INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

TUTORIAL QUESTION BANK

 2015-2016| Course Name | $:$ | DESIGN AND ANALYSIS OF ALGORITHMS |
| :--- | :--- | :--- |
| Course Code | $:$ | A40508 |
| Class | $:$ | II B. Tech II Semester |
| Branch | $:$ | Information Technology |
| Year | $:$ | $2016-2017$ |
| Course Faculty | $:$ | Mr. T Vishnu Vardhan Reddy Assistant Professor |

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

PART - A (SHORT ANSWER QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Program Outcome
UNIT - I			
1	Define the term algorithm and state the criteria the algorithm should satisfy.	Remember	1
2	Define order of an algorithm and the need to analyze the algorithm.	Remember	2
3	Define asymptotic notations: big 'Oh', omega and theta?	Remember	2
4	List the two different types of recurrence	Remember	4
5	State the best case and worst case analysis for linear search	Remember	7
6	If $f(n)=5 n^{2}+6 n+4$, then prove that $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$	Remember	3
7	Give the recurrence equation for the worst case behavior of merge sort.	Remember	7
8	Compute the average case time complexity of quick sort	Remember	7
9	Define algorithm correctness	Remember	3
10	Describe best case, average case and worst case efficiency of an algorithm?	Remember	3
11	Explain the term amortized efficiency	Understand	3
12	Define order of growth	Remember	2
13	How do you measure the algorithm running time?	Understand	1

S. No	Question	\qquad	Program Outcome
14	Describe the role of space complexity and time complexity of a program are necessary?	Understand	1
15	Explain algorithm design technique?	Understand	3
16	Use step count method and analyze the time complexity when two $n \times n$ matrices are added	Apply	3
17	What is meant by divide and conquer? Give the recurrence relation for divide and conquer.	Understand	7
18	Define Control Abstraction and write the computing time of divide and conquer.	Remember	7
19	List out any two drawbacks of binary search algorithm.	Remember	7
20	List out the drawbacks of Merge Sort algorithm.	Remember	7
UNIT - II			
1	Describe union operation on sets	Remember	5
2	Describe find operation on sets	Remember	5
3	Definea spanning tree and minimal spanning tree	Remember	6
4	Define depth first search	Remember	5
5	Define breadth first search	Remember	5
6	Differentiate Breadth first search and depth first search	Remember	5
7	Describe AND/OR graph	Remember	5
8	Explain game tree	Remember	5
9	Define an articulation point?	Remember	5
10	Define aconnected and bi-connected component.	Remember	5
UNIT - III			
1	Define greedy method	Remember	8
2	Define job sequencing with deadlines problem	Remember	8
3	Define minimum cost spanning tree	Remember	8
4	State the principle of optimality	Remember	8
5	Define prims algorithm	Remember	8
6	Definekruskal algorithm	Remember	8
7	Define single source shortest path problem	Remember	8
8	Define dynamic programming.	Remember	8
9	List the features of dynamic programming	Remember	8
10	Distinguish greedy method and dynamic programming	Remember	8,9
UNIT - IV			
1	State the principle of Backtracking	Remember	10
2	Write control abstraction for backtracking	Apply	10
3	List the applications of backtracking?	Remember	10
4	Define a dead node	Remember	10
5	Differentiate live node and dead node	Remember	10
6	Define state space tree	Remember	10
7	Define is solution space	Remember	10
8	Define solution states and answer state?	Remember	10

S. No	Question	Blooms Taxonomy Level	Program Outcome
9	Explain 8 - Queens problem	Apply	10
10	Explain Sum of Subsets problem	Apply	10
UNIT - V			
1	Define class P	Remember	12
2	Compare NP-hard and NP-completeness	Remember	12
3	Define NP- hard problem	Remember	12
4	Define NP-complete problem	Remember	12
5	Define deterministic problem?	Remember	12
6	Define non-deterministic problem	Remember	12
7	Define a decision problem?	Remember	12
8	Explain optimization problem	Understand	12
9	Explainmaxclique problem?	Understand	12
10	Define halting problem	Remember	12

