

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	AIRCRAFT VEHICLES STRUCTURES II
Course Code	:	A52109
Class	:	III B. Tech I Semester
Branch	:	AERO
Year	:	2017 - 2018
Course Coordinator	:	Dr. Y B Sudhir Shastry, Professor
Course Faculty	:	Dr. Y B Sudhir Shastry, Professor

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S No	Question	Blooms taxonomy level	Course Outcomes
	UNIT - I		
	BENDING OF THIN PLATES		
1	A thin plate as a sheet of material whose thickness is small compared with its other dimensions but which is capable of resisting bending in addition to membrane forces.	Remember	1
2	What is ρ_x and ρ_y from below diagram radius of curvatures?	Understand	1
3	Flexural rigidity denoted by $D = \frac{Et^3}{12(1-\vartheta^2)}$	Understand	1
4	"W" is denoted by $w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$	Understand	3

	<u> </u>			
5	"U" is total strain energy in $U = \frac{D}{2} \int_0^a \int_0^b \left[\left(\frac{\partial^2 w}{\partial x^2} \right)^2 + \left(\frac{\partial^2 w}{\partial y^2} \right)^2 + 2v \frac{\partial^2 w}{\partial x^2} \right]$	Understand	2	
6	Synclastic material means which has curvatures of the same sign.	Remember	1	
7	Built-in edge condition for $(w)_{x=0}, \left(\frac{\partial w}{\partial x}\right)_{x=0}$?	Remember	2	
8	" N_x " is direct force per unit length in this equation $\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{1}{D} \left(q + N_x \frac{\partial^2 w}{\partial x^2} + N_y \frac{\partial^2 w}{\partial y^2} + N_{xy} \frac{\partial^2 w}{\partial x \partial y} \right)$	Remember	2	
9	Transverse loading perpendicular to longitudinal axis.	Remember	2	
10	The application of transverse and in-plane loads will cause the plate to deflect a further amount w1 so that the total deflection is then $w=w0 + w1$.	Remember	2	
11	Critical load is also called as crippling load.	Understand	2	
12	Stiffeners are used for stiffening .	Remember	2	
	Part - B (Long Answer Questions)			
1	Explain the basic theory of thin plates?	Remember	1	
2	Derive the expression for direct/bending stress of a pure bending of thin plates?	Analyze	1	
3	What is the term flexural rigidity called in bending of thin plates and explain?	Evaluate	2	
4	Clearly explain the difference between synclastic and anticlastic surface of thin plates?	Remember	2	
5	Clearly draw the figure for plate element subjected to bending, twisting and transverse loads?	Understand	2	
6	Write the conditions for a plate which simply supported all edges? And write the assumed deflected form of the plate which satisfies the boundary conditions for this plate?	Remember	2	
7	Write the conditions for a plate which clamped at all edges? And write the assumed deflected form of the plate which satisfies the boundary conditions for this plate?	Understand	2	
8	Write the conditions for a plate which simply supported all two edges and the other two edges are free? And write the assumed deflected form of the plate which satisfies the boundary conditions for this plate?	Understand	1	
9	Write the conditions for free	Understand	1	
10	Describe an experiment to determine the critical load of buckling for a flat panel.	Remember	1	
11	Explain Instability of Stiffened panels.	Understand	1	
12	A plate 10mmthick is subjected to bending moments Mx equal to 10 Nm/mm and My equal to 5 Nm/mm. Calculate the maximum direct stresses in the plate.	Analyze	2	
13	Derive the equation to find out Failure stress in plates and stiffened panels.	Analyze	2	
14	In complete tension field beam, which part of beam resists informal bending moment and why this assumption is necessary?	Understand	2	
15	What are the factors that determine the angle of diagonal tension? If the flanges and stiffness are rigid what will be the angle of diagonal tension?	Remember	2	
Part - C (Problem Solving and Critical Thinking Questions)				
1	Derive the equation $(1/\rho) = M / [D (1+\upsilon)]$ of thin plate subjected to pure bending.	Analyze	2	
2	Derive the equation $M_{xy} = D (1-\upsilon) \partial^2 w/\partial x \partial y$ for a thin plate subjected to	Evaluate	2	

