

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

TUTORIAL QUESTION BANK

Course Name COMPILER DESIGN

Course Code A50514

Class III B.Tech I Semester

Branch Computer Science and Engineering

Year 2017– 2018

Course Coordinator Ms. B Ramyasree, Assistant Professor.

Course Faculty
Ms. N Mamatha, Assistant Professor,

Mr. N Poornachandra Rao, Assistant Professor.

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be

addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of

quality assurance in higher education. The major emphasis of accreditation process is to measure the

outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in

incorporating philosophy of outcome based education in the process of problem solving and career

development. So, all students of the institute should understand the depth and approach of course to be

taught through this question bank, which will enhance learners learning process.

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

UNIT-I

PART – A (SHORT ANSWER QUESTIONS)
1 Define Complier briefly? Understand 1

2 Explain the cousins of compiler? Understand 1

3 Define the two main parts of compilation? What they perform? Understand 1

4 Explain how many phases does analysis consists? Understand 1

5 Define and explain the Loader? Remember 3

6 Explain about preprocessor? Remember 1

7 State the general phases of a compiler? Understand 3

8 State the rules and define regular expression? Remember 2

9 Explain a lexeme and define regular sets? Remember 2

10 Explain the issues of lexical analyzer? Understand 2

11 State some compiler construction tools? Understand 3

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

12 Define the term Symbol table? Understand 1

13 Define the term Interpreter? Remember 1

14 Define the term Tokens in lexical analysis phase? Understand 1

15 Explain about error Handler? Understand 1

16 Define a translator and types of translator? Understand 1

17 Explain about parser and its types? Understand 1

18 Construct NFA for (a/b)* and convert into DFA? Remember 2

19 Define bootstrap and cross compiler? Understand 1

20 Define pass and phase? Understand 3

21 Analyze the output of syntax analysis phase? what are the three

general types of parsers for grammars?

Remember 1

22 List the different strategies that a parser can employ to recover

from a syntactic error?

Understand 1

23 Explain the goals of error handler in a parser? Understand 3

24 Explain why will you define a context free grammar? Remember 3

25 Define context free language. When will you say that two CFGs

are equal?

Remember 2

26 Give the definition for leftmost and canonical derivations? Understand 4

27 Define a parse tree? Understand 1

28 Explain an ambiguous grammar with an example? Apply 1

29 When will you call a grammar as the left recursive one? Apply 4

30 List different types of compiler? Remember 1

PART – B (LONG ANSWER QUESTIONS)
1 Define compiler? State various phases of a compiler and explain

them in detail.

Understand 1

2 Explain the various phases of a compiler in detail. Also writedown

the output for the following expression after each phase

a: =b*c-d.

Apply 1

3 Explain the cousins of a Compiler? Explain them in detail. Understand 1

4 Describe how various phases could be combined as a pass in a

compiler? Also briefly explain Compiler construction tools.

Remember 3

5 For the following expression

Position:=initial+ rate*60

Write down the output after each phase

Apply 1

6 Explain the role Lexical Analyzer and issues of Lexical Analyzer. Remember 1

7 Differentiate the pass and phase in compiler construction? Remember 1

8 Explain single pass and multi pass compiler with example? Understand 1

9 Define bootstrapping concept in brief? Understand 1

10 Explain the general format of a LEX program with example? Understand 3

11 Construct the predictive parser the following grammar:

S->(L)|a

L->L,S|S

Construct the behavior of the parser on the sentence (a, a) using

the grammar specified above

Apply 4

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

12 Explain the algorithm for finding the FIRST and FOLLOW

positions for a given non-terminal.

Consider the grammar,

E ->TE

E->+TE|@

T ->FT

T->*FT|@

F->(E)|id.

Construct a predictive parsing table for the grammar given above.

Verify whether the input string id + id * id is accepted by the

grammar or not.

