

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	Computer Organization and Operating Systems	
Course Code	:	A505166	
Class	:	III B. Tech I Semester	
Branch	:	Electronics and Communication Engineering	
Year	:	2017 - 2018	
Course Faculty	:	Mr. CH.Srikanth, Ms. A Swapna, Ms. A Lakshmi Assistant Professor	

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	2 MARKS QUESTIONS		
	UNIT – I		
1. Gr	oup - I (Short Answer Questions)		
1	Explain the role of program counter in Instruction execution?	Understand	1
2	Describe the basic functional units of a computer?	knowledge	1
3	Define memory access time.	Remember	2
4	Explain memory address register (MAR) and memory data register (MDR)?	Understand	1
5	Define two techniques used to increase the clock rate R?	Remember	2
6	State and Explain different types of addressing modes?	knowledge	2
7	Describe the IEEE standard for floating point numbers for single precision number.	knowledge	3
8	Discuss the single Bus architecture?	Understand	2
9	Convert the following numbers with the indicated bases to decimal $(101101)_2$, $(736.4)_8$, $(F3)16$, and $(101001.1011)_2$?	comprehension	3

S. No	Questions	Blooms Taxonomy Level	Program Outcome
10	Represent the number (+46.5)10 as a floating point binary number with 24 bits.	Analyze	2
11	Classify the Arithmetic Micro operations?	Understand	1
12	Show the diagram of one stage arithmetic logic shift unit?	Apply	2
13	State the role of the registers involved in instruction execution.	knowledge	4
14	List out differences between Multiprocessors and Multicomputer.	knowledge	3
15	Explain the three instruction code formats of a basic computer.	Understand	5
16	Describe the instruction cycle with the help of a neat diagram. Also draw the flow chart for the same.	knowledge	4
17	State the difference between arithmetic shift and logical shift.	knowledge	3
18	Discuss the different types of addressing modes?	Understand	2
19	Define condition codes? Can a processor be designed without any condition codes?	Remember	1
20	Explain the four basic types of operations that need to be supported by an instruction set?	Understand	3
21	Define conditional code/ status registers in computer organization?	Remember	2
22	Discuss data structures that can be best supported using (a) indirect addressing mode (b) indexed addressing mode?	Understand	2
23	Explain the (r's) complement and (r-1)'s Complement.	Understand	3
24	List out the different computer instruction formats?	Knowledge	2
25	Explain Little endian and big endian scheme of instructions.	Understand	2
26	Define conditional branch in computer organization?	Remember	1
27	Explain the importance of RISC based System Architecture	Understand	5
28	Explain briefly about stored program organization with suitable example?	Understand	4
2. Gro	oup - II (Long Answer Questions)		
1	Explain the functional organization of a digital computer and explain the function of each element of a computer.	Understand	2
2	Define a digital computer? Discuss briefly on various types of computer.	Remember	1
3	Illustrate the diagram for connection between the processor and the memory and explain basic operational concepts of computer.	Apply	3
4	Explain about various buses such as internal, external, back plane, I/O System, address, data, synchronous	Understand	2
5	Discuss different Bus Structures in detail.	Understand	2
6	Define system software? Explain various functions of systems	Remember	3
Ť	software.		
7	Explain briefly about Basic Performance Equation.	Understand	2
8	Explain 2's Complement addition and Subtraction with numerical Examples.	Understand	2
9	The following transfer statements specify a memory. Explain the memory operation in each case. a) $R <-M[AR]$ b) $M[AR] <-R3$ c) $R <-$	Understand	1

S. No	Questions	Blooms Taxonomy Level	Program Outcome
1.0	M[R5]		
10	Discuss briefly about Floating point Representation with Example.	Understand	5
11	Draw a Bus system for four registers using Multiplexers. Explain it in detail.	Knowledge	2
12	Discuss Three-state Bus Buffers with neat Diagram	Understand	1
13	Explain Binary Adder- Sub tractor with Diagram in detail.	Understand	3
14	Draw and explain 4-bit arithmetic circuit with neat diagram.	Knowledge	2
15	Discuss different applications of Logical micro-operations with Examples.	Understand	2
16	Explain different Shift Micro-operations with examples.	Understand	3
17	Explain the Arithmetic Logic Shift Unit with block diagram.		2
18	List and explain Memory reference instructions in detail.	Knowledge	3
19	Explain different Phases of Instruction Cycle with Examples.	Understand	2
20	Discuss briefly about Program control along with interrupt Cycle.	Understand	3
21	Explain the following related to Stack Organization.a)Register Stackb)Memory Stack	Understand	2
22	Define an instruction format? Explain different types of instruction formats in detail	Remember	1
23	Explain different types of addressing modes with Suitable examples	Understand	2
24	Show how can the following operation be performed using: a- three address instruction	Application	4
	b- two address instruction		
	c- one address instruction d- zero address instruction X = (A + B) * (C + D)		
25	X = (A + B) * (C + D) List and explain different Data Transfer instructions.	Knowledge	2
25	Specify few memory reference-instructions.	Kilowicage	3
20	List and explain Different Data manipulation instructions.	Knowledge	2
28	Define Condition-code bits ? Explain status bit conditions with neat Diagram?	Remember	3
29	List and explain conditional branch instructions?	Knowledge	2
30	Define program interrupt? Explain External interrupts and internal interrupts.	Remember	1
31	Explain briefly about RISC architecture.	Understand	2
32	Compare the RISC and CISC architecture		4
33	Discuss the basic differences between a branch instruction, a call subroutine instruction, and program interrupt?	Understand	2
3. Gro	oup - III (Analytical Questions)		
1	Illustrate the signed magnitude, signed 1's complement, signed 2's complement for the decimal number -14.	Apply	5
2	Convert the following decimal numbers with the indicated bases to decimal.	Understand	4
3	a) $(12121)_3$ b) $(4310)_5$ c) $(50)_7$ d) $(198)_{12}$ Calculate the subtraction with the following unsigned decimal	Apply	3
	numbers by taking the 10's complement of the subtrahend. 123900;090657:100000;000000		
4	Calculate the arithmetic operations $(+42) + (-13)$ and $(-42) - (-13)$ in binary using signed 2's complement representation for negative numbers.	Apply	5
5	Calculate the arithmetic operations $(+70) + (+80)$ and $(-70) + (-80)$ with binary numbers in signed 2's complement representation. Use eight bits to accommodate each number together with its sign. Show	Apply	4

