

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal- 500 043, Hyderabad.

### **AERONAUTICAL ENGINEERING**

#### **TUTORIAL QUESTION BANK**

| Course Name        | : | AEROSPACE VEHICLE STRUCTURES-I        |
|--------------------|---|---------------------------------------|
| Course Code        | : | A42103                                |
| Class              | : | II B. Tech II Semester                |
| Branch             | : | Aeronautical Engineering              |
| Year               | : | 2016 - 2017                           |
| Course Coordinator | : | Mr. G S D Madhav, Assistant Professor |
| Course Faculty     | : | Mr. G S D Madhav, Assistant Professor |

#### **OBJECTIVES**

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

| Q. No  | Questions                                                                                                                                       | Blooms<br>Taxonomy | Course<br>Outcom |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|
|        |                                                                                                                                                 | Level              | e                |
|        | UNIT – I                                                                                                                                        |                    |                  |
| DADT   | INTRODUCTION TO THEORY OF ELASTICITY                                                                                                            |                    |                  |
| PART   | - A (Short Answer Questions)                                                                                                                    |                    |                  |
| 1      | <b>Write</b> equations of equilibrium for elastic body under three dimensional force systems. Also draw neat sketch representing forces.        | Understand         | 1                |
| 2      | Write the equations for direct strains in terms of displacement functions for a three mutually perpendicular line elements                      | Understand         | 1                |
| 3      | <b>Derive</b> the compatibility equation for two-dimensional problem.                                                                           | Evaluate           | 1                |
| 4      | Write condition equations for plane stress and plane strain for 2D elastic body.                                                                | Knowledge          | 8                |
| 5      | <b>Define</b> Airy's stress function for two dimensional problems in elasticity.                                                                | Knowledge          | 8                |
| 6      | Give stress strain relationship for 2D elastic body.                                                                                            | Evaluate           | 1                |
| 7      | <b>Derive</b> equations of static equilibrium for a two dimensional elastic body.                                                               | Understand         | 1                |
| 8      | <b>Derive</b> the equations for stresses acting on inclined planes and deduce stress equations for principal planes for one directional stress. | Understand         | 1                |
| 9      | <b>Determine</b> graphically state of stress on inclined plane for a deformable body.                                                           | Understand         | 1                |
| 10     | <b>Draw</b> the Mohr's Circle to determine stresses on inclined plane.                                                                          | Understand         | 1                |
| PART · | - B (Long Answer Questions)                                                                                                                     |                    |                  |