Understand 4

13 Prepare the predictive parser for the following grammar:

S->a|b|(T)

T ->T, S|S

Write down the necessary algorithms and define FIRST and

FOLLOW. Show the behavior of the parser in the sentences.

i.(a,(a,a))

ii.(((a,a),a,(a),a)

Apply 4

14 Explain operator grammar? Draw the precedence function graph

for the following table.

Understand 4

 A () , $

a > > >

(< < = <

) > > >

, < < > >

$ < <

15 Analyze whether the following grammar is LR(1) or not. Explain

your answer with reasons.

S-> L,R

S-> R

L -> * R

L-> id

R-> L.

Analysis 4

16 Difference between nondeterministic and deterministic finite
automata

Understand 4

17 Construct regular grammar from regular expression Understand 4

18 Explain the problems in top down parsing Understand 4

19 Explain top down parsing algorithm in detail Understand 4

20
Demonstrate left factoring with example Understand 4

PART – C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)
1 Consider the following fragment of C code:

float i, j;

i = i*70+j+2;

Write the output at all phases of the compiler for above C code.

Apply 1

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

2 Construct an NFA for regular expression R= (aa | b) * ab convert

it into an equivalent DFA.

Remember 2

3 Describe the languages denoted by the following regular

expressions.

i. (0+1)*0(0+1)(0+1)

ii. 0*10*10*10*

Remember 2

4 Explain with one example how LEX program perform lexical

analysis for the following PASCAL patterns Identifiers,

Comments, Numerical constants, Keywords, Arithmetic

operators?

Apply 3

5 Check whether the following grammar is a LL(1)grammar

S-> iEtS|iEtSeS|a

E-> b

Also define the FIRST and FOLLOW.

Apply 4

6 Consider the grammar below

E->E+E|E-E|E*E|E/E|a|b

Obtain left most and right most derivation for the string a+b*a+b.

Apply

4

7 Define ambiguous grammar? Test whether the following grammar

is ambiguous or not.

E->E+E|E-E|E*E|E/E|E↑|(E)|-E|id

Apply 4

8 State the limitations of recursive descent parser?

9 Convert the following grammar into LL(1)grammar

S->ABC A->aA|C B->b C->c.

Apply 4

10 Write a recursive descent parser for the grammar.

bexpr->bexpr or bterm|bterm

bterm->bterm and bfactor|bfactor

bfactor->notebfactor|(bexpr)|true|false.

Where ,or, and , not,(,),true, false are terminals of the grammar.

Apply 4

UNIT – II

PART – A (SHORT ANSWER QUESTIONS)
1 Define the term handle used in operator precedence? Understand 5

2 Define LR(0) items in bottom up parsing? Remember 5

3 State the disadvantages of operator precedence parsing? Remember 5

4 Explain LR(k) parsing stands for ? Understand 5

5 Explain why LR parsing is attractive one and explain? Understand 5

6 Define goto function in LR parser with an example? Understand 5

7 Explain why SLR and LALR are more economical to construct

Canonical LR?

Understand 5

8 Explain about handle pruning? Understand 5

9 Explain types of LR parsers? Understand 5

10 List down the conflicts during shift-reduce parsing. Remember 5

11 Define shift reduce parsing in detail Understand 5

12 Explain conflicts in shift reduce parsing Understand 5

13 Explain reduce conflicts with example Understand 5

14 Explain precedence relations in detail Understand 5

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

15 Define operator grammar with example Understand 5

16 Consider the grammar E -> E + E|E *E|(E)| id

Show the sequence of moves made by the shift-reduce parser on

the input id1+id2*id3 and determine whether the given string is

accepted by the parser or not.

Apply 5

17 i) State shift-reduce parsing? Explain in detail the conflicts that

may occur during shift-reduce parsing.

ii) For the grammar given below, calculate the operator precedence

relation and the precedence functions

E-> E + E|E- E|E * E|E / E|E E|(E)|-E|id

Understand 5

18 Prepare a canonical parsing table for the grammar given below

S-> CC

C->cC|d

Analysis 5

19 Analyze whether the following grammar is SLR(1) or not.
Explain your answer with reasons.

S -> L,R

S -> R

L -> * R

L -> id

R -> L.