	that overflow Occurs in both cases.		
6	Show the number $(+46.5)_{10}$ as a floating-point binary number with 24 bits.	Apply	1
7	A 36-bit floating-point binary number has eight bits plus sign for the exponent and 26 bits plus sign for the mantissa. The mantissa is a normalized fraction. Numbers in the mantissa and exponent are in signed-magnitude representation. Calculate the largest and smallest positive quantities that can be represented, excluding zero.	Apply	1
8	Register A holds the 8 bit binary number 110111001. Determine the B operand and the logic micro operation to be performed in order to change the value in A to : a) 01101101 b) 11111101	Evaluate	2
9	Starting from an initial value of R=11011101, Determine the sequence of binary values in R after a logical shift-left, followed by a circular shift-right, followed by logical right and a circular shift left.	Evaluate	1
10	Calculate the following conditional control statement by two register transfer statements with control functions. If (p=1) then (R1 \leftarrow R2) else if (Q=1) then (R1 \leftarrow R3)	Apply	2
11	Register A holds the 4-bit binary number 1010 and Register B holds 4-bit binary number 1100. Calculate the A value by performing the following logical micro operations. a) selective-set b)mask c)selective- clear d)insert	Apply	2
12	An 8-bit register contains the binary value 10011100.Determine the register value after an arithmetic shift right? Starting from the initial number 10011100, Determine the register value after an arithmetic shift left, and state whether there is an overflow.	Evaluate	3
13	Calculate how many one-address instructions can be formulated when A Computer has 32-bit instructions and 12-bit address with 250 two-address instructions?	Apply	2
14	List a program to evaluate the arithmetic statement. X = A [B+C (D+E)] Using Zero address instructions. F(G+H)	Knowledge	3
15	Calculate the number of times control unit refer to memory when it fetches and executes an indirect addressing mode instruction if the instruction is a computational type requiring an operand from memory?	Apply	2
16	Calculat e the address field of an indexed addressing mode instruction to make it the same as a register indirect mode instruction?	Apply	2
17	List the basic differences between a branch instruction, a call subroutine instruction, and a program interrupt?		3
18	The memory unit of a computer has 256K words of 32 bits each. The computer has an instruction format with four fields: an operation field, a register address field, a mode field, and a memory address. Determine the instruction format and the number of bits in each field if the instruction is in one memory word?	Evaluate	2
19	The program in a computer compares two unsigned numbers A and B by performing a subtraction A-B and updating the status bits. Let A=01000001 and B=10000100, Calculate the values of Status bits C (borrow) and Z?	Apply	3
20	A computer uses a memory unit with 256 words of 32 bits each. A binary instruction code is stored in one word of memory. The instruction has four parts: an indirect bit, an operation code, a register code part to specify one of 64 registers, and an address part. a. Determine how many bits are there in the operation code, the register code part and the address part b. Draw the instruction word format and indicate the number of bits in each part. c. Determine how many bits are there in the data and address inputs of	Evaluate	2

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT – II		
	1. Group - I (Short Answer Questions)		
1	Describe the two approaches used for generating the control signals in proper sequence.	Knowledge	5
2	Define the following: (a) Micro-operation (b) Micro-instruction (c) Micro-program (d) Micro-code.	Remember	5
3	Explain the factors to determine the control signals?	Understand	5
4	Discuss the features of the hardwired control?	Understand	4
5	Define micro programmed control?	Remember	3
6	Explain control word?	Understand	5
7	Define micro routine and microinstruction.	Remember	4
8	Differentiate hardwired control and micro-programmed control.	Understand	3
9	Define control store?	Remember	4
10	Explain the drawback of micro programmed control?	Understand	6
11	Discus s the drawback of assigning one bit position to each control signals?	Understand	7
12	Explain the drawback of micro programmed control?	Understand	2
13	Define Memory Access time.	Remember	2
14	Explain the Formula for the average access time experienced by the processor in a system with two levels of catches.	Understand	1
15	Explain the following terms. i. Hit rate and ii. Miss penalty.	Understand	5
16	Distinguish between the write-through and write-back policies pointing out their merits and demerits	Apply	4
17	Define the virtual memory organization and explain briefly?	Apply	3
18	Explain cache memory to reduce the execution time?	Understand	2
19	Define CPU registers, Main memory, Secondary memory and cache memory?	Understand	5
20	List the various types of semiconductor RAMs?	Understand	5
21	Define Random Access Memory and types of RAMs present?	Remember	4
22	Explain the necessary for memory hierarchy?	Understand	2
23	Define HIT and MISS ratio in memory with an example?	Remember	3
24	Differentiate SRAM and DRAM?	Understand	7
25	List out two kinds of address locality of reference in cache memory?	Knowledge	6
26	List out the two parameters for performance of a computer system?	Knowledge	4
27	State the differences between static and dynamic memories?	Knowledge	5
28	Define virtual or logical address?	Remember	6
29	Define cache memory? Explain how it is used to reduce the execution time?	Remember	5
30	Explain the mapping procedures adopted in the organization of a Cache Memory?	Understand	6
31	Discuss the function of a TLB? (Translation Look-aside Buffer)	Understand	7
32	Differentiate volatile and non-volatile memory organization?	Remember	6
33	Discus s the multilevel hierarchy of storage devices?	Understand	4
34	Explain memory management unit (MMU)?	Understand	5
35	Discuss the enhancements used in the memory management?	Understand	3
36	List the factors that determine the storage device performance?	Knowledge	2
37	Define locality of reference? What are its types of locality of reference?	Remember	1
38 39	Explain basic concept of virtual memory technique? Calculate maximum size of the memory that can be used in a 16-bit	Understand Apply	6 3
57	computer and 32 bit computer?	, ibbi	5

