

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER - II

B.Tech IV Semester End Examinations, April - 2020

Regulation: IARE-R18

ANALOG AND PULSE CIRCUITS

(Electronics and Communication Engineering)

Time: 3 Hours Max Marks: 70

Answer any ONE question from each Unit All questions carry equal marks All parts of the question must be answered in one place only

UNIT-I

1	a)	List out the special features of Darlington pair and cascode amplifiers. State the areas where these amplifiers are used?	[/M]
	b)	A CE-CC Amplifier uses RS=1K Ω , . RC1= RE2=4K Ω . The hparameters hie=1.2K, hre=5*10-4,hfe=50,hoe=25 μ A/V, hic=1.2 Ω ,hrc=1,hfc= -51,hoc=25 μ A/V. Compute	[7M]

2 a) Sketch two RC-coupled CE transistor stages. Show the middle and low frequency model for one stage. Write the expressions for current gains.

individual & overall A I & AV, Ri, Ro & Rot.

b) A Darlington emitter follower circuit uses two identical transistors having the following h-parameters hie=1.1K, hre=2.5*10-4,hfe=60,hoe= 20μ A/V. RE= $2K\Omega$,RS= 500Ω Compute overall A I & AV, Ri, Ro & Rot .

UNIT - II

- 3 a) What are the advantages and disadvantages of negative feedback and compare different types of feedback circuits. [7M]
 - b) A feedback amplifier has an open loop gain of 600 and feedback factor $\beta = 0.01$. Find the closed loop gain with feedback. [7M]
- 4 a) Derive the expressions for Av, Ri and Ro for the series shunt feed back amplifier circuit. [7M]
 - b) An amplifier with Av = -500, produces 5% harmonic distortion at full output. What value of β is required to reduce the distortion to 0.1 %? What is the overall gain?

UNIT - III

[7M]

5 a) Deduce the Barkausen Criterion for the generation of sustained oscillations.

Find the capacitor C and hee for the transistor to provide a resonating frequency of 10KHZ [7M] of a phase-shift oscillator. Assume R1=25k,R2=60k,Rc=40k, R=7.1k and hie=1.8k. 6 Derive the general expression for the output power in the case of a class A power amplifier. [7M] Draw the circuit and explain the movement of operating point on the load line for a given input signal. A series fed class A amplifier uses a supply voltage of 10V and load resistance of 20 Ω . [7M] b) The a.c input voltage results in a base current of 4mA peak. Calculate i. d.c input power ii. a.c output power iii. % of efficiency UNIT – IV 7 Explain the response of RC High Pass circuit for the square input, and draw the response [7M] with different time constants. A 1KHz square wave output from an amplifier has rise time tr = 250 ns and tilt = 10%, [7M] identify the upper and lower frequencies Explain the response of RC Low Pass circuit for the square input, and draw the response 8 a) [7M] with different time constants. Draw the RC differentiator circuit for pulses of 1ms repletion and 10V amplitude. The [7M] trigger pulses are to have 8V amplitude. The source resistance is 50Ω and load resistance is 500Ω . UNIT - V9 Explain with the help of neat circuit diagram the principle of operation of monostable [7M] multivibrator, and derive an expression for pulse width. Design a Schmitt trigger circuit using NPN transistors having hFE(MIN)=60. VBE cut-off [7M] = 0V, VCE(Sat) = 0.2V and VBE(Sat) = 0.7V. GivenVcc=8V and o/p swing = 6V, UTP = 3.5V, LTP = 1.5V, R1 = 10K Ω & R2 = 2K Ω . Determine Rc1, Rc2 and Re. 10 Discuss the operation of Schmitt trigger with UTP and LTP. [7M] Consider the Schmitt trigger with germanium transistor having hfe= 20. The circuit [7M] parameter are Vcc = 15V, Rs = $2k\Omega$, Rc1= $4k\Omega$, R1= $1k\Omega$ = $3k\Omega$ R2 = $10k\Omega$ and Re= 6 $k\Omega$.Find LTP and UTP.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES

The course should enable the students to:

S.No	Description		
I	Learn the concepts of high frequency analysis of transistors.		
II	Understanding of various types of amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.		
III	Familiarize the Concept of feedback in amplifiers so as to differentiate between negative and positive feedback.		
IV	Construct various multivibrators using transistors.		

COURSE OUTCOMES (COs):

CO 1	Discuss the frequency response and analysis of multistage amplifiers and transistor at high frequency	
CO 2	Analyze the effect of feedback on Amplifier characteristics in feedback amplifiers	
CO 3	Discuss the frequency response of various oscillators and analyze the large signal and tuned amplifiers	
CO 4	Understand the linear wave shaping and different types of sampling gates with operating principles	
004	using diodes, transistors	
CO 5	Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using	
	Transistors	

COURSE LEARNING OUTCOMES

Students who complete the course will have demonstrated the ability to do the following.