Apply 5

20 i) Consider the grammar given below.

E -> E + T
E -> T

T -> T * F

T -> F

F -> (E)

F -> id

Prepare LR parsing table for the above grammar .Give the moves

of LR parser on id * id + id

ii) Briefly explain error recovery in LR parsing.

Apply 5

21 Explain handle pruning in detail with example Understand 4

22 Demonstrate stack implementation in implementation of shift

reduce Parsing

Understand 4

23 Explain ways to determine precedence relations between pair of

terminals

Understand 4

24 Explain operator precedence parsing algorithm Understand 4

25 Explain LR parsers in detail with example Understand 4

PART – B (LONG ANSWER QUESTIONS)
1 Consider the grammar E->E + E|E *E|(E)| id.Show the sequence

of moves made by the shift-reduce parser on the input id1+id2*id3

and determine whether the given string is accepted by the parser

or not.

Apply 5

2 i) State shift-reduce parsing? Explain in detail the conflicts that

may occur during shift-reduce parsing.

ii) For the grammar given below, calculate the operator

precedence relation and the precedence functions
E -> E + E|E- E|E * E|E / E|E E|(E)|-E|id

Understand 5

3 Prepare a canonical parsing table for the grammar given below

S-> CC
C -> cC|d

Analysis 5

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

4 Analyze whether the following grammar is SLR(1) or not.

Explain your answer with reasons.

S->L,R

S-> R

L-> * R

L-> id

R -> L.

Apply 5

5 Consider the grammar given below.

E -> E + T

E -> T

T -> T * F

T -> F

F->(E)

F-> id

Prepare LR parsing table for the above grammar .Give the moves

of LR parser on id * id + id
ii) Briefly explain error recovery in LR parsing.

Apply 5

6 Explain handle pruning in detail with example Understand 4

7 Demonstrate stack implementation in implementation of shift

reduce Parsing

Understand 4

8 Explain ways to determine precedence relations between pair of

terminals

Understand 4

9 Explain operator precedence parsing algorithm Understand 4

10 Explain LR parsers in detail with example Understand 4

PART – C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)
1 Explain the common conflicts that can be encountered in a shift-

reduce parser?

Apply 5

2 Explain briefly, precedence functions. Construct the precedence

graph using the following precedence tables.

Apply 5

 + *) Id $

f 2 3 4 4 0

g 1 3 4 5 0

3 Explain LALR parsing, justify how it is efficient over SLR

parsing.

Remember 5

4 Analyze whether the following grammar is CLR(1) or not.

Explain your answer with reasons

S -> L,R

S->R
L-> * R

L-> id

R -> L.

Analysis 5

5 Discuss error recovery in LL and LR parsing. Remember 5

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

6 Construct SLR (1) Parsing table for following grammar

s-> xAy/xBy/xAz

A->as/q

B->q

Remember 2

7 Construct SLR (1) Parsing table for following grammar

s->0s0/1s1/10

Remember 2

8 Construct SLR (1) Parsing table for following grammar

s->aSbS/bsas/E

Remember 2

9
Construct LALR (1) Parsing table for following grammar

s->Aa/bAc/dc/bda
A->d

Remember 2

10 Construct LALR (1) Parsing table for following grammar
s->Aa/aAc/Bc/bBa

A->d

B->d

Remember 2

UNIT – III

PART – A (SHORT ANSWER QUESTIONS)
1 State the benefits of using machine-independent intermediate

form?

Remember 8

2 List the three kinds of intermediate representation? Understand 8

3 Explain how can you generate three-address code? Understand 8

4 Define syntax tree? Draw the syntax tree for the assignment

statement. a :=b * -c + b * -c.