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT – II		
	2. Group - II (Long Answer Questions)		
1	Define Control memory? Explain Micro programmed Control Organization.	Remember	5
2	Explain operation of control unit of basic computer with diagram.	Understand	4
3	Explain briefly about Address Sequencing in control memory.	Understand	3
4	Draw and Explain the Microinstruction Format.		4
5	Explain the following related to Address Sequencing. a)Conditional branching b)Mapping of Instruction	Understand	6
6	Explain the Organization of Hardwired control in detail.	Understand	7
7	List the differences between hardwired control and micro programmed control.	Knowledge	2
8	Explain the Organization of Micro programmed control unit in detail.	Understand	2
9	Explain briefly about Micro-program Sequencer with diagram.	Understand	1
10	Explain the memory hierarchy with the reference of following metrics? a) Speed b) Cost c) Size	Understand	5
11	Describe Internal organization of memory chips in detail.	Knowledge	4
12	Distinguish between static and dynamic Memories pointing out their Merits and Demerits.	Analyze	3
13	Explain Read-Only Memories in detail.	Understand	2
14	Explain organization of a 1 K X 1 memory chip with neat diagram.	Understand	5
15	Explain i) ROM ii) PROM iii) EPROM iv) EEPROM.	Understand	5
16	Discuss Cache memories in detail		4
17	In many computers the cache block size is in the range of 32 to 128 bytes. Discuss the main advantages and disadvantage of making the size of cache blocks large or smaller?	Understand	3
18	Define a mapping function? Explain Associative mapping technique with its advantages and disadvantages?	Remember	4
19	Explain the following Cache Mapping Techniques(a) Direct Mapping(b) Set Associative Mapping.	Understand	6
20	Distinguish between write through write back policies pointing out their Merits and Demerits.	Analyze	7
21	Explain briefly about a) Hit Rate b) Miss Penalty with Examples.	Understand	6
22	State and Explain virtual memory organization technique with Diagram?	Knowledge	5
23	Define virtual memory? Explain with a diagram how virtual address can be mapped in to physical address using paging.	Remember	5
24	Discuss different RAID levels in detail with Diagrams	Understand	5
25	Define Page-fault? Explain the following page replacement algorithms with Examples a)FIFO b)LRU	Knowledge	4
26	Explain different Secondary Storage Devices with necessary Diagrams.	Understand	3
27	Discuss different RAID levels with Necessary Examples.	Understand	5

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT – II		
	3. Group - III (Analytical Questions)		
1	Explain how the mapping from and instruction code to a micro instruction address can be done by means of a Read-only memory	Understand	3
2	Show how a 9 bit micro operation field in a micro instruction can be divided into subfields to specify 46 micro operations. How many micro operations can be specified in one micro instruction.	Apply	5
3	 A computer has 16registers, an ALU with 32 operations and a shifter with 8 operations, all connected to a common bus system a)Formulate a control word for a micro operation b) Calculate the number of bits in each field of the control word and give a general encoding scheme. c)Show the bits of the control word that specify the micro operation 	Apply	4
4	R4→R5+R6 A RAM chip has a capacity of 1024 words of 8 bits each (1K × 8). Calculate the number of 2 × 4 decoders with enable line needed to construct a 16K × 16 RAM from 1K × 8 RAM?	Apply	3
5	Calculate The amount of ROM needed to implement a 4 bit multiplier?	Apply	4
6	A computer has a 256 K Byte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry contains, in addition to address tag, 2 valid bits, 1 modified bit and 1 replacement bit. Calculate the number of bits in the tag field of an address?	Apply	6
7	A 4-way set-associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. Calculate The number of bits for the TAG field?	Apply	7
8	In a k-way set associative cache, the cache is divided into v sets, each of which consists of k lines. The lines of a set are placed in sequence one after another. The lines in set s are sequenced before the lines in set (s+1). The main memory blocks are numbered 0 onwards. Calculate The main memory block numbered j must be mapped to any one of the cache lines from?	Apply	2
9	Consider two cache organizations: The first one is 32 KB 2-way set associative with 32-byte block size. The second one is of the same size but direct mapped. The size of an address is 32 bits in both cases. A 2-to- 1 multiplexer has a latency of 0.6 ns while a k bit comparator has a latency of $k/10$ ns. The hit latency of the set associative organization is h1 while that of the direct mapped one is h2. Calculate The value of h1?	Apply	2
10	In many computers the cache block size is in the range 32 to 128 bytes. Discuss the main advantages and disadvantages of making the size of the cache blocks larger or smaller?	Understand	6
11	An eight-way set-associative cache consists of a total of 256 blocks. The main memory contains 8192 blocks, each consisting of 128 words. 1. Calculate number of bits in the main memory address? 2. Calculate number of bits in the TAG, SET and WORD fields?	Apply	7
12	Calculate numbers of 128 x 8 RAM chips are needed to provide a memory capacity of 2048 bytes?	Apply	4
13	Explain how will you calculate time Tb to access a block of data in serial access memory?	Understand	6
14	Calculate the number of page faults using First In First out (FIFO) Page Replacement Algorithm for the following CPU References. 3 4 5 6 4 7 4 0 6 7 4 7 6 5 6 4 5 3 4 510 Assume Main Memory contains 4 frames.	Apply	7

