20.1
	segmentation, memory address and physical memory		
10-12	Differences between microprocessors and microcontrollers,	CLO 2	T1-8.1
	Architecture of 8051 microcontroller, Pin diagram of 8051		R2-2.1
13-16	Register organization, I/O ports in 8051 and operation of each port	CLO 3	T1-8.1
			R2-2.7
17-20	Memory organization of 8051, timers and counters	CLO 4	T1-10.1
21.24	Addressing medas in 2051 with superglas	CLOS	T1 10 11
21-24	Addressing modes in 8051 with examples	CLO 5	11-10.11 D2 2 1
25.22		CLO (K2-3.1
25-32	Instruction set of 8051 with different addressing modes	CLO 6	
22.25	Simple presence related to 9051	CLOG	K2-3.8
55-55	Simple programs related to 8051	CLO 0	11-11.12 D2 4 1 1
			K2-4.1.1
36-37	8051 Real time control, Interrupts used in 8051	CLO 7	T1-17.1
38-39	Microcontroller design: External memory and memory space	CLO 8	T1-14.1
	decoding		R2-21.1
40-41	Clock circuits, memory mapped I/O	CLO 8	T1-14.9
		CLO 9	R2-17.1
42	Keyboard Interface, Seven segment numeric display interface	CLO 10	T1-19.1
			R2-3.1
43-44	D/A and A/D converter interface to 8051	CLO 11	T1-19.4
			R2-41.1
45-46	Discrete time signals and sequences, linear shift invariant systems,	CLO 12	T1-19.6
	stability and causality		R2-23.1
47-48	Frequency domain representation of discrete time signals and systems.	CLO 13	R2-9.3
49	Review of discrete Fourier transforms	CLO 14	R2-9.1
50	Fast Fourier transforms, radix2 decimation in time	CLO 15	R2-9.7

51-53	Decimation in frequency, FFT algorithms, inverse FFT and FFT with general radix-N	CLO 15	T2-27.7
54	Analog filter approximations Chebyshev	CLO 15	T2-27.8
55-56	Analog filter approximations, Butterworth, design of IIR digital filters from analog filters.	CLO 17	T2-27.12
57	Step and impulse invariant techniques, characteristics of FIR digital filters.	CLO 17	T2-27.12 R1-11.8
58	Frequency response, design of FIR digital filters	CLO 17	R1-11.8
59-60	Fourier method, digital filters using window techniques	CLO 17	R1-11.9
54	Analog filter approximations Chebyshev	CLO 15	T2-27.8

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S no	Description	Proposed actions	Relevance with pos	Relevance with psos
1	To introduce concepts of evolution o processor.	Guest Lectures	PO 1	PSO 1
2	Analyze and understand the assembly language apply to real time applications.	Seminars /NPTEI	PO 2	PSO 1
3	Encourage students to solve real time applications and prepare toward competitive examinations.	NPTEL	PO 2	PSO 1

Prepared by:

Ms.J.Sravana, Assistant, Professor

HOD, EEE