	bending and twisting		
3	A plate 10mmthick is subjected to bending moments Mx equal to 10 Nm/mm and My equal to 5 Nm/mm. find the maximum twisting moment per unit length in the plate and the direction of the planes on which this occurs.	Evaluate	2
4	A thin rectangular plate $a \times b$ is simply supported along its edges and carries a uniformly distributed load of intensity q0. Determine the deflected form of the plate and the distribution of bending moment.	Evaluate	2
5	A rectangular plate $a \times b$, is simply supported along each edge and carries a uniformly distributed load of intensity q0. Assuming a deflected shape given by $w = A_{11} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$. Determine using the energy method, the value of the coefficient A11 and hence find the maximum value of deflection	Remember	2
6	A thin rectangular plate $a \times b$ is simply supported along its edges and carries a uniformly distributed load of intensity $q0$ and supports an inplane tensile force Nx per unit length Determine the deflected form of the plate.	Evaluate	2
7	A rectangular plate $a \times b$, simply supported along each edge, possesses a small initial curvature in its unloaded state given by $w = A_{11} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$ Determine , using the energy method, its final deflected shape when it is subjected to a compressive load <i>Nx</i> per unit length along the edges $x = 0$, $x = a$.	Remember	2
8	Explain Instability of Stiffened panels.	Evaluate	2
9	The beam shown in is assumed to have a complete tension field web. If the cross-sectional areas of the flanges and stiffeners are, respectively, 350mm2 and 300mm2 and the elastic section modulus of each flange is 750mm3, determine the maximum stress in a flange and also whether or not the stiffeners will buckle. The thickness of the web is 2mm and the second moment of area of a stiffener about an axis in the plane of the web is 2000mm4; $E = 70\ 000\ \text{N/mm2}$.	Evaluate	2
10	Derive the equation for critical stress (σ CR) = [$k\pi 2E/12(1-\nu 2)$] (t/b)2 for plate subjected to the compressive load. Part of a compression panel of internal construction is shown in Figure. The equivalent pin-centre length of the panel is 500 mm. The material has a Young's modulus of 70 000 N/mm2 and its elasticity may be taken as falling catastrophically when a compressive stress of 300 N/mm2 is reached. Taking coefficients of 3.62 for buckling of a plate with simply supported sides and of 0.385 with one side simply supported and one free, determine (a) the load per mm width of panel when initial buckling may be expected and (b) the load per mm for ultimate failure. Treat the material as thin for calculating section constants and assume that after initial buckling the stress in the plate	Analyze	2

	increases parabolically from its critical value in the centre of sections.		
	3mm		
	+		
	30		
	SU mm ,	1	
	120 mm		
12	A simply supported beam has a span of 2.4m and carries a central	Apply	2
	concentrated load of 10 kN. The flanges of the beam each have a cross-		-
	sectional area of 300mm2 while that of the vertical web stiffeners is		
	280mm2. If the depth of the beam, measured between the centroid of		
	area of the flanges, is 350mm and the stiffeners are symmetrically		
	maximum axial load in a flange and the compressive load in a stiffener		
	It may be assumed that the beam web, of thickness 1.5 mm, is capable		
	of resisting diagonal tension only.		
	UNIT - II Rending and shead and todsion of thin wal i	ED BEAMS.	
	Part – A (Short Answer Questions)	LED DEAMS.	
	(
1	What is symmetrical bending and clearly explain with figure?	Remember	4
2	What is neutral axis?	Remember	3
3	What is the difference between centroid and centre of gravity?	Understand	3
4	What is the general equation for determining bending stress for an unsymmetrical section?	Remember	3
5	What is the relation between bending moment and shear force?	Remember	3
6	What is the relation between load intensity and shear force?	Remember	3
7	What is shear flow?	Apply	3
8	Explain bredth-batho equation?	Analyze	3
9	What is the general equation for determining Shear flow for an unsymmetrical section?	Remember	3
10	Define Shear centre?	Remember	3
11	Locate position of shear centre for different section?	Remember	3
12	What are the properties of shear centre?	Create	4
13	What is warping?	Evaluate	4
14	What is the general equation for determining Shear flow for an symmetrical section?	Remember	4
15	If thickness is 5mm, shear flow is 100Nmm then shear stress?	Remember	4
16	If beam has cross section of 10mmx5mm and torque is 100Nmm then shear flow?	Remember	4
Part - B (Long Answer Questions)			
1	Write short notes on the following:	Understand	3
	Symmetrical bending		-
	Unsymmetrical bending		
2	Explain the following terms.	Analyze	4
	Shear flow		
L			

