

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER

B. Tech IV Semester Regular Examinations, April/May 2020 Regulations: R18

CONTROL SYSTEMS

(Common to EEE & ECE)

Time: 3 hours

Max. Marks: 70

[7M]

Answer ONE Question from each Module

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

MODULE - I

- 1. a) Describe the effect of feedback on Gain, Stability, Noise and Sensitivity of a closed [7M] loop control system.
 - b) Explain the open loop and closed loop configurations of a temperature control [7M] system.
- 2. a) Find the transfer function $I_2(s)/V(s)$ of the electrical network shown in figure. [7M]

b) Write the torque balance equations of idealized elements of mechanical rotational [7M] systems.

MODULE – II

- 3. a) Derive the transfer function of a field controlled DC servomotor and develop its [7M] block diagram. State the assumptions made if any.
 - b) Find the transfer function for the block diagram shown as below

- 4. a) Derive the transient response of critically damped second order system when [7M] excited by unit step input?
 - b) The closed loop transfer function of a unity feedback control system is given by[7M]

 $\frac{C(s)}{R(s)} = \frac{10}{s^2 + 4s + 5}$ Determine (i) Damping ratio (ii) Natural undammed resonance frequency (iii) Percentage peak overshoot

(iv) Expression for error response

MODULE – III

- 5. What are the necessary conditions to have all the roots of characteristics equation in [7M] a) the left half of s-plane?
 - With the help of Routh Hurwitz criterion comments upon the stability of the system b) [7M] having the following characteristic equation $S^6+s^5-2s^4-3s^3-7s^2-4s-4=0$
- State the effect of addition of poles and zeros on root locus and the stability of the 6. [7M] a) system.
 - b) Sketch the complete Root Locus of the system given by [7M]

$$G(s) = \frac{\pi}{S(S+2)(S^2+4S+13)}$$

MODULE - IV

- 7. Derive expression for resonant peak and resonant frequency and hence establish a) [7M] correlation between time and frequency response.
 - Sketch the Bode plot for the open loop transfer function [7M] b)

$$G(s) = \frac{10(S+3)}{S(S+2)(S^2 + 4S + 100)}$$

 $S(S+2)(S^2 + 4S + 100)$ For a second order system with unity feedback $G(s) = \frac{200}{s(s+8)}$ find various frequency 8. [7M] a) domain specifications.

Sketch polar plot for $G(S) = \frac{1}{S^2(1+s)(1+2s)}$ with unity feedback system. Determine [7M] b) gain margin and phase margin.

MODULE - V

9. Write the necessary and sufficient conditions for complete state controllability and [7M] a) observability?

Convert the following system matrix to canonical form and hence calculate the

b) STM.
$$A = \begin{bmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{bmatrix}$$
 [7M]

[7M]

10.

a)

 $\begin{bmatrix} 1 & -1 & 3 \end{bmatrix}$ The transfers function of a control system given by $\frac{C(s)}{R(s)} = \frac{6(s+1)}{s(s+2)(s+3)}$.

Construct three different state models for this system and draw realization structure for any one of the state models.

- Design a suitable lag compensator root locus for the system with, b) [7M]
 - $G(S) = \frac{K}{S(S+1)(S+2)}$ to meet the specifications as
 - a. Damping ratio = 0.5
 - b. $K_{v} \ge 5 \text{ sec}^{-1}$

Undamped natural frequency = 0.7 rad/sec

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

The course should enable the students to:

The course should enable the students to:			
Ι	Organize modeling and analysis of electrical and mechanical systems.		
II	Analyze control systems by block diagrams and signal flow graph technique.		
III	Demonstrate the analytical and graphical techniques to study the stability.		
IV	Illustrate the frequency domain and state space analysis.		

COURSE OUTCOMES (COs):

CO 1	Classify the types and configurations of control systems and describe the mathematical models of
	dynamic systems.
CO 2	Apply various techniques to obtain transfer functions and examine the time response of control systems using standard test signals.
CO 3	Analyze the system response and stability in time domain
CO 4	Examine the characteristics and stability of control systems in frequency domain.
CO 5	Obtain the models of control systems in state space form and design compensators to meet the
	desired specifications.