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT - III		I
1. Gro	oup - I (Short Answer Questions)		
			1
1	Define an I/O Interface?	Remember	7
2	Describe the factors considered in designing an I/O subsystem?	Knowledge	6
3	Explain Direct Memory Access	Understand	4
4	Explain the different methods used for handling the situation when	Understand	8
5	multiple interrupts occurs? Define polling?	Remember	5
5			5
6	Define intra segment and inter segment program control transfer in computer organization? (near and far pointer concept)	Remember	5
7	Discuss the need of interrupt controller?	Understand	6
8	List the two independent mechanisms for controlling interrupt request?	Knowledge	4
9	Define vectored interrupts?	Remember	7
10	Distinguish between memory mapped I/O and I/O mapped I/O?	Apply	9
11	Define bus.	Remember	4
12	Discuss the necessity of an interface in memory organization?	Understand	6
13	Define synchronous bus.	Remember	2
14	Discuss the usage of an I/O controller. In memory organization?	Understand	3
15	Define asynchronous bus.	Remember	4
16	State and explain memory mapped I/O?	knowledge	7
17	Explain program-controlled I/O?	Understand	5
18	Explain the performance consideration in pipeline format?	Understand	8
19	Define a privileged instruction?	Remember	4
20	Discuss bus arbitration?	Understand	3
21	Define port? What are the types of port available?	Remember	4
22	Explain PCI bus?	Understand	7
23	Define USB.	Remember	8
24	Discuss different objectives of USB?	Understand	9
25	Distinguish between a synchronous and an asynchronous data transfer mechanisms?	Apply	5
26	Explain a procedure to handle an interrupt?	Understand	5
27	Define DMA controller?	Remember	7
28	Differentiate synchronous and asynchronous communication?	Understand	6
29	Discuss how DMA have priority over the CPU while emory transfer in CPU?	Understand	7
30	Discuss memory mapped I/O in computer organization?	Understand	8
32	Define different factors considered while designing an I/O subsystem?	Remember	5
33	Discuss the need of interrupt controller while instructions are executed?	Understand	6
34	Explain DMA operation? State its advantages?	Understand	4
35	List out the major functions of I/O system?	Remember	3
36	Define a port? Explain various types of ports available?	Remember	9
37	Explain the program-controlled I/O with an example?	Understand	4
38	Discuss interrupt masks provided in any processor?	Understand	8
39	Define the necessity and advantage of multiplexing the address and data bus?	Remember	7
40	Define modes of data transfer in memory organization?	Remember	7
41	Define synchronous bus with read and write cycles?	Remember	5
42	Define asynchronous bus with read and write cycles?	Remember	9
43	Explain a privileged instruction set in memory?	Understand	7
44	Explain strobe control in asynchronous data transfer along with hand shaking problem?	Understand	5

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT - III		
	2. Group - II (Long Answer Questions)		
1	Distinguish between memory mapped I/O and I/O mapped I/O.	Analyze	6
2	Differentiate isolated I/O and memory mapped I/O?	Analyze	4
3	Discuss I/O interface in detail with example.	Understand	7
4	Explain Strobe Control method of Asynchronous data transfer technique.	Understand	9
5	Describe Asynchronous serial transfer in detail.	Knowledge	4
6	Discuss First-In, First-Out Buffer with neat diagram.	Understand	6
7	Discuss Handshaking method of Asynchronous data transfer technique?	Understand	2
8	Explain briefly about Asynchronous communication interface with diagram.	Understand	3
9	Discuss DMA transfer technique in detail with block diagram?	Understand	4
10	Explain the following a)CPU-IOP communication b)Daisy- Chaining priority c)Bit-oriented protocol	Understand	7
11	Discuss the Character-oriented Protocol with Example.	Understand	5
	Distinguish between programmed I/O and Interrupt initiated IO with example.	Analyze	8
12	Discuss the following a) Parallel priority Interrupt. b)Priority Encoder	Understand	4
13	Explain briefly about DMA Controller with block diagram	Understand	3
14	Explain the operation of input output processor (IOP) with an example.	Understand	4
15	Explain different modes of Data Transfer to and From Peripherals	Understand	7
16	Explain 8089 Input-Output processor with necessary Diagram.	Understand	8
17	Discuss briefly about PCI bus with diagram.	Understand	9
18	Discuss the followinga) Interrupt-initiated I/Ob) Interrupt Cycle	Understand	8
19	Distinguish between I/O Bus and Memory bus.	Analyze	4
20	Discuss USB Serial communication protocol in detail.	Understand	3
21	Draw and Explain the Connection of I/O bus to input-output devices		8
22	Explain briefly about Input-output Processor with Diagram.	Understand	4

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT-III		
	3. Group - III (Analytical Questions)		
1	Indicate whether the following constitute a control, status, or data transfer commands.a. Skip next instruction if flag is set.b. Seek a given record on a magnetic disk.	Understand	8
2	A CPU with a 20-MHZ clock is connected to a memory unit whose access time is 40 ns. Formulate a read and write timing diagrams using a READ strobe and a WRITE strobe, Include the address in the timing diagram.	Create	5
3	Calculate the minimum number of bits that a frame must have in the bit-oriented protocol?	Apply	5
4	Calculate the number of characters per second can be transmitted over 1200-baud line in each of the following modes?a. Synchronous serial transmission.b. Asynchronous serial transmission with two stop bits.	Apply	6

5	In most computers an interrupt is recognized only after the execution of the current instruction. Consider the possibility of acknowledging the interrupt at any time during the execution of the instruction. Discuss the difficulty that may arise?	Understand	4
6	A DMA controller transfers 16-bit words to memory using cycle stealing. The words are assembled from a device that transmits characters at a rate of 2400 characters per second. The CPU is fetching and executing instructions at an average rate of 1 million instructions per second. Calculate how much the CPU be slowed down because of the DMA transfer?	Apply	7
7	Analyze how DMA interrupt have priority over the processor interrupt when both interrupts occur simultaneously?	Analyze	9
8	Discuss atleast six status conditions for the setting of individual bits in the status register of an Asynchronous communication interface?	Understand	4
9	State and explain the basic advantage of using interrupt initiated data transfer over transfer under programme control without an interrupt?	Knowledge	6
10	Design a parallel priority interrupt hardware for a system with eight interrupt sources.	Create	2
11	Show how the zero instruction works in the bit oriented protocol when a zero followed by the 10 bits that represent the binary equivalent of 1023 are transmitted ?	Apply	3

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT – IV		
	1. Group - I (Short Answer Questions)		
1	Define Operating System? Explain the three main purposes of an operating system?	Remember	9
2	Define kernel? List at least two functions of the kernel.	Remember	11
3	Define thread? Explain about multithreading.	Remember	12
4	Describe the process state diagram	Knowledge	10
5	Explain the advantages of Multiprogramming	Understand	13
6	State the advantage of multiprocessor system	Knowledge	9
7	Explain the difference between multiprocessor and multiprocessing?	Understand	5
8	Compare user threads and kernel threads.	Analyze	11
9	Discuss the use of fork () and exec () system calls?	Understand	10
10	Explain the use of job queues, ready queues and device queues?	Understand	12
11	State and Explain advantages of context switch?	Knowledge	10
12	Define scheduler? List different types of Schedulers.	Remember	9
13	Discuss scheduling a process? What are the types of schedules available?	Understand	10
14	Explain about Multi-Threading Models.	Understand	11
15	Discuss various issues involved in implementing Inter process communication (IPC) in message passing system.	Understand	12
16	Discuss about Process concept and process scheduling	Understand	13
17	Explain the purpose of system calls? Discuss the types of system calls provided by a typical operating system.	Understand	10
18	Differentiate hard real system and soft real system?	Understand	13
19	Explain boot strap program? Where will it be stored?	Understand	12
20	List the difference between a trap and an interrupt? What is the use of each function?	Knowledge	11
21	Define dispatcher? List the Purposes of dispatcher.	Remember	10
22	Define logical address and physical address.	Remember	13
23	Explain logical address space and physical address space?	Understand	11
24	Discuss the main function of the memory-management unit?	Understand	12
25	Explain dynamic loading.	Understand	9
26	Define dynamic linking.	Remember	11