| 1    | <b>Derive</b> equations of static equilibrium for a three dimensional elastic body.                                                                                                                                                                                                                                                                                             | Understand | 1 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| 2    | <b>Derive</b> the equations for stresses acting on inclined planes and deduce stress equations for principal planes with biaxial stress.                                                                                                                                                                                                                                        | Understand | 1 |
| 3    | <b>Determine</b> graphically state of stress on inclined plane for a deformable body for pure shear condition.                                                                                                                                                                                                                                                                  | Understand | 1 |
| 4    | <b>Derive</b> the strain equations for three mutually perpendicular line elements in terms of displacement functions and deduce compatibility equations.                                                                                                                                                                                                                        | Understand | 1 |
| 5    | <b>Derive</b> equations for stains on inclined planes and deduce strain for principal planes.                                                                                                                                                                                                                                                                                   | Understand | 1 |
| 6    | <b>Draw</b> the Mohr's Circle to determine stains on inclined plane.                                                                                                                                                                                                                                                                                                            | Understand | 1 |
| 7    | <b>Derive</b> the strain equations for three mutually perpendicular line elements in terms of displacement functions and deduce compatibility equations.                                                                                                                                                                                                                        | Understand | 1 |
| 8    | <b>Derive</b> equations for stains on inclined planes and deduce strain for principal planes.                                                                                                                                                                                                                                                                                   | Understand | 1 |
| PART | - C (Problem Solving and Critical Thinking )                                                                                                                                                                                                                                                                                                                                    | <u> </u>   |   |
| 1    | A structural member supports loads which produce, at a particular point, a direct tensile stress of 80N/mm <sup>2</sup> and a shear stress of 45N/mm <sup>2</sup> on the same plane. Calculate the values and directions Of the principal stresses at the point and also the maximum stress, stating on which planes this will act.                                             | Apply      | 1 |
| 2    | A solid shaft of circular cross-section supports a torque of 50KNm and a bending moment of 25KNm. If the diameter of the shaft is 150mm calculate the values of the principal stresses and their directions at a point on the surface of the shaft?                                                                                                                             | Apply      | 1 |
| 3    | A shear stress $\tau_{xy}$ acts in a two-dimensional field in which the maximum allowable shear stress is denoted by $\tau_{max}$ and the major principal stress by $\sigma_1$ . Derive using the geometry of Mohr's circle of stress, expressions for the maximum values of direct stress which may be applied to the x and y planes in terms of three parameters given above. | Apply      | 1 |
| 4    | A cantilever of length L and depth 2h is in a state of plane stress. The cantilever<br>is of unit thickness, is rigidly supported at the end x=L and is located as shown<br>in figure. Show that stress function $\phi = Ax^2+Bx^2y+Cy^3+D(5x^2y^3-y^5)$ is valid for<br>the beam and evaluate the constants A,B,C and D.                                                       | Analyze    | 1 |
|      | UNIT – II                                                                                                                                                                                                                                                                                                                                                                       |            |   |
| PART | REDUNDANT STRUCTURES – A (Short Answer Questions)                                                                                                                                                                                                                                                                                                                               |            |   |
| 1    | Explain area moment method with neat sketches.                                                                                                                                                                                                                                                                                                                                  | Understand | 2 |
| 2    | <b>Distinguish</b> statically determinate and redundant structures.                                                                                                                                                                                                                                                                                                             | Knowledge  | 2 |
| 3    | <b>Determine</b> degree of redundancy for articulated structures.                                                                                                                                                                                                                                                                                                               | Understand | 2 |
| 4    | <b>Define</b> order of redundancy indeterminate structures.                                                                                                                                                                                                                                                                                                                     | Understand | 3 |
| 5    | <b>Classify</b> different types of supports and write the reactions components.                                                                                                                                                                                                                                                                                                 | Knowledge  | 2 |
| 6    | <b>Define</b> singularity function and explain properties of function.                                                                                                                                                                                                                                                                                                          | Knowledge  | 3 |
| 7    | Explain Claypron's method for statically determinate structures.                                                                                                                                                                                                                                                                                                                | Understand | 2 |
| 8    | Explain Determinate structures and indeterminate structures                                                                                                                                                                                                                                                                                                                     | Understand | 2 |

| 9      | Explain the types of boundary conditions for structural systems                                                                                                | Understand | 2 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| 10     | Define Concept of stability for structural systems                                                                                                             | Understand | 2 |
| PART · | - B (Long Answer Questions)                                                                                                                                    |            |   |
| 1      | Derive Slope and defection in area moment method                                                                                                               | Understand | 2 |
| 2      | Explain about concept of Internal redundancy with examples                                                                                                     | Understand | 3 |
| 3      | Explain Claypron's method to determine the deflection in Continuous beams                                                                                      | Understand | 2 |
| 4      | Write singularity function for point load and moment about a point explain about it                                                                            | Knowledge  | 3 |
| 5      | Explain about the concept of external redundancy with examples                                                                                                 | Knowledge  | 3 |
| 6      | Write about total redundant in redundant structures and give two examples                                                                                      | Knowledge  | 3 |
| 7      | Write singularity function for Udl and Uvl loading for beam explain about it                                                                                   | Understand | 2 |
| 8      | Find the degree of redundancy for following beam in general loading                                                                                            | Apply      | 2 |
| 9      | Find the degree of redundancy for following beam in general loading                                                                                            | Apply      | 2 |
|        |                                                                                                                                                                |            |   |
| 10     | Find the degree of redundancy for following beam in general loading                                                                                            | Apply      | 2 |
| PART · | - C (Problem Solving and Critical Thinking )                                                                                                                   |            |   |
| 1      | A simply supported beam span 'l' is subjected to uniformly distributed load 'W' kN/m throughout the beam. Find out maximum slope and deflection.               | Analyze    | 2 |
| 2      | <b>Derive</b> deflection for cantilever beam subjected to concentrated load W at the centre.                                                                   | Analyze    | 2 |
| 3      | <b>Find</b> the expressions for maximum deflection and bending moment of beam under concentrated load.                                                         | Analyze    | 3 |
| 4      | <b>Discuss</b> about area moment method with example.                                                                                                          | Knowledge  | 2 |
| 5      | <b>Find</b> the deflection of the cantilever beam at the point of application of 1000 N load. Assume elastic deflections with $EI = 106 \text{ N} \text{-m}^2$ | Analyze    | 2 |
| 6      | <b>Discuss</b> about claypron's method with example.                                                                                                           | Knowledge  | 2 |
| 7      | <b>Derive</b> deflection for simply supported beam subjected to concentrated load W at the centre using Macaulay's method.                                     | Analyze    | 3 |