	Centre of twist		
3	Derive the equations to find out the primary and secondary warping of an open cross section subjected to torsion.	Analyze	4
4	Derive the Bredt-Batho formula for thin walled closed section beams with the help of neat sketch.	Understand	4
5	Explain the condition for Zero warping at a section, and derive the warping of cross section.	Understand	3
6	What do mean by shear centre? Explain with the help of figure.	Understand	3
7	In order to understand open sections, one has to be clear about centroid, neutral point and shear centre. Explain them with mathematical expression.	Analyze	4
8	Derive the expression for the ripple factor of π -Section filter when used with a Full-wave-rectifier. Make necessary approximations?	Analyze	4
9	Explain the i) shear flow, ii) shear centre, iii) centre of twist.	Evaluate	4
10	Determine the warping distribution in the doubly symmetrical rectangular, closed section beam, shown in Fig, when subjected to an anticlockwise torque T .	Remember	6
	Part – C (Problem Solving and Critical Thinkin	g)	
1	Derive $(\sigma) = [(M_{y xx} - M_{x yy}) / (I_{xx yy} - I_{xy}^{2})] x + [(M_{x yy} - M_{y xy}) / (I_{xx yy} - I_{xy}^{2})] y$		
	Figure in pg 495 problem P.16.1of Megson shows the section of an angle purlin. A bending moment of 3000 Nm is applied to the purlin in a plane at an angle of 30° to the vertical y axis. If the sense of the bending moment is such that its components Mx and My both produce tension in the positive xy quadrant, calculate the maximum direct stress in the purlin stating clearly the point at which it acts	Evaluate	4
2	Derive $(\sigma) = [(M_{x y x} - M_{x xy}) / (I_{x x y y} - I_{x y}^{2})] x + [(M_{x y y} - M_{y xy}) / (I_{x x y y} - I_{x y}^{2})] y$	Evaluate	4
3	Write short notes on the following: Symmetrical bending Unsymmetrical bending Anticlastic bending	Evaluate	4
4	The cross-section of a beam has the dimensions shown in figure. If the beam is subjected to a negative bending moment of 100 kNm applied in a vertical plane, determine the distribution of direct stress through the depth of the section.	Evaluate	4
5	Derive the equation to find out the shear center of figure shown.	Evaluate	4

	by the axial constraint (the σ_{r} and q_{r} systems) and the rate of twist of the		
	beam.		
	S AR,O h		
	4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
	UNIT-III		
	Structural Idealization of Thin Walled Beams Part - A (Short Answer Questions)		
	Tart - A (Short Answer Questions)		_
1	Define structural idealization.	Remember	5
2	Derive the equation to find out boom areas with neat sketches.	Understand	5
3	Explain how to idealization the panel	Understand	5
4	Derive the equation $q_s = -\left(\frac{S_x I_{xx} - S_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) \left(\int_0^s t_D x ds + \sum_{r=1}^n B_r x_r\right) - $	Understand	5
	$\left(\frac{S_y I_{yy} - S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) \left(\int_0^s t_D y ds + \sum_{r=1}^n B_r y_r\right)$		
5	Explain what are structural Idealization and its principle.	Understand	5
6	What is the boom area?	Understand	5
7	Write short notes on the following: (a) Booms in structures (b) Structural idealization.	Remember	5
8	Explain about air loads.	Remember	5
9	Why moment of inertia of boom section is zero?		
10	What type of loads carried by booms, skin, web and flange?		
	Part – C (Problem Solving and Critical Thinkin	g)	<u>I</u>
1	Part of a wing section is in the form of the two-cell box shown in Figure in which the vertical spars are connected to the wing skin through angle	Evaluate	6
	sections, all having a cross-sectional area of 300 mm ² . Idealize the section into an arrangement of direct stress-carrying booms and shear-		
	stress-only-carrying panels suitable for resisting bending moments in a		
	600 mm		
	1 600 mm		
	E 3mm 2mm 2.5mm 3		
	E - 200 mm		
	6 5 4		
2	The thin-walled single cell beam shown in Figure has been idealized into a combination of direct stress-carrying booms and shear-stress-	Evaluate	6