COURSE LEARNING OUTCOMES (CLOs):

AEEB16.01	Differentiate between open loop, closed loop system and their importance in real time
	applications.
AEEB16.02	Predict the transfer function of translational and rotational mechanical, electrical
	system using differential equation method.
AEEB16.03	Analyze the analogy between electrical, translation and rotational mechanical systems.
AEEB16.04	Apply the block diagram and signal flow graph technique to determine transfer
	function of an control systems.
AEEB16.05	Demonstrate the response of first order and second order systems with various
	standard test signals.
AEEB16.06	Estimate the steady state error and its effect on the performance of control systems
	and gives the importance of PID controllers.
AEEB16.07	Summarize the procedure of Routh - Hurwirtz criteria to study the stability of
	physical systems
AEEB16.08	List the steps required to draw the root – locus of any control system and predict the
	stability.
AEEB16.09	Explain the effect on stability by adding zeros and poles to the transfer function of
	control system.

AEEB16.10	Discuss the method of Bode plot and Polar plot to calculate gain margin and phase		
	margin of control system.		
AEEB16.11	Describe the characteristics of control system and its stability by plotting Nyquist plot.		
AEEB16.12	Compare the behavior of control system in terms of time domain and frequency		
	domain response.		
AEEB16.13	Define the state model of control system using its block diagram and give the role of		
	diagonalization in state space analysis.		
AEEB16.14	Formulate the state transmission matrix and explain the concept of controllability and		
	observability.		
AEEB16.15	Design of lag, lead, lag – lead compensator to improve stability of control system.		
AEEB16.16	Apply the concept of different stability criterions and time, frequency response		
	solution to solve real time world applications.		
AEEB16.17	Explore the knowledge and skills of employability to succeed in national and		
	international level competitive examinations.		

MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES

SEE Question No		Course Learning Outcomes		Course Outco mes	Blooms Taxonomy Level
1	a	AEEB16.01	Differentiate between open loop, closed loop system and their importance in real time applications.	CO 1	Analyze
	b	AEEB16.01	Differentiate between open loop, closed loop system and their importance in real time applications.	CO 1	Analyze
2	а	AEEB16.02	Predict the transfer function of translational and rotational mechanical, electrical system using differential equation method.	CO 1	Apply
	b	AEEB16.03	Analyze the analogy between electrical, translation and rotational mechanical systems.	CO 1	Analyze
3	а	AEEB16.04	Apply the block diagram and signal flow graph technique to determine transfer function of an control systems.	CO 2	Apply
	b	AEEB16.04	Apply the block diagram and signal flow graph technique to determine transfer function of an control systems.	CO 2	Apply
4	а	AEEB16.05	Demonstrate the response of first order and second order systems with various standard test signals.	CO 2	Apply
	b	AEEB16.05	Demonstrate the response of first order and second order systems with various standard test signals.	CO 2	Apply
5	a	AEEB16.05	Demonstrate the response of first order and second order systems with various standard test signals.	CO 3	Apply

	b	AEEB16.05	Demonstrate the response of first order and second order systems with various standard test signals.	CO 3	Apply
6	а	AEEB16.08	List the steps required to draw the root – locus of any control system and predict the stability.	CO 3	Understand
	b	AEEB16.09	Explain the effect on stability by adding zeros and poles to the transfer function of control system.	CO 3	Understand
7	a	AEEB16.10	Discuss the method of Bode plot and Polar plot to calculate gain margin and phase margin of control system.	CO 4	Understand
	b	AEEB16.10	Discuss the method of Bode plot and Polar plot to calculate gain margin and phase margin of control system.	CO 4	Understand
8	a	AEEB16.10	Discuss the method of Bode plot and Polar plot to calculate gain margin and phase margin of control system.	CO 4	Understand
	b	AEEB16.10	Discuss the method of Bode plot and Polar plot to calculate gain margin and phase margin of control system.	CO 4	Understand
9	а	AEEB16.14	Formulate the state transmission matrix and explain the concept of controllability and observability.	CO 5	Apply
	b	AEEB16.14	Formulate the state transmission matrix and explain the concept of controllability and observability.	CO 5	Apply
10	a	AEEB16.14	Formulate the state transmission matrix and explain the concept of controllability and observability.	CO 5	Apply
	b	AEEB16.15	Design of lag, lead, lag – lead compensator to improve stability of control system.	CO 5	Create

Signature of Course Coordinator

HOD, EEE