| UNIT – III<br>BEAMS WITH ELASTIC SUPPORTS AND INITIAL CURVATURE |                                                                                                            |            |   |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------|---|
| PART ·                                                          | - A (Short Answer Questions)                                                                               |            |   |
| 1                                                               | What is Winkler Constant?                                                                                  | Remember   | 4 |
| 2                                                               | Write the four functions for infinite beam.                                                                | Remember   | 4 |
| 3                                                               | Explain the concept of elastic foundation                                                                  | Remember   | 4 |
| 4                                                               | Write Four Functions in Semi Infinite beam                                                                 | Remember   | 4 |
| 5                                                               | Write the values of $\beta$ the four functions of infinite beam are maximum and also write maximum values. | Remember   | 4 |
| 6                                                               | Differentiate Winkler's constant and Modulus of Foundation.                                                | Knowledge  | 4 |
| 7                                                               | Differentiate the concept of beams on elastic foundation with rigid foundation                             | Knowledge  | 4 |
| 8                                                               | What is curved beam?                                                                                       | Remember   | 4 |
| 9                                                               | Differentiate curved and straight beam.                                                                    | Remember   | 4 |
| 10                                                              | Differentiate discrete beam and straight beam.                                                             | Remember   | 4 |
| 11                                                              | Write the deflection equation for curved beam                                                              | Knowledge  | 4 |
| 12                                                              | Explain the concept of curved beam                                                                         | Remember   | 4 |
| 13                                                              | What is bulkhead write about load on bulkhead                                                              | Remember   | 4 |
| 14                                                              | What kind of load will act on bulkheads                                                                    | Remember   | 4 |
| 15                                                              | Explain stresses developed in curved beams                                                                 | Remember   | 4 |
| 16                                                              | Draw the deflected shape of any curved beam                                                                | Remember   | 4 |
| 17                                                              | What is importance of analysis of curved beam?                                                             | Knowledge  | 4 |
| 18                                                              | Draw the diagram of typical curved beam                                                                    | Remember   | 4 |
| 19                                                              | What is maximum stress developed in curved beam?                                                           | Remember   | 4 |
| 20                                                              | What is maximum deflection for curved beam?                                                                | Knowledge  | 4 |
| 21                                                              | Write the general boundary conditions for curved beam.                                                     | Remember   | 4 |
| 22                                                              | What is function of bulkheads?                                                                             | Remember   | 4 |
| 23                                                              | Write few applications of curved beam                                                                      | Remember   | 4 |
| 24                                                              | Write the stress equation for typical curved beam                                                          | Remember   | 4 |
| 25                                                              | <b>Draw</b> the stress variation diagram for bulkhead.                                                     | Remember   | 4 |
| 26                                                              | Draw the deformed diagram of bulkhead                                                                      | Knowledge  | 4 |
| PART ·                                                          | - B (Long Answer Questions)                                                                                |            |   |
| 1                                                               | <b>Derive</b> the differential equation for the elastic line of a beam resting on elastic foundation.      | Understand | 4 |
| 2                                                               | Discuss the concept of elastic foundation                                                                  | Understand | 4 |
| 3                                                               | Derive maximum stress equations for curved beams.                                                          | Understand | 4 |
| 4                                                               | Derive equation of deflection for infinite beams                                                           | Understand | 4 |
| 5                                                               | Derive deflection equation for finite beam                                                                 | Understand | 4 |

