Hall T	icket	No
--------	-------	----

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER-II

B. Tech VIII Semester End Examinations, April/May - 2020

Regulations: IARE - R16

AVIONICS AND INSTRUMENTATION

(Aeronautical Engineering)

Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

UNIT – I

1.	a)	Determine the Requirements of avionics equipment and systems? Explain the typical data transaction of MIL-STD 1553B?	[7M]
	b)	Draw the Topology of MIL-STD-1553B and ARINC629 Data buses?	[7M]
2.	a)	Describe the architecture of A-529 data buss with neat sketch indicating word format and its applications	[7M]
	b)	Elaborate the integration of a typical Attitude Detection Indicator to the Flight display.	[7M]
		UNIT – II	
3.	a)	What do you understand by Air Data and Inertial Reference Systems (ADIRS) Name the various instrument used via inertial sensing? Briefly discuss Direction Gyro?	[7M]
	b)	Discuss the basic principle of VHF communication and draw the block diagram of VHF Transmitter.	[7M]
4.	a)	Explain the MHRS? Explain the air stream direction and detector (ADD)?	[7M]
	b)	What is inertial sensing and explain the uses of inertial sensing? Explain the Position Gyroscopes with neat sketch?	[7M]
		UNIT – III	
5.	a) b)	What are Care free maneuvering characteristics? Define code tracking loop. Define Fiber Optic Gyro with a schematic representation Infer the various inertial	[7M] [7M]
6.	a)	sensor systems used in aircraft? Explain vulnerability of Avionics system. And also Explain and expand CERVIT.	[7M]
0.	b)	Explain the various radio frequency spectrum used in aviation and show the letter designation for various frequencies?	[7M]
		UNIT – IV	
7.	a)	Illustrate in detail about Terrain Awareness and Warning System (TAWS) and Explain the Flight control requirements?	[7M]
	1 \		(F) (1

b) Differentiate the objectives of Air Traffic Management in navigation, ranging and [7M] landing systems?

8.	a) Interpret the Autopilot Flight Director Systems (AFDS) in aircraft systems.		[7M]
	b)	Explain how the ILS approach is use full in bad weather condition? Explain the B777 air data and inertial reference system? UNIT - V	[7M]
9.	a)	Explain the Airbus model of FBW system? Explain the aircraft axis movement in relation with aircraft attitude?	[7M]
	b)	Explain how modern design techniques help in designing SAS (Stability Augmentation System) as well as autopilots.	[7M]
10.	a) b)	Differentiate the navigation requirement between civil and military aviation. Discuss the needs of air-to-air refueling for military aircraft in surveillance systems and auto-flight systems.	[7M] [7M]

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

The course should enable the students to:

S. No	Description		
Ι	Impart the knowledge in various types of Avionics systems, its components & its applications in aerospace industries.		
II	Offer a rigorous avionics technology, Review of the basic system integration and the different type of		
	avionics architectures.		
III	Provide necessary knowledge to study the aircraft instrumentation sensors, displays and different type of		
	sensors		
IV	Give knowledge about military aircraft adaptation, avionics and mission system interface and gives the		
	difference between civilian aircraft avionics and military aircraft avionics		

COURSE OUTCOMES (COs):

CO 1	Describing aviation technology, bus systems and few basics of aircraft systems
CO 2	Differentiating aircraft instrumentation - sensors and displays systems
CO 3	Understanding communication systems and navigation aids
CO 4	Estimation of military aircraft adaptation mission system interface, navigation and flight management
CO 5	Acquiring knowledge on airborne radar, astrionics, avionics for spacecraft

COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the ability to do the following:

AAE525.01	Understanding the different avionics bus systems
AAE525.02	Interpret the need of bus systems in avionics
AAE525.03	Constructing the integrating modular avionics architectures, shelf systems and avionics packaging systems
AAE525.04	Understanding the concept of sensing system in aircraft instrumentation system.
AAE525.05	Development of different types of indication systems
AAE525.06	Constructing different display systems in instrumentation system
AAE525.07	Developing the concept of different communication system
AAE525.08	Understanding different navigation systems, global and local area augmentation
AAE525.09	Understanding flight management system control and display unit
AAE525.10	Measuring of avionic and mission system interface, navigation and flight management
AAE525.11	Arranging airborne early warning, ground surveillance
AAE525.12	Explanation of electro-optics and the infra-red
AAE525.13	Characterizing of types of radar- pulse Doppler
AAE525.14	Determination Attitude and control of spacecraft, magnetometers
AAE525.15	Construction of command and telemetry in aviation technology

MAPPING OF SEMESTER END EXAMINATION TO COURSE OUTCOMES

	EE ion No		Course Learning Outcomes	Course Outcomes	Blooms Taxonomy Level
1	a	AAE525.01	Understanding the different avionics bus systems	CO 1	Understand
	b	AAE525.02	Interpret the need of bus systems in avionics	CO 1	Understand
2	a	AAE525.02	Interpret the need of bus systems in avionics	CO 1	Remember
	b	AAE525.03	Constructing the integrating modular avionics architectures, shelf systems and avionics packaging systems	CO 1	Understand
3	а	AAE525.04	Understanding the concept of sensing system in aircraft instrumentation system	CO 2	Remember
5	b	AAE525.05	Development of different types of indication systems.	CO 2	Remember
4	a	AAE525.06	Constructing different display systems in instrumentation system.	CO 2	Understand
4	b	AAE525.07	Developing the concept of different communication system	CO 2	Understand
5	а	AAE525.08	Understanding different navigation systems, global and local area augmentation	CO 3	Remember
	b	AAE525.08	Understanding different navigation systems, global and local area augmentation	CO 3	Understand
	а	AAE525.09	Understanding flight management system control and display unit	CO 3	Understand
6	b	AAE525.10	Measuring of avionic and mission system interface, navigation and flight management	CO 3	Remember
	a	AAE525.11	Arranging airborne early warning, ground surveillance	CO 4	Understand
7	b	AAE525.12	Explanation of electro-optics and the infra-red	CO 4	Understand
	a	AAE525.11	Arranging airborne early warning, ground surveillance	CO 4	Remember
8	b	AAE525.13	Characterizing of types of radar- pulse Doppler	CO 4	Understand
0	a	AAE525.14	Determination Attitude and control of spacecraft, magnetometers	CO 5	Remember
9	b	AAE525.15	Construction of command and telemetry in aviation technology	CO 5	Understand
10	a	AAE525.14	Determination Attitude and control of spacecraft, magnetometers	CO 5	Remember
10	b	AAE525.14	Determination Attitude and control of spacecraft, magnetometers	CO 5	Understand

Signature of Course Coordinator

HOD, AE