27	Define swapping technique.	Remember	13
28	Explain the common strategies to select a free hole from a set of	Understand	10
	available holes?		
29	Explain the advantages of best fit	Understand	10
30	List the differences between internal and external fragmentation.	Knowledge	9
31	Explain the advantages of first fit?	Understand	10
32	Explain virtual memory?	Understand	11
33	Discuss the major problems to implement demand paging?	Understand	12
34	Explain the advantages of Demand paging?	Understand	13
35	Assume you have a page reference string for a process with m frames	Knowledge	10
	(initially all empty). The page reference string has length p with n		
	distinct page numbers occurring in it. For any page-replacement		
	algorithms,		
	a) State lower bound on the number of page faults?		
	b) State upper bound on the number of page faults?		
36	Discuss pure demand paging?		13
37	Explain the main function of the memory-management unit?	Understand	12
38	Define effective access time.	Remember	11
39	Discuss the problems exists in contiguous memory allocation	Understand	10
40	Define secondary memory.	Remember	13
41	Explain the basic approach of page replacement?	Understand	11
42	Discuss the various page replacement algorithms used for page	Understand	12
	replacement?		
43	Explain the major problems to implement demand paging?	Understand	9
44	Define a reference string?	Remember	10
45	Explain the advantages of Contiguous allocation?	Understand	9
46	Differentiate segmentation and paging technique?	Analyze	10
47	Define Paging.	Remember	11
48	Define Segmentation.	Remember	12
49	Discuss the two solutions for the problem of external fragmentation?	Understand	13
50	Define hashed page table and clustered page table.	Remember	10

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT – IV		
	2. Group - II (Long Answer Questions)		
1	State and explain the various types of computer systems.	Knowledge	11
2	a) Define an operating system? State and explain the basic functions or	Understand	11
	services of an operating system.		
	b). List the differences between multiprogramming and Time-sharing	Knowledge	
	systems.		
3	Explain how protection is provided for the hardware resources by the operating system.	Understand	10
4	Describe the system components of an operating system and explain them briefly.	Understand	12
5	Describe the operating system structures.	Knowledge	10
6	Discuss about the following structures of OS. a. Simple structures b. Layered approach c. Micro kernels	Understand	9
7	Explain briefly about System calls with Examples.	Understand	10
8	Discuss briefly about Swapping concept with necessary Examples.	Understand	11
9	Describe contiguous memory allocation concept with advantages and disadvantages.	Knowledge	12

10	Commons the main memory institution asheres of continuous	I Indoneton d	12
10	Compare the main memory organization schemes of contiguous-	Understand	13
	memory allocation, segmentation, and paging with respect to the following issues:		
	a. external fragmentation		
	b. internal fragmentation		
	c. ability to share code across processes		
11	Differentiate between internal and external fragmentation. Which one	Understand	10
	occurs in paging scheme.	Onderstand	10
12	Explain briefly about Paging with neat diagram.	Understand	9
13	Discus s the following	Understand	10
	a)Hierarchical paging b)Inverted page Tables		
14	Draw and explain the working procedure of paging hardware in detail.	Knowledge	11
15	Explain the basic concepts of segmentation with neat diagrams.	Understand	12
16	Define page fault? When does a page fault occur? Describe the action	Remember	13
	taken by OS when page fault occurs.		
17	State and explain about Virtual memory concept with neat diagram.	Knowledge	10
18	Differentiate between paging and segmentation.	Understand	9
19	Explain briefly about performance of Demand paging with necessary	Understand	10
	Examples.		
20	Explain the basic Scheme of page replacement and about the various	Understand	11
	page replacement strategies with examples.		
21	Consider the following page-reference string:	Apply	10
	1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 Calculate How many page faults		
	would occur for the following replacement algorithms, assuming frame		
	size is 4.Remember that frames are initially empty. (i)LRU		
	replacement (ii)FIFO replacement (iii)Optimal replacement		
22	Define thrashing? Explain the different methods to avoid thrashing.	Remember	9
23	Define deadlock? What are the four conditions necessary for	Remember	10
~ /	deadlock? How it can be prevented.	** 1	
24	Explain briefly about resource allocation graph with examples.	Understand	11
25	Explain about the methods used to prevent deadlocks.	Understand	12
26	Discuss in detail about deadlock avoidance.	Understand	13
27	Explain the Banker's algorithm for deadlock avoidance with Example.	Understand	10
28	Discuss deadlock detection in detail.	Understand	9
29	State and explain the methods involved in recovery from deadlocks	Knowledge	10
30	Consider the following snapshot of a system:		11
	Allocation Max Available	Apply	
	A B C A B C A B C		
	Po 0 1 0 0 0 0 0 0 0 0		
	P1 2 0 0 2 0 2		
	P2 3 0 3 0 0 0		
	<i>P</i> ₃ 2 1 1 1 0 0		
	P4 0 0 2 0 0 2		
	Answer the following questions using the banker's algorithm:		
	a. Calculate is the content of the matrix need?		
	b. Identify the system in a safe state?		

