\square

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043

MODEL QUESTION PAPER-II

B.Tech III Semester End Examinations (Regular), November -2019 Regulations: IARE-R18
 ANALOG AND DIGITAL ELECTRONICS
 (IT)

Time: 3 hours
Max. Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. a) Explain the formation of depletion region in an open-circuited p-n junction diode and also the effect of forward and reverse biasing of p-n junction on the depletion region with neat sketches?
b) A P-N junction germanium diode has a reverse saturation current of $0.10 \mu \mathrm{~A}$ at the room temperature of 270 C . It is observed to be $30 \mu \mathrm{~A}$, when the room temperature is increased. Evaluate the room temperature?
2. a) Draw the circuit diagrams of a full wave rectifier and Bridge rectifier. Explain the operation of the circuit with relevant waveforms.
b) A full wave bridge rectifier having load resistance of 100Ω is fed with 220 V , Assuming the diodes are ideal, Find the following terms,
i) DC output voltage
ii) Peak inverse voltage
iii) Rectifier efficiency.

MODULE - II

3. a) Explain clearly the DC and AC load line and also explain how to obtain quiescent point graphically for a transistor amplifier of CE configuration.
b) A Common emitter circuit has the following components. $\mathrm{Rs}=1 \mathrm{k} \Omega, \mathrm{R} 1=110 \mathrm{~K} \Omega, \mathrm{R} 2=12 \mathrm{~K} \Omega$ $\mathrm{Rc}=6 \mathrm{~K} \Omega$. H-parameters are hie $=1.2 \mathrm{~K}$, hre $=2.5^{*} 10-4, \mathrm{hfe}=75$, hoe $=25 \mathrm{uA} / \mathrm{V}$. Draw the equivalent hybrid model and calculate Ai, Ri, Ro and Av?
4. a) Derive the equations of current gain Ai , voltage gain Av , input impedance Zi , output admittance Yo , voltage gain with $\mathrm{Rs}(\mathrm{Avs})$, current gain with $\mathrm{Rs}(\mathrm{Ais})$ using a general two port active network.
b) Compute current gain, voltage gain, input and output impedance of the CB amplifier if it is driven by a voltage source of internal resistance $\mathrm{Rs}=1 \mathrm{k}$. The load impedance is $\mathrm{RL}=1 \mathrm{~K}$. The transistor parameters are $\mathrm{hib}=22, \mathrm{hfb}=-0.98, \mathrm{hrb}=2.9 \times 10-4, \mathrm{hob}=0.5 \mu \mathrm{~A} / \mathrm{V}$.

MODULE - III

5. a) Explain in detail about the gray to binary and binary- to- gray conversion with neat sketches.
b) Perform the subtraction using 1's complement and 2's Complement
i) $\quad(11010)_{2}-(10000)_{2}$
ii) $\quad(1000100)_{2}-(1010100)_{2}$
6. a) Give the Boolean expressions, symbols and truth tables for following gates, i) AND ii) NOR iii) EX-OR iv) OR v) EX-NOR.
b) Obtain the canonical SOP form of the following functions,
i) $\mathrm{Y}(\mathrm{A}, \mathrm{B})=\mathrm{A}+\mathrm{B}$. ii) $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AB}+\mathrm{ACD}$

MODULE - IV

7. a) Design a 64:1 MUX using 8:1 MUXs with suitable neat block diagram.
b) Simplify the following Boolean expressions using K-map and implement it by using NOR gates.
a) $\left.F(A, B, C, D)=A B^{\prime} C^{\prime}+A C+A^{\prime} C D^{\prime} b\right) F(W, X, Y, Z)=w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w x y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z+w x y z$
8. a) Implement the given function in $4: 1$ mux $\mathrm{f}=\Sigma \mathrm{m}(0,1,3,5,6)$
b) $\quad \mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(1,4,5,6,7,9,14,15)$ Realize using De-Multiplexer

MODULE - V

9. a) Write short notes on shift register? Mention its application along with the Serial Transfer in 4-bit shift Registers?
b) Describe the steps involved in design of asynchronous sequential circuit in detail with an example?
10. a) Design a 3 bit ring counter? Discuss how ring counters differ from twisted ring counter?
b) Design and implement 4-bit binary counter (using D flip flops) which counts all possible odd numbers only?

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043

COURSE OBJECTIVES:

The course should enable the students to:

I	Introduce components such as diodes, BJTs and FETs.
II	Know the applications of components.
III	Understand common forms of number representation in logic circuits
IV	Learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
V	Understand the concepts of combinational logic circuits and sequential circuits.