| 6    | How do you apply the concept of curved beam on bulkhead?                                                                                                                                                                                                                                                                                    | Knowledge  | 4 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| 7    | Draw the different cross-sectional shapes of bulkhead segments                                                                                                                                                                                                                                                                              | Knowledge  | 4 |
| 8    | What are the assumptions made in analysis of curved beam?                                                                                                                                                                                                                                                                                   | Knowledge  | 4 |
| 9    | Write the equation of equilibrium for curved beam                                                                                                                                                                                                                                                                                           | Knowledge  | 4 |
| 10   | Draw the stress distribution diagram for curved beam                                                                                                                                                                                                                                                                                        | Knowledge  | 4 |
| PART | - C (Problem Solving and Critical Thinking)                                                                                                                                                                                                                                                                                                 |            |   |
| 1    | An infinite beam rest on equally spaced linear coil springs, located every 1.1m along the beam. A concentrated load of 18kN is applied to the beam, over one of the springs. EI of the beam is $441x109 \text{ Nmm}^2$ , K = 275 N/mm for each spring. Compute the largest spring force and largest bending moment in the beam.<br>P = 18kN | Apply      | 4 |
| 2    | A semi-infinite steel bar (E = 200GPa) has a square cross section (b = h = $80$ mm) and rests on a Winkler foundation of modulus ko = 0.25 N/mm2/mm. A downward force of 50kN is applied to the end. Find the maximum and minimum deflections and their locations. Also find max. Flexural stress and its location.                         | Apply      | 4 |
| 3    | <b>Derive</b> governing equations for Uniform Straight beam on elastic foundation                                                                                                                                                                                                                                                           | Apply      | 4 |
|      | UNIT – IV<br>STADU ITV                                                                                                                                                                                                                                                                                                                      |            |   |
| PART | - A (Short Answer Questions)                                                                                                                                                                                                                                                                                                                |            |   |
| 1    | Discuss two types of instability in columns                                                                                                                                                                                                                                                                                                 | Knowledge  | 5 |
| 2    | <b>Discuss</b> limitations of Euler's column theory.                                                                                                                                                                                                                                                                                        | Understand | 6 |
| 3    | Classify types of columns with neat sketches.                                                                                                                                                                                                                                                                                               | Knowledge  | 6 |
| 4    | What are Eigen value functions and Eigen value Problems?                                                                                                                                                                                                                                                                                    | Knowledge  | 5 |
| 5    | <b>Define</b> Bifurcation Point for a column with neat sketches.                                                                                                                                                                                                                                                                            | Knowledge  | 5 |
| 6    | Write a note on effective length of column. Write effective lengths for different end conditions of columns.                                                                                                                                                                                                                                | Understand |   |
| 7    | Derive the Rankine's semi empirical formula for columns                                                                                                                                                                                                                                                                                     | Analyze    | 6 |
| 8    | <b>Explain</b> failure of columns with neat sketches. Also give sign convention for bending of columns.                                                                                                                                                                                                                                     | Understand | 5 |
| 9    | Write the assumptions made in Euler's Column Theory                                                                                                                                                                                                                                                                                         | Understand | 5 |
| 10   | Derive Johnson's Parabolic Formula for Short Columns                                                                                                                                                                                                                                                                                        | Evaluate   | 5 |
| PART | - B (Long Answer Questions)                                                                                                                                                                                                                                                                                                                 |            |   |
| 1    | <b>Derive</b> the expression for crippling load of a column with both ends hinged                                                                                                                                                                                                                                                           | Knowledge  | 5 |
| 2    | <b>Obtain</b> solution for column having initial curvature. Deduce maximum stress and maximum deflection.                                                                                                                                                                                                                                   | Knowledge  | 5 |
| 3    | Evaluate secant formula for column subjected to eccentric load.                                                                                                                                                                                                                                                                             | Analyze    | 6 |
| 4    | <b>Derive</b> expression for crippling load of column when both ends are fixed                                                                                                                                                                                                                                                              | Understand | 6 |
| 5    | <b>Derive</b> the expression for buckling load when one end of column is fixed and other is free                                                                                                                                                                                                                                            | Knowledge  | 5 |
| 6    | A strut length l, moment of inertia of cross section I uniform throughout and modulus of material E, is fixed at its lower end, and its upper end is elastically                                                                                                                                                                            | Develop    | 5 |