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT – IV		
	3. Group - III (Analytical Questions)		
1	Discuss briefly about the view of an OS as a Resource Manager	Understand	10
2	Explain how operating system services are provided by system calls.	Understand	13

3	Explain the main difficulty that a programmer must overcome in writing an operating system for a real-time environment.	Understand	9
4	Discuss how the distinction between kernel mode and user mode function does. as a rudimentary form of protection (security) system	Understand	10
5	Some early computers protected the operating system by placing it in a memory partition that could not be modified by either the user job or the operating system itself. Describe two difficulties that you think could arise with such a scheme.	Understand	13
6	Consider a system in which a program can be separated into two parts: code and data. The CPU knows whether it wants an instruction (instruction fetch) or data (data fetch or store). Therefore, two base– limit register pairs are provided: one for instructions and one for data. The instruction base–limit register pair is automatically read-only, so programs can be shared among different users. Discuss the advantages and disadvantages of this scheme	Understand	9
7	Most systems allow programs to allocate more memory to its address space during execution. Data allocated in the heap segments of programs is an example of such allocated memory. Explain what is required to support dynamic memory allocation in the following schemes. a. Contiguous-memory allocation b. Pure segmentation c. Pure paging.	Understand	5
8	Consider a paging system with the page table stored in memory. a. If a memory reference takes 200 nanoseconds, Identify how long does a paged memory reference take? b. If we add associative registers, and 75 percent of all page-table references are found in the associative registers, what is the effective memory reference time? (Assume that finding a page-table entry in the associative registers takes zero time, if the entry is there).	Knowledge	11
9	Compare the main memory organization schemes of contiguous- memory allocation, segmentation, and paging with respect to the following issues: a. external fragmentation b. internal fragmentation c. ability to share code across processes	Understand	10
10	 Consider a logical address space of eight pages of 1024 words each, mapped onto a physical memory of 32 frames. a. Calculate how many bits are there in the logical address? b. Calculate how many bits are there in the physical address? 	Apply	13
11	Discuss why are page sizes always powers of 2?	Understand	9
12	Given memory partitions of 100K, 500K, 200K, 300K, and 600K (in order), how would each of the First-fit, Best-fit, and Worst-fit algorithms place processes of 212K, 417K, 112K, and 426K (in order)? Discuss algorithm makes the most efficient use of memory?	Understand	5
13	Suppose we have a demand paged memory. The page table is held in registers. It takes 8 milliseconds to service a page fault if an empty frame is available or the replaced page is not modified and 20 milliseconds if the replaced page is modified. Memory access time is 100 nanoseconds. Assume that the page to be replaced is modified 70 percent of the time. Calculate the maximum acceptable page-fault rate for an effective access time of no more than 200 nanoseconds?	Apply	11
14	Why do you require page replacement? What are the various page replacement techniques available? Explain each for the following sequence of pages on demand for process execution and also identify which technique is best suitable for the sequence. 1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4,2	Understand	10