Apply 6

5 Explain postfix notation? Remember 8

6 Explain the usage of syntax directed definition? Apply 7

7 Define abstract or syntax tree? Understand 7

8 Show the DAG for a: =b *-c + b * -c? Apply 7

9 Translate a or b and not c into three address code? Apply 8

10 Define basic blocks? Understand 9

11 Discuss back-end and front-end? Understand 8

12 Define the primary structure preserving transformations on basic

blocks?

Understand 8

13 List common methods for associating actual and formal

parameters?

Understand 8

14 List various forms of target programs? Remember 8

15 Define back patching? Understand 8

16 List different data structures used for symbol table? Remember 9

17 Explain the steps to search an entry in the hash table? Understand 9

18 List the different types of type checking? Explain? Understand 7

19 Explain general activation record? Understand 9

20 State the difference between heap storage and hash table? Understand 9

PART – B (LONG ANSWER QUESTIONS)
1 Explain with an example to generate the intermediate code for the

flow of control statements?

Apply 8

2 List the various ways of calling the procedures? Explain in detail? Analysis 6

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

3 Explain 3addresscodes and mention its types. How would you

implement the three address statements? Explain with suitable

examples?

Apply 8

4 Explain how declaration is done in a procedure using syntax

directed translation?

Apply 7

5 a) Write a note on the specification of a simple type checker.

b) Define a type expression? Explain the equivalence of type

expressions with an appropriate example.

Analysis 7

6 Generate the three-address code for the following C program

fragment

while(a > b)

{

if (c < d)

x = y + z;

else

x = y - z;

}

Understand 8

7 Generate the code for the following C statements using its

equivalent three address code.

a = b + 1

x = y+3

y = a/b

a = b+c

Understand 8

8 Describe the method of generating syntax directed definition for
control Statements?

Understand 7

9 Explain procedure calls with suitable example? Understand 7

10 Explain Intermediate code generation for Basic block, Control

Flow and Boolean Expressions?

Apply 8

11 Write about Quadruple and Triple with its structure? Apply 8

12 Explain different schemes of storing name attribute in symbol

table.

Understand 9

13 Write the advantages and disadvantages of heap storage

allocation strategies?

Apply 9

14 Distinguish between static and dynamic storage allocation? Understand 4

15 Differentiate between stack and heap storage? Understand 4

16 Demonstrate semantic actions in semantic analysis Understand 4

17 Explain translations on parse tree semantic analysis Understand 4

18 Explain type checking in semantic analysis Understand 4

19 Explain symbol table management in compiler design Understand 4

20 Demonstrate hash tables by symbol table management Understand 4

PART – C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)
1 Suppose that the type of each identifier is a sub range of integers,

for expressions with operators +, -, *, div and mod, as in Pascal.

Write type-checking rules that assign to each sub expression the

sub range its value must lie in.

Understand 7

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

2 Define type expression? Write type expression for the following
type

i.Functions whose domains are functions from integers to

pointers to integers and whose ranges are records consisting of an

integer and a character.

Understand 7

3 Write an S-attributed grammar to connect the following with
prefix rotator.

L→E

E→ E+T|E-T|T

T→ T*F|T/F|F

F→ P↑F|P

P→ (E)

P→ ID

Apply 7

4 Construct triples of an expression: a *- (b + c). Apply 8

5 Explain SDD for Boolean expression with and without back

patching?

Remember

7

6 Explain why are quadruples preferred over triples in an
optimizing compiler?

Remember

8

7 Explain about reusing the storage space for names? Remember 9

8 Define self-organizing lists? How can this be used to organize a
symbol table? Explain with an example?

Apply 9

9 Discuss and analyze about all allocation strategies in run-time
storage environment?

Understand 9

10 Define activation records? Explain how it is related with run-time

storage organization?

Remember 9

11 Only one occurrence of each object is allowable at a given

moment during program execution. Justify your answer with

respect to static allocation?