AECB07.01	Understand the classification of amplifiers, distortions in amplifiers and different coupling	
	schemes used in amplifiers.	
AECB07.02	Analyze various multistage amplifiers such as Darlington, Cascade etc.	
AECB07.03	Understand and remember the concept of Hybrid - model of Common Emitter transistor.	
AECB07.04	Analyze the importance of positive feedback and negative feedback in connection in electronic	
	circuits.	
AECB07.05	Analyze various types of feedback amplifiers like voltage series, voltage shunt, current series	
AECB07.03	and current shunt.	
AECB07.06 Understand the condition for Oscillations and various types of Oscillators.		
AECB07.07	Design various sinusoidal Oscillators like RC Phase shift, Wien bridge, Hartley and Colpitts	
	oscillator for various frequency ranges.	
AECB07.08	Design different types of power amplifiers for practical applications of desired specifications	
ALCD07.08	like efficiency, output power, distortion, etc.	
AECB07.09	Design the tuned circuits used in single tuned amplifiers and understand its frequency response.	
AECB07.10	Analyze the response of high pass RC to different non sinusoidal inputs with different time	
	constants and identify RC circuit's applications.	

AECB07.11	Understand the basic operating principle of sampling gates.
AECB07.12	Analyze the response of low pass RC circuits to different non sinusoidal inputs with different time constants and identify RC circuit's applications.
AECB07.13 Illustrate the Bistable multivibrator with various triggering methods and apply design procedures to different bistable multivibrator circuits.	
AECB07.14	Analyze the Monostable, Astable multivibrator circuits with applications and evaluate time, frequency parameters.
AECB07.15	Evaluate triggering points, hysteresis width of Schmitt trigger circuit and also design practical Schmitt trigger circuit.

MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES:

SEE Question No.		Course Learning Outcomes		Course Outcomes	Blooms Taxonomy
					Level
1	a	AECB07.02	Analyze various multistage amplifiers such as Darlington, Cascade etc.	CO 1	Understand
	b	AECB07.02	Analyze various multistage amplifiers such as Darlington, Cascade etc.	CO 1	Remember
2	a	AECB07.02	Analyze various multistage amplifiers such as Darlington, Cascade etc.	CO 1	Understand
	b	AECB07.02	Analyze various multistage amplifiers such as Darlington, Cascade etc.	CO 1	Remember
3	a	AECB07.04	Analyze the importance of positive feedback and negative feedback in connection in electronic circuits	CO 2	Remember
	b	AECB07.04	Analyze the importance of positive feedback and negative feedback in connection in electronic circuits	CO 2	Apply
4	a	AECB07.05	Analyze various types of feedback amplifiers like voltage series, voltage shunt, current series and current shunt.	CO 2	Remember
	b	AECB07.04	Analyze the importance of positive feedback and negative feedback in connection in electronic circuits	CO 2	Apply
5	a	AECB07.06	Understand the condition for Oscillations and various types of Oscillators	CO 3	Remember
	b	AECB07.06	Understand the condition for Oscillations and various types of Oscillators	CO 3	Apply
6	a	AECB07.07	Design various sinusoidal Oscillators like RC Phase shift, Wien bridge, Hartley and Colpitts oscillator for various frequency ranges.	CO 3	Understand
	b	AECB07.08	Design different types of power amplifiers for practical applications of desired specifications like efficiency, output power, distortion, etc	CO 3	Apply
7	a	AECB07.10	Analyze the response of high pass RC to different non sinusoidal inputs with different time constants and identify RC circuit's applications	CO 4	Understand
	b	AECB07.10	Analyze the response of high pass RC to different non sinusoidal inputs with different time constants and identify RC circuit's applications	CO 4	Apply
8	a	AECB07.12	Analyze the response of low pass RC circuits to different non sinusoidal inputs with different time constants and identify RC circuit's applications	CO 4	Remember

	b	AECB07.12	Analyze the response of low pass RC circuits to different non sinusoidal inputs with different time constants and identify RC circuit's applications	CO 4	Apply
9	a	AECB07.14	Analyze the Monostable, Astable multivibrator circuits with applications and evaluate time, frequency parameters	CO 5	Understand
	b	AECB07.15	Evaluate triggering points, hysteresis width of Schmitt trigger circuit and also design practical Schmitt trigger circuit	CO 5	Understand
10	a	AECB07.15	Evaluate triggering points, hysteresis width of Schmitt trigger circuit and also design practical Schmitt trigger circuit	CO 5	Apply
	b	AECB07.15	Evaluate triggering points, hysteresis width of Schmitt trigger circuit and also design practical Schmitt trigger circuit	CO 5	Apply

Signature of Course Coordinator

HOD, ECE