|      | supported laterally by a spring of stiffness k. show from the first principles that                                                                                                           |            |   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| 7    | the crippling load P is given by $(\tan \alpha 1)/(\alpha l) = [1 - (P/kL)]$ , where $\alpha^2 = (P/EI)$                                                                                      | <b>V</b>   | 5 |
| /    | compressive axial load with both ends pinned                                                                                                                                                  | Knowledge  | 5 |
| 8    | <b>Derive</b> the expression for crippling load of a column with both ends are fixed                                                                                                          | Knowledge  | 5 |
| 9    | <b>Derive</b> the expression for crippling load of a column with initial curvature                                                                                                            | Knowledge  | 5 |
| 10   | Derive the Rakines and Jonsons formula for columns                                                                                                                                            | Knowledge  | 5 |
| PART | – C (Problem Solving and Critical Thinking )                                                                                                                                                  | <u> </u>   |   |
|      |                                                                                                                                                                                               |            | _ |
| 1    | The pin-jointed column shown in Figure carries a compressive load $P$ applied eccentrically at a distance $e$ from the axis of the column. Determine the maximum bending moment in the column | Evaluate   | 5 |
|      | <i>y</i> <b>+</b>                                                                                                                                                                             |            |   |
|      |                                                                                                                                                                                               |            |   |
|      |                                                                                                                                                                                               |            |   |
|      | 1 v                                                                                                                                                                                           |            |   |
|      |                                                                                                                                                                                               |            |   |
|      |                                                                                                                                                                                               |            |   |
|      |                                                                                                                                                                                               |            |   |
|      |                                                                                                                                                                                               |            |   |
| 2    | A column of length 1m has the cross-section shown in Figure. If the ends of the                                                                                                               | Evaluate   | 5 |
|      | column are pinned and free to warp, calculate its buckling load; E =70 000 $N/mr^2$                                                                                                           |            |   |
|      | N/mm, G=30 000 N/mm.                                                                                                                                                                          |            |   |
|      |                                                                                                                                                                                               |            |   |
|      | 2 mm                                                                                                                                                                                          |            |   |
|      | 2 mm                                                                                                                                                                                          |            |   |
|      | 100 mm                                                                                                                                                                                        |            |   |
|      | $S(x_g,0) = \begin{bmatrix} C & x \\ x \end{bmatrix}$                                                                                                                                         |            |   |
|      |                                                                                                                                                                                               |            |   |
|      | 2 mm                                                                                                                                                                                          |            |   |
|      |                                                                                                                                                                                               |            |   |
| 3    | 100  mm $100  mm$ $100  mm$ $15  cm/20  cm$ is $6 m$ long. If E-17.5KN/mm <sup>2</sup>                                                                                                        | Apply      | 5 |
| 5    | Determine crippling load and safe load for the column if both ends are fixed and                                                                                                              | Арргу      | 5 |
|      | factor of safety is 3.                                                                                                                                                                        |            |   |
| 4    | A solid round bar 3m long and 5cm in diameter is used as a strut. Determine the                                                                                                               | Apply      | 5 |
|      | crippling load if                                                                                                                                                                             |            |   |
|      | Both ends of strut are ninged<br>One end of strut is fixed and other end is free                                                                                                              |            |   |
|      | Both ends of strut are fixed                                                                                                                                                                  |            |   |
|      | One end is fixed and other is hinged                                                                                                                                                          |            |   |
| 5    | Calculate the Euler's critical load for a strut of T-section, the flange width being                                                                                                          | Apply      | 6 |
|      | 10cm, overall depth 8cm and both flange and stem 1cm thick. The strut is 3m long and is built in at both ends. Take $E = 2 \times 10^5 \text{ N/mm}^2$                                        |            |   |
|      | 1000000000000000000000000000000000000                                                                                                                                                         |            |   |
|      | ENERGY PRINCIPLES AND METHODS                                                                                                                                                                 |            |   |
| PART | - A (Short Answer Questions)                                                                                                                                                                  |            |   |
| 1    | <b>Discuss</b> principle of virtual work for a particle                                                                                                                                       | Understand | 7 |
| 2    | State and explain Maxwell's reciprocal Theorem                                                                                                                                                | Understand | 8 |
| 3    | Explain Principle of Superposition with neat sketches.                                                                                                                                        | Knowledge  | 7 |
| 4    | <b>Derive</b> Bredt-Batho Formula with neat sketches.                                                                                                                                         | Evaluate   | 8 |
| 5    | State Castigliano's Second theorem                                                                                                                                                            | Understand | 8 |