Apply 9

12 Explain the use of Symbol table in compilation process? List out

various attributes stored in the symbol table?
Understand 9

13 List the advantages and disadvantages of Static storage allocation

strategies?
Understand 9

14 Explain the data structure used for implementing Symbol Table? Understand 9

15 Explain the following:

i) Static and Dynamic Checking of types

ii) Over loading of Operators & Functions

Understand

7

UNIT – IV

PART – A (SHORT ANSWER QUESTIONS)
1 Explain the principle sources of optimization? Understand 10

2 Explain the patterns used for code optimization? Understand 10

3 Define the 3 areas of code optimization? Understand 10

4 Define local optimization? Understand 10

5 Define constant folding? Understand 10

6 List the advantages of the organization of code optimizer? Understand 10

7 Define Common Sub expressions? Understand 10

8 Explain Dead Code? Understand 10

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

9 Explain the techniques used for loop optimization and Reduction

in strength?

Understand 12

10 Mention the issues to be considered while applying the techniques

for code Optimization?

Understand 12

11 List the different data flow properties? Understand 11

12 Explain inner loops? Understand 11

13 Define flow graph? Understand 11

14 Define a DAG? Mention its Apply? Understand 12

15 Define peephole optimization? Understand 12

16 Explain machine instruction for operations and copy statement? Understand 12

17 Analyze global data flow? Understand 11

18 Explain about live variable analysis? Understand 10

19 Define the term copy propagation? Understand 11

20 Explain data flow equation? Understand 11

PART – B (LONG ANSWER QUESTIONS)
1 Explain the principle sources of code optimization in detail? Understand 10

2 Explain peephole optimization? Understand 10

3 Discuss about the following

i. Copy propagation

ii. Dead code elimination

iii. Code motion

Understand 10

4 Explain in the DAG representation of the basic block with
example.

Understand 11

5 Explain Local optimization and loop optimization in detail Understand 11

6 Write about Data Flow Analysis of structural programs? Understand 12

7 Explain various Global optimization techniques in detail? Understand 12

8 Generate target code for the given program segments:

main()

{

int i=4,j;

j = i + 5;

}

Apply 11

9 Discuss algebraic simplification and reduction in strength? Understand 11

10 Explain the various source language issues? Understand 10

11 Explain in detail the issues in design of a code generator? Understand 13

12 Demonstrate the simple code generator with a suitable example? Apply 13

13 List the different storage allocation strategies? Explain. Understand 12

14 (a) Write the procedure to detect induction variable with

example?

(b) With example Explain dead code elimination?

Understand 11

15 (a) Explain how loop invariant computation can be eliminated?

(b) Explain how “Redundant sub-expression eliminates” can be

done in a given program?

Understand 11

16 Explain reachable code in code optimization Understand 11

17 Explain characteristics of peep hole optimization Understand 11

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

18 Explain depth first search in data flow analysis Understand 11

19 Explain node splitting in data flow analysis Understand 11

20 Explain depth first ordering in iterative algorithms Understand 11

PART – C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)
1 Explain how loop invariant computation can be eliminated? Apply 10

2 Describe the procedure to compute in and out values using data

flow equations for reaching definition in structured programs?

Apply

11

3 Consider the following part of code.

int main()

{

int n,k=0;

scanf(“%d”,&n);

for(i=2;i<n;i++)

{

if((n%I)==0)break;

}

k=1;

if(i==n)

printf(“number is prime”);

else

printf(“number is not printed”);

}

Identify the basic blocks in the given program & Draw the

domination tree for the program

Understand 12

4 Construct the DAG for the following basic block.

D:=B*C

E:=A+B

B:=B+C

A:=E-D

Apply 11

5 Consider the following program which counts the prime from 2 to
n using the sieve method on a suitable large array, begin read n

for i:=2 to n do

a[i]:=true

count=0;

for i:=2 to n**.5 do
if a[i]then

begin

count:=2*I to n j=j+1 do

a[j]:=false end
i. print count end

ii. Propagate out copy statements wherever possible.

iii. Is loop jamming possible? If so, do it.

iv. Eliminate the induction variables wherever possible

Apply 12

6 Write an algorithm to eliminate induction variable? Apply 10

7 Explain how the following expression can be converting in a

DAG.

a+b*(a+b)+c+d

Apply 11

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

8 State loop invariant computations? Explain how they affect the

efficiency of a program?