4	Write down the bending equation for symmetrical bending theory?	Remember	7
5	What is centroid for boom section?	Evaluate	7
6	For a beam having either Cx or Cy as an axis of symmetry, Ixy =0. U''?	Remember	7
7	What are idealized section properties?	Apply	7
8	Write down formula for shear of a boom un symmetrical section?	Remember	7
9	Write down formula for bending of a boom section?	Evaluate	8
10	How we can calculate deflection of a boom?	Understand	7
	Part – B (Long Answer Questions)		
1	Derive Torsion-Bending constant for an arbitrary section beam subjected to Torsion.	Remember	7
2	Derive total Torque equation of an arbitrary section beam subjected to torsion.	Understand	8
3	Explain shear lag that poses problems in the analysis of wide, shallow, thin walled beams.	Remember	7
4	Discuss shear stress distributions of a closed section beam built in one end and subjected to bending.	Understand	8
5	Draw and explain construction and different parts of wing.	Remember	9
	Part – C (Problem Solving and Critical Thinkin	g)	
1	Determine the shear flow distribution in the web of the tapered beam shown in Figure at a section midway along its length. The web of the beam has a thickness of 2 mm and is fully effective in resisting direct stress. The beam tapers symmetrically about its horizontal centroidal axis and the cross-sectional area of each flange is 400 mm ²	Create	9
2	The cantilever beam shown in Figure is uniformly tapered along its length in both x and y directions and carries a load of 100 kN at its free end. Calculate the forces in the booms and the shear flow distribution in the walls at a section 2 m from the built-in end if the booms resist all	Remember	10
	the direct stresses while the walls are effective only in shear. Each corner boom has a cross-sectional area of 900 mm ² while both central booms have cross-sectional areas of 1200 mm ² .		

	expressions for the direct stress and shear flow distributions produced		
	by the axial constraint (the σ_{Γ} and q_{Γ} systems) and the rate of twist of the		
	$\begin{array}{c} S \\ (R) \\ t \end{array} \\ 4 \\ 3 \end{array}$		
	UNII-V STRESS ANALYSIS OF AIRCRAFT COMPONENTS- WIN	G, FUSELAGE	
	Part - A (Short Answer Questions)	·	
1	The fuselage shell section has been idealized such that the fuselage skin is effective only in?	Evaluate	11
2	Why wings and fuselages are usually tapered along their lengths for greater?	Remember	11
3	What are functions of wing ribs?	Remember	11
4	How a thin rectangular strip suffers warping across its thickness when subjected to torsion?	Remember	11
5	Explain the theory of the torsion of closed section beams?	Remember	11
6	A section does not remain rectangular but distorts; the effect is known as ?	Understand	11
7	If the sheer force is 400 N over the length of the 200 mm stiffener, the shear flow is?	Remember	11
8	A bending moment M applied in any longitudinal plane parallel to the z-axis may be resolved into components?	Remember	11
9	For a symmetric section about both axes, then shear centre lies at?	Understand	12
10	Define Warping?	Remember	12
	Part - B (Long Answer Questions)		
1	Write a detailed note on the following Fuselage frames Wing ribs	Understand	11
2	The beam shown in Figure is simply supported at each end and carries a load of 6000N. if all direct stresses are resisted by the flanges and stiffeners and the web panels are effective only in shear, calculate the distribution of axial load in the flanges ABC and the stiffeners BE and the Shear flows in the panels.	Understand	12
3	Derive the equation to find out shear flow in a tapered wing.	Apply	12
4	A wing spar has the dimensions shown in Fig. P.21.1 and carries uniformly distributed loads of 15 kN/m along its complete length. Each flange has a cross-sectional area of 500mm2 with the top flange being horizontal. If the flanges are assumed to resist all direct loads while the spar web is effective only in shear, determine the flange loads and the shear flows in the web at sections 1 and 2m from the free end.	Remember	11

Prepared By: Dr. Y B Sudhir Shastry, Professor

HOD, AE