15	Sharing segments among processes without requiring the same	Knowledge	12
	segment number is possible in a dynamically linked segmentation		
	system.		
	a. Define a system that allows static linking and sharing of segments		
	without requiring that the segment numbers be the same.		
	b. Describe a paging scheme that allows pages to be shared without		
	requiring that the page numbers be the same		
16	Under what circumstances do page faults occur? Describe the actions	Knowledge	10
	taken by the operating system when a page fault occurs.		
17	Discuss situations under which the least frequently used page	Understand	9
	replacement algorithm generates fewer page faults than the least		
	recently used page-replacement algorithm. Also discuss under what		
	circumstance the opposite holds.		
18	Consider the following page-replacement algorithms. Rank these	Understand	10
	algorithms on a five-point scale from "bad" to "perfect" according to		
	their page-fault rate. Distinguish those algorithms that suffer from		
	Belady's anomaly from those that do not.		
	a. LRU replacement		
	b. FIFO replacement		
1.2	c. Optimal replacement		
19	A certain computer provides its users with a virtual-memory space of 2^{32}	Understand	11
	2^{32} bytes. The computer has 218 bytes of physical memory. The virtual		
	memory is implemented by paging, and the page size is 4096 bytes. A		
	user process generates the virtual address 11123456. Explain how the		
	system establishes the corresponding physical location. Distinguish		
	between cottwere and hardwere operations		
	between software and hardware operations		
20	Compare the circular-wait scheme with the deadlock-avoidance	Understand	12
20	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following	Understand	12
20	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:		12
	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues: a. Runtime overheads	Blooms	
S. No	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues: a. Runtime overheads b. System throughput Questions	Blooms Taxonomy	Program
	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues: a. Runtime overheads b. System throughput Questions Consider a system consisting of four resources of the same type that	Blooms	
S. No	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues: a. Runtime overheads b. System throughput Questions Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two	Blooms Taxonomy	Program
S. No 21	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues: a. Runtime overheads b. System throughput Questions Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-free	Blooms Taxonomy Levelpply	Program Outco pg e
S. No	Compare the circular-wait scheme with the deadlock-avoidanceschemes(like the banker's algorithm) with respect to the followingissues:a. Runtime overheadsb. System throughputQuestionsConsider a system consisting of four resources of the same type thatare shared by three processes, each of which needs at most tworesources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being	Blooms Taxonomy	Program
S. No 21	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by	Blooms Taxonomy Levelpply	Program Outco pg e
S. No 21	Compare the circular-wait scheme with the deadlock-avoidanceschemes(like the banker's algorithm) with respect to the followingissues:a. Runtime overheadsb. System throughputQuestionsConsider a system consisting of four resources of the same type thatare shared by three processes, each of which needs at most tworesources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, beingshared by n processes. Resources can be requested and released byprocesses only one at a time. Show that the system is deadlock free if	Blooms Taxonomy Levelpply	Program Outco pg e
S. No 21	Compare the circular-wait scheme with the deadlock-avoidanceschemes(like the banker's algorithm) with respect to the followingissues:a. Runtime overheadsb. System throughputQuestionsConsider a system consisting of four resources of the same type thatare shared by three processes, each of which needs at most tworesources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, beingshared by n processes. Resources can be requested and released byprocesses only one at a time. Show that the system is deadlock free ifthe following two conditions hold:	Blooms Taxonomy Levelpply	Program Outco pg e
S. No 21	Compare the circular-wait scheme with the deadlock-avoidanceschemes(like the banker's algorithm) with respect to the followingissues:a. Runtime overheadsb. System throughputQuestionsConsider a system consisting of four resources of the same type thatare shared by three processes, each of which needs at most tworesources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, beingshared by n processes. Resources can be requested and released byprocesses only one at a time. Show that the system is deadlock free ifthe following two conditions hold:a. The maximum need of each process is between 1 and m resources	Blooms Taxonomy Levelpply	Program Outco pg e
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidanceschemes(like the banker's algorithm) with respect to the followingissues:a. Runtime overheadsb. System throughputQuestionsConsider a system consisting of four resources of the same type thatare shared by three processes, each of which needs at most tworesources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, beingshared by n processes. Resources can be requested and released byprocesses only one at a time. Show that the system is deadlock free ifthe following two conditions hold:a. The maximum need of each process is between 1 and m resourcesb. The sum of all maximum needs is less than $m + n$	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21	Compare the circular-wait scheme with the deadlock-avoidanceschemes(like the banker's algorithm) with respect to the followingissues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type thatare shared by three processes, each of which needs at most tworesources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, beingshared by n processes. Resources can be requested and released byprocesses only one at a time. Show that the system is deadlock free ifthe following two conditions hold:a. The maximum need of each process is between 1 and m resourcesb. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:	Blooms Taxonomy Levelpply	Program Outco pg e
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidanceschemes(like the banker's algorithm) with respect to the followingissues:a. Runtime overheadsb. System throughputQuestionsConsider a system consisting of four resources of the same type thatare shared by three processes, each of which needs at most tworesources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, beingshared by n processes. Resources can be requested and released byprocesses only one at a time. Show that the system is deadlock free ifthe following two conditions hold:a. The maximum need of each process is between 1 and m resourcesb. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAvailable	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system: $ABCD$ ABCD $ABCD$ $ABCD$ $ABCD$	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system: $A B C D$ P_0 $A B C D$ $A B C D$ $A B C D$ $A B C D$	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system: $A B C D$ A B C D $A B C D$ P0001200121520P110001750	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAB C DA B C DP00 0 1 20 0 1 2P11 0 0 01 7 5 0P21 3 5 42 3 5 6	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAvailable A B C DA B C DP00 0 1 20 0 1 2P11 0 0 01 7 5 0P21 3 5 42 3 5 6P30 6 3 20 6 5 2	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAB C DA B C DP00 0 1 20 0 1 2P11 0 0 01 7 5 0P21 3 5 42 3 5 6P30 6 3 20 6 5 2P40 0 1 40 6 5 6	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAB C DA B C DP00 0 1 20 0 1 2P11 0 0 01 7 5 0P21 3 5 42 3 5 6P30 6 3 20 6 5 2P40 0 1 40 6 5 6Answer the following questions using the banker's algorithm:	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAvailable A B C DA B C DP00 0 1 20 0 1 2P11 0 0 01 7 5 0P21 3 5 42 3 5 6P30 6 3 20 6 5 2P40 0 1 40 6 5 6Answer the following questions using the banker's algorithm: a. Calculate content of the matrix need?	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxA B C DA B C DA B C DP00 0 1 20 0 1 20 0 1 20 0 1 20 6 3 20 6 5 2P40 0 1 40 6 5 6Answer the following questions using the banker's algorithm: a. Calculate content of the matrix need? b. Identify whether the system in a safe state?	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAvailable A B C DA B C DP00 0 1 20 0 1 2P11 0 0 01 7 5 0P21 3 5 42 3 5 6P30 6 3 20 6 5 2P40 0 1 40 6 5 6Answer the following questions using the banker's algorithm: a. Calculate content of the matrix need?	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxA B C DA B C DA B C DP00 0 1 20 0 1 20 0 1 20 0 1 20 6 3 20 6 5 2P40 0 1 40 6 5 6Answer the following questions using the banker's algorithm: a. Calculate content of the matrix need? b. Identify whether the system in a safe state?	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAvailable A B C DA B C DP00 0 1 20 0 1 20 1 3 5 42 3 5 6P30 6 3 20 6 5 2P40 0 1 40 6 5 6Answer the following questions using the banker's algorithm: a. Calculate content of the matrix need? b. Identify whether the system in a safe state? c. If a request from process P1 arrives for (0,4,2,0), Describe the request be granted immediately?	Blooms Taxonomy Levelpply Apply	Program Outcoppe 10
S. No 21 22 23	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAvailable A B C DA B C DA B C DP000 1 201 21 3 5 42 3 5 6P30 6 3 2P40 0 1 40 6 5 6Answer the following questions using the banker's algorithm: a. Calculate content of the matrix need? b. Identify whether the system in a safe state? c. If a request from process P1 arrives for (0,4,2,0), Describe the request be granted immediately?Can a system detect that some of its processes are starving? If you	Blooms Taxonomy Levelpply Apply Apply	Program Outcoppe 10
S. No 21 22 23	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads Questions b. System throughput Questions Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAB C DA B C DP00 0 1 20 0 1 2P11 0 0 01 7 5 0P21 3 5 42 3 5 6P30 6 3 20 6 5 2P40 0 1 40 6 5 6Answer the following questions using the banker's algorithm: a. Calculate content of the matrix need?b. Identify whether the system in a safe state? c. If a request from process P1 arrives for (0,4,2,0), Describe the request be granted immediately?Can a system detect that some of its processes are starving? If you answer "yes," Explain how it can. If you answer "no," explain how	Blooms Taxonomy Levelpply Apply Apply	Program Outcoppe 10
S. No 21 22 23	Compare the circular-wait scheme with the deadlock-avoidance schemes(like the banker's algorithm) with respect to the following issues:a. Runtime overheads b. System throughputQuestionsConsider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock-freeConsider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions hold: a. The maximum need of each process is between 1 and m resources b. The sum of all maximum needs is less than $m + n$ Consider the following snapshot of a system:AllocationMaxAvailable A B C DA B C DA B C DP000 1 201 21 3 5 42 3 5 6P30 6 3 2P40 0 1 40 6 5 6Answer the following questions using the banker's algorithm: a. Calculate content of the matrix need? b. Identify whether the system in a safe state? c. If a request from process P1 arrives for (0,4,2,0), Describe the request be granted immediately?Can a system detect that some of its processes are starving? If you	Blooms Taxonomy Levelpply Apply Apply	Program Outcoppe 10