Understand

10

9 Explain how “Redundant sub-expression Eliminates” can be done

at global level in a given program?
Understand 10

10 Explain role of DAG in optimization with example? Understand 11

UNIT – V

PART – A (SHORT ANSWER QUESTIONS)
1 Explain about machine dependent and machine independent

optimization?
Remember

14

2 Explain the role of code generator in a compiler? Understand 13

3 Write in detail the issues in the design of code generator. Apply 13

4 Show the code sequence generated by the simple code generation

Algorithm

u := a – c

v := t + u

d := v + u//d

Apply 13

5 Explain the instructions and address modes of the target machine? Understand 14

6 Identify the register descriptor target code for the source language

statement

“(a-b) + (a-c) + (a-c);”

The 3AC for this can be written as

t := a – b

Understand 13

7 Mention the properties that a code generator should possess. Apply 13

8 Explain how do you calculate the cost of an instruction? Understand 14

9 Explain how will you map names to values? Understand 14

10 Generate the code for x: =x+1 for target machine? Understand 14

11 Explain the input taken by code generation algorithm Understand 13

12 Mention the applications of DAG Apply 13

13 Describe register descriptors in detail Understand 14

14 Describe address descriptors in detail Understand 14

15 Demonstrate global register allocation with example Understand 14

PART – B (LONG ANSWER QUESTIONS)
1 a) Explain the concept of object code forms?

b) Generate optimal machine code for the following C program.

main()

{

int i, a[10];

while (i<=10)

a[i] =0;

}

Apply 13

2 Explain Machine dependent code optimization in detail with an

example?

Understand 14

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

3 (a) Discuss various object code forms?

(b) Write a short note on code generating algorithms?

Understand 13

4 Write about target code forms and explain how the instruction
forms effect the computation time?

Understand 14

5 Consider the following basic block of 3-address instructions:

a := b + c

x := a + b

b := a – d

c := b + c

d := a – d

y := a – d

Write the next-use information for each line of the basic block?

Apply 13

6 Demonstrate register allocation by graph coloring Understand 14

7 Explain the steps involved in Dag construction Understand 14

8 Demonstrate code generation algorithm in detail Understand 14

9 Explain the principle of dynamic programming in detail Understand 14

10 Explain code generation by tree rewriting in detail Understand 14

PART – C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)
1 Explain how the instruction forms effect the computation time? Apply 13

2 Explain how the nature of the object code is highly dependent on

the machine and the operating system?

Apply 13

3 Explain why Next-use information is required for generating

object code?

Apply

14

4 Efficient code generation requires the Remember of internal

architecture of the target machine. Justify your answer with an

Example?

Understand

13

5 Generate optimal machine code for the following wing c

program.
main()

{

int i,a[10];

while(i<=10)

a[i]=0;

}

Apply 14

6 Generate 3 address code for below code

X = (a+b)- /((c+d)-e)

Apply 13

7 Generate 3 address code for below code

For(i=1;i<=10;i++)

If(a<b) then x = y + z

Apply 13

8 Generate 3 address code for below code

If a < b then

While c > d do

x = x+y

else

do

p = p+q

while e<=f

Apply 13

S. No. Questions

Bloom’s

Taxonomy

Level

Course

Outcome

9 Generate 3 address code for below code

X = 1

X = y

X = x++

Apply 13

10 Generate 3 address code for below code

main()
{

int i;

int a[10];

While(i<=0)

a[i]=0;

}

Apply 13

Prepared by: Ms B Ramyasree, Assistant Professor,

Ms N Mamatha, Assistant Professor,

Mr N Poornachandra Rao, Assistant Professor.

HOD, COMPUTER SCIENCE AND ENGINEERING