COURSE OUTCOMES (COs):

CO 1	Acquire knowledge of electrical characteristics of ideal and practical diodes under forward and reverse bias to analyze and design diode application circuits such as rectifiers.
CO 2	Utilize operational principles of bipolar to derive appropriate small-signal models and use them for the analysis of basic circuits.
CO 3	Understand the basic concept of number systems, Boolean algebra principles and minimization techniques for Boolean algebra
CO 4	Analyze Combination logic circuit such as multiplexers, adders, decoders.
CO 5	Understand about synchronous and asynchronous sequential logic circuits.

COURSE LEARNING OUTCOMES (CLOs):

AECB05.01	Understand and analyze diodes operation and their characteristics in order to design basic form circuits
AECB05.02	Explain half wave rectifier for the given specifications.
AECB05.03	Design full wave rectifier for the given specifications
AECB05.04	Design rectifier with capacitive filter for the given specifications
AECB05.05	Understand the different parameters of transistors such as depletion width and channel width for understanding the functioning and design of this component.
AECB05.06	Estimate the performance of BJT on the basis of their operation and working.
AECB05.07	Explain the operation of Operating Point and Load Line Analysis
AECB05.08	Explain the operation of CB,CE,CC I/O Characteristics
AECB05.09	Understand the importance of h-parameter model
AECB05.10	Understand the basic concept of number systems, Binary addition and subtraction for digital systems.
AECB05.11	Explain the complements of Binary \& Decimal number systems

AECB05.12	Discuss about digital logic gates, error detecting and Correcting codes for digital systems.
AECB05.13	Illustrate the switching algebra theorems and apply them for reduction of Boolean function.
AECB05.14	Identify the importance of SOP and POS canonical forms in the minimization or other optimization of Boolean formulas in general and digital circuits.
AECB05.15	Evaluate functions using various types of minimizing algorithms like Karnaugh map or tabulation method.
AECB05.16	Design Gate level minimization using KMaps and realize the Boolean function using logic gates.
AECB05.17	Analyze the design procedures of Combinational logic circuits like adders,Subtractors.
AECB05.18	Analyze the design of decoder, demultiplexer, and comparator using combinational logic circuit.
AECB05.19	Understand bi-stable elements like latches flip-flop and Illustrate the excitation tables of different flip flops
AECB05.20	Understand the concept of Shift Registers and implement the bidirectional and universal shift registers.
AECB05.21	Implement the synchronous\& asynchronous counters using design procedure of sequential circuit and excitation tables of flip - flops.

MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES:

SEE Question No		Course Learning Outcomes		Course Outcomes	\qquad
1	a	AECB05.01	Understand and analyze diodes operation and their characteristics in order to design basic form circuits	CO 1	Understand
	b	AECB05.01	Understand and analyze diodes operation and their characteristics in order to design basic form circuits	CO 1	Understand
2	a	AECB05.03	Design full wave rectifier for the given specifications	CO 1	Understand
	b	AECB05.03	Design full wave rectifier for the given specifications	CO 1	Understand
3	a	AECB05.07	Explain the operation of Operating Point and Load Line Analysis	CO 2	Understand
	b	AECB05.09	Understand the importance of h-parameter model	CO 2	Remember
4	a	AECB05.09	Understand the importance of h-parameter model	CO 2	Understand
	b	AECB05.09	Understand the importance of h-parameter model	CO 2	Understand
5	a	AECB05.11	Explain the complements of Binary \& Decimal number systems	CO 3	Understand
	b	AECB05.11	Explain the complements of Binary \& Decimal number systems	CO 3	Understand
6	a	AECB05.12	Discuss about digital logic gates, error detecting and Correcting codes for digital systems.	CO 3	Understand
	b	AECB05.14	Identify the importance of SOP and POS canonical forms in the minimization or other optimization of Boolean formulas in general and digital circuits.	CO 3	Understand
7	a	AECB05.18	Analyze the design of decoder, demultiplexer, and comparator using combinational logic circuit.	CO 4	Understand
	b	AECB05.16	Design Gate level minimization using K-Maps and realize the Boolean function using logic gates.	CO 4	Understand
8	a	AECB05.18	Analyze the design of decoder, demultiplexer, and comparator using combinational logic circuit.	CO 4	Understand
	b	AECB05.18	Analyze the design of decoder, demultiplexer, and comparator using combinational logic circuit.	CO 4	Understand
9	a	AECB05.20	Understand the concept of Shift Registers and implement the bidirectional and universal shift registers.	CO 5	Understand

	b	AECB05.21	Implement the synchronous\& asynchronous counters using design procedure of sequential circuit and excitation tables of flip - flops.	CO 5	Understand
10	a	AECB05.21	Implement the synchronous\& asynchronous counters using design procedure of sequential circuit and excitation tables of flip - flops.	CO 5	Understand
	b	AECB05.21	Implement the synchronous\& asynchronous counters using design procedure of sequential circuit and excitation tables of flip- flops.	CO 5	Understand