	UNIT – V		
1. Gr	oup - I (Short Answer Questions)		
1	Define a file?	Remember	14
2	List the various file attributes.	Knowledge	14
3	Discuss the various file operations?	Understand	13
4	Describe the layout of a file system?	Knowledge	11
5	State the information associated with an open file?	Knowledge	12
6	List the different accessing methods of a file?	Knowledge	14
7	Explain the operations that can be performed on a directory?	Understand	13
8	Explain the operations that can be performed on a directory? Explain the most common schemes for defining the logical	Understand	12
0	structure of a directory?	Understand	14
9	Describe the various layers of a file system?	Knowledge	13
10	List the structures used in file-system implementation?	Knowledge	10
11	Explain the functions of virtual file system (VFS)?	Understand	11
12	Define seek time and latency time.	Remember	14
13	Discuss the allocation methods of a disk space?	Understand	13
14	Explain the advantages of Contiguous allocation?	Understand	12
15	Discuss the drawbacks of contiguous allocation of disk space?	Understand	14
16	Explain the advantages of Linked allocation?	Understand	13
17	Explain the disadvantages of linked allocation?	Understand	12
18	List the advantages of Indexed allocation?	Knowledge	14
19	Define rotational latency and disk bandwidth.	Remember	11
20	Discuss how free-space is managed using bit vector implementation?	Understand	12
21	Explain the general model of a File System.	Understand	10
22	Discuss the inadequacies of simple file system.	Understand	12
23	Explain the most common schemes for defining the logical structure of a directory?	Understand	14
24	Define UFD and MFD	Remember	13
25	List the various layers of a file system?	Knowledge	12
26	Explain the structures used in file-system implementation?	Understand	14
27	State and explain how can the index blocks be implemented in the indexed allocation scheme?	Knowledge	11
28	Define rotational latency and disk bandwidth.	Remember	12

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT – V		
Grou	p - II (Long Answer Questions)		
1	Discuss various file access methods in detail	Understand	14
2	Explain briefly about directory structure with diagrams	Understand	13
3	Differentiate Sequential access and direct access with suitable examples	Understand	12
4	Discuss File System implementation in detail with suitable diagrams	Understand	14
5	Describe the following most common schemes for defining the logical structure of a diagrama) Single-level directory b) Two-level directory	Knowledge	13
6	Explain the Banker's algorithm for deadlock avoidance with Example.	Understand	10
7	Explain briefly about Tree structured directories with diagram	Understand	11
8	Define mount point? Explain File system mounting in detail?	Knowledge	14
9	Explain briefly about Acyclic-Graph Directories structure with	Understand	13

	diagram		
10	Explain in detail about File sharing and protection?	Understand	12
11	Define Directory? Explain General Graph directory Structure in detail?	Knowledge	14
12	Define File system? Explain Layered File system in detail?	Knowledge	13
13	Explain briefly about virtual File system with diagram?	Understand	12
14	Discuss Contiguous File Allocation method with suitable examples?		14
15	Define Free-Space list? Explain different implementation methods for free space management?	Knowledge	11
16	Explain briefly about Linked File Allocation method with example?	Understand	12
17	Distinguish between Contiguous and linked File allocation methods?	Understand	10
18	Discuss Indexed File Allocation methods with suitable examples?	Knowledge	14
19	Discuss the following a)File attributes b)File types c)Internal File structure	Knowledge	13

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT – V		1
3. Gr	oup - III (Analytical Questions)		
1	Consider a file system where a file can be deleted and its disk space Reclaimed while links to that file still exist. Discuss the problems may occur if a new file is created in the same storage area or with the same absolute path name? How can these problems be avoided?	Understand	14
2	Explain the advantages and disadvantages of recording the name of the creating program with the file's attributes (as is done in the Macintosh Operating System)?	Understand	13
3	Some systems automatically open a file when it is referenced for the first time, and close the file when the job terminates. Discuss the advantages and disadvantages of this scheme as compared to the more traditional one, where the user has to open and close the file explicitly.	Understand	12
4	In some systems, a subdirectory can be read and written by an Authorized user, just as ordinary files can be. a) Describe the protection problems that could arise. b) Define a scheme for dealing with each of these protection Problems.	Knowledge	14
5	Describe an example of an application that could benefit from operating system support for random access to indexed files	Knowledge	13
6	Discuss the merits and demerits of supporting links to files that cross mount points (that is, the file link refers to a file that is stored in a different volume).	Understand	10
7	Some systems provide file sharing by maintaining a single copy of a file; other systems maintain several copies, one for each of the users sharing the file. Discuss the relative merits of each approach.	Understand	11
8	Consider a file system that uses a modified contiguous-	Understand	14

	 allocation scheme with support for extents. A file is a collection of extents, with each extent corresponding to a contiguous set of blocks. A key issue in such systems is the degree of variability in the size of the extents. Explain the advantages and disadvantages of the following schemes: a. All extents are of the same size, and the size is predetermined. b. Extents can be of any size and are allocated dynamically. c. Extents can be of a few fixed sizes, and these sizes are predetermined. 		
9	Explain the advantages of the variation of linked allocation that uses FAT to chain together the blocks of a file?	Understand	12
10	Consider a system where free space is kept in a free-space list. a. Suppose that the pointer to the free-space list is lost. Can the System reconstructs the free-space list? Explain your answer. b. Consider a file system similar to the one used by UNIX with Indexed allocation. How many disk I/O operations might be Required to read the contents of a small local file at $/a/b/c$? Assume That none of the disk blocks is currently being cached. c. Suggest a scheme to ensure that the pointer is never lost as a Result of memory failure.	Understand	14
11	Consider a file system on a disk that has both logical and physical block sizes of 512 bytes. Assume that the information about each file is already in memory. For each of the three allocation strategies (contiguous, linked, and indexed), answer these questions a. Identify how the logical-to-physical address mapping accomplished In this system? (For the indexed allocation, assume that a file is Always less than 512 blocks long.) b. If we are currently at logical block 10 (the last block accessed was block 10) and want to access logical block 4, how many physical blocks must be read from the disk?	Knowledge	13

Prepared by: Mr. CH.Srikanth, Ms. A Swapna, Ms. A Lakshmi Assistant Professor.

HOD, ELECTRONIC AND COMMUNICATION ENGINEERING