| 6      | Define the following terms                                                                                                                                                                                                                                                               | Knowledge  | 9  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
|        | a. Buckling Load b. Slenderness ratio c. Effective length d. Radius of Gyration                                                                                                                                                                                                          |            |    |
| 7      | State Castigliano's first theorem and explain about it                                                                                                                                                                                                                                   | Understand | 7  |
| 8      | Discuss principle of virtual displacement for a particle                                                                                                                                                                                                                                 | Understand | 7  |
| 9      | Discuss about unit load method in Energy principles concept                                                                                                                                                                                                                              | Understand | 7  |
| 10     | Write about shear flow in wing boxes and explain it with neat sketches                                                                                                                                                                                                                   | Understand | 7  |
| PART - | - B (Long Answer Questions)                                                                                                                                                                                                                                                              |            |    |
| 1      | State and Prove Castigliano's first theorem.                                                                                                                                                                                                                                             | Knowledge  | 7  |
| 2      | <b>Discuss</b> principle of virtual work for a particle                                                                                                                                                                                                                                  | Knowledge  | 8  |
| 3      | <b>Differentiate</b> between a single cell and a multiple cell structure.                                                                                                                                                                                                                | Knowledge  | 9  |
| 4      | Explain any two important characteristics of Rayleigh-Ritz method.                                                                                                                                                                                                                       | Knowledge  | 7  |
| 5      | <b>Derive</b> the stress-strain and Displacements relationships for a open and single cell closed section thin-walled beams.                                                                                                                                                             | Knowledge  | 8  |
| 6      | Discuss about monocoque and semi-monocoque structures.                                                                                                                                                                                                                                   | Knowledge  | 9  |
| 7      | Determine the shearing stress in each wall of a rectangular cross-section of closed tube subjected to torque of 2700 N-m. Consider outer dimension of rectangular tube as width 100mm. height 60mm and thickness, 4 mm                                                                   | Analyze    | 10 |
| 8      | <b>Calculate</b> Center deflection and slope at both ends of simply supported beam carrying Uniformly distributed load W per unit length over a span by Castingliano's therom                                                                                                            | Analyze    | 10 |
| 9      | A frame ABCD consist of two equilateral triangles hinged at A supported on roller at D as show in Fig. Determine the Vertical deflection of C and horizontal moment of D due to load applied vertically at C all the members of lent L and area as 2a                                    | Analyze    | 10 |
| 10     | <b>Explain</b> the concept of unit load method with steps involved to slove problems with unit load method                                                                                                                                                                               | Knowledge  | 9  |
| PART - | - C (Problem Solving and Critical Thinking )                                                                                                                                                                                                                                             |            |    |
| 1      | Using Castigliano's first theorem, determine the deflection and rotation of the overhanging at end A of the beam loaded as shown in fig.                                                                                                                                                 | Evaluate   | 7  |
| 2      | Calculate the vertical deflection of the joint B and the horizontal movement of the support D in the truss shown in Figure. The cross-sectional area of each member is $1800 \text{mm}^2$ and Young's modulus, <i>E</i> , for the material of the members is $200\ 000\ \text{N/mm}^2$ . | Analyze    | 7  |
|        |                                                                                                                                                                                                                                                                                          |            |    |

| 3 | Use the principle of virtual work to calculate the vertical displacements at the                                                                        | Evaluate | 7  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|
|   | quarter- and mid-span points in the beam shown in figure.<br>w                                                                                          |          |    |
|   |                                                                                                                                                         |          |    |
|   |                                                                                                                                                         |          |    |
|   | <i>ــــــــــــــــــــــــــــــــــــ</i>                                                                                                             |          |    |
| 4 | Calculate the vertical deflection of the point B and the horizontal movement of                                                                         | Evaluate | 8  |
|   | D in the pin-jointed framework shown in Figure All members of the framework                                                                             |          |    |
|   | are linearly elastic and have cross-sectional areas of 1800mm <sup>2</sup> . E for the material of the members is 200,000 N/mm <sup>2</sup>             |          |    |
|   |                                                                                                                                                         |          |    |
|   | F                                                                                                                                                       |          |    |
|   | E C                                                                                                                                                     |          |    |
|   |                                                                                                                                                         |          |    |
|   | 4 A                                                                                                                                                     |          |    |
|   |                                                                                                                                                         |          |    |
|   | 4 000 mm 4 000 mm 4 000 mm                                                                                                                              |          |    |
| 5 | Calculate the nodal displacement of the spring system shown in fig. below by                                                                            | Evaluate | 9  |
|   | Rayleigh-Ritz Method?                                                                                                                                   |          |    |
|   |                                                                                                                                                         |          |    |
|   |                                                                                                                                                         |          |    |
|   | 4 K3 3 K4                                                                                                                                               |          |    |
|   |                                                                                                                                                         |          |    |
|   | F.                                                                                                                                                      |          |    |
| 6 | Calculate the vertical displacements of the quarter and mid-span points B and C                                                                         | Evaluate | 8  |
|   | of the simply supported beam of length $L$ and flexural rigidity $EI$ loaded, as                                                                        |          |    |
|   | shown in figure                                                                                                                                         |          |    |
|   | PB,f PC,f W/unit length                                                                                                                                 |          |    |
|   | farmentermenter                                                                                                                                         |          |    |
|   |                                                                                                                                                         |          |    |
|   | $4 \xrightarrow{4} \frac{L}{2}$                                                                                                                         |          |    |
|   |                                                                                                                                                         |          |    |
|   |                                                                                                                                                         |          |    |
| 7 | Determine the variation of shear flow throughout the type of a restor cyler areas                                                                       | Analyza  | 0  |
| / | section whose outer width and height are 100 mm and 200 mm respectively. The                                                                            | Analyze  | フ  |
|   | uniform thickness (t) of the tube is 4 mm. the tube is subjected to shear force of                                                                      |          |    |
|   | 20 kN.                                                                                                                                                  |          | 10 |
| 8 | A structural Aluminium tubing of 60 x 100 mm rectangle cross-section was fabricated by extrusion. Determine the shearing stress in the each of the four | Analyze  | 10 |
|   | walls of such tubing when it is subjected to a torque of 2700 N-m? Take uniform                                                                         |          |    |
|   | thickness't' of the wall as 4mm.                                                                                                                        |          |    |

Prepared by: Mr. G S D Madhav, Assistant Professor

## HOD, AERONAUTICAL ENGINEERING