PART - B (LONGANSWER QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Program Outcome
UNIT - I			
1	Discuss various the asymptotic notations used for best case average case and worst case analysis of algorithms.	Understand	1
2	Differentiate between priori analysis and posteriori analysis.	Understand	3
3	Discussbinary search algorithm and analyze its time complexity	Understand	7
4	Explain quick sort algorithm and simulate it for the following data 20, $35,10,16,54,21,25$	Understand	7
5	Explain Iterative binary search algorithm	Understand	7
6	Illustratemerge sort algorithm and discuss time complexity	Understand	7
7	Describestrassen's matrix multiplication.	Understand	7
8	Discussamortized analysis	Understand	3
9	Explain probabilistic analysis	Understand	3
10	Sort the list of numbers using merge sort: $78,32,42,62,98,12,34,83$	apply	7
UNIT - II			
1	Explain breadth first search algorithm with example	Understand	5
2	Explain depth first search algorithm with example	Understand	5
3	Discuss various tree traversal techniques with examples	Understand	5
4	Compare and contrast BFS and DFS.	Understand	5
5	Explain in detail about AND/OR graphs	Understand	5
6	Explain waiting rule for finding UNION of sets and collapsing rule	Understand	5
7	Differentiate divide and conquer and greedy method	Understand	8,9
8	Discuss game trees	Understand	5

UNIT - III			
1	Explain in detail job sequencing with deadlines problem with example	Apply	8
2	Explain single source shortest path problem with example	Apply	8
3	Explain knapsack problem with example	Apply	8
4	Explain prims algorithm with example	Understand	8
5	Explainkruskal algorithm with example	Understand	8
6	Explain the concept multistage graphs with example.	Understand	8
7	Explain optimal binary search tree algorithm with example	Understand	8
8	Explain 0/1 knapsack problem with example	Understand	8
9	Explain all pairs shortest path problem with example	Understand	8
10	Describe the travelling salesman problem and discuss how to solve it using dynamic programming?	Understand	9
UNIT - IV			
1	Write an algorithm for N-queens problem using backtracking	Apply	11
2	Explain subset-sum problem and discuss the possible solution strategies using backtracking.	Apply	10
3	Describe graph coloring problem and write an algorithm for m -coloring problem	Understand	10
4	Write an algorithm for Hamiltonian cycle with an example	Apply	10
5	Explain properties of LC search	Apply	11
6	Describe control abstraction for LC Search	Understand	11
7	Explain principle of FIFO branch and bound	Apply	11
8	Explain principle of LIFO branch and bound	Apply	11
9	Explain the method of reduction to solve travelling sales person problem using branch and bound	Apply	11
10	Explain TSP using branch and bound method with example	Apply	11
UNIT - V			
1	State and prove cook's theorem	Remember	12
2	Explain deterministic and non-deterministic algorithms	Apply	12
3	Write non deterministic algorithm for sorting and searching	Apply	12
4	Write a non-deterministic knapsack algorithm	Apply	12
5	Explainhow P and NP problems are related	Apply	12
6	Distinguish NP- hard and NP-complete problems	Understand	12
7	Explain decision problem with an example	Apply	12
8	Explain chromatic number decision problem and clique decision problem	Apply	12
9	Explain the strategy to prove that a problem is NP-hard	Apply	12
10	Explain intractable problems with examples	Apply	12

PART - C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Program Outcome
UNIT - I			
1	Solve the following recurrence relation	Understand	4

4|Page

S. No	Question	$\begin{gathered} \text { Blooms } \\ \text { Taxonomy Level } \\ \hline \end{gathered}$	Program Outcome
	$T(n)=\left\{2 T\left(\frac{n}{2}\right)+n, \quad\right.$ and $T(1)=2$		
2	Solve the following recurrence relation $\mathrm{T}(\mathrm{n})=7 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}^{2}$	Understand	4
3	Solve the recurrence relation $T(n)=\left\{\begin{aligned} k, & n=1 \\ 3 T\left(\frac{n}{2}\right)+k n, & n>1, \quad n \text { is powerof } 2 \end{aligned}\right.$	Understand	4
4	Explain quick sort algorithm and simulate it for following data sequence: 359714682	Apply	7
5	Sort the list of numbers using merge sort $33,44,2,10,25,79,86,47,14,36$	Understand	7
6	Show that the average case time complexity of quick sort is O(nlogn)	Apply	7
7	Understand merge sort on letters H, K, P,C,S,K,R,A,B,L	Understand	7
8	Understandstrassen's matrix multiplication on following matrices $\left[\begin{array}{cc} 4 & 5 \\ 5 & 9 \end{array}\right],\left[\begin{array}{cc} 2 & 10 \\ 1 & 6 \end{array}\right]$	Understand	7
9	Write and solve recurrence relation for strassen's matrix multiplication	Apply	7
10	Solve the following recurrence relation $T(n)=\left\{2 T\left(\frac{n}{2}\right)+1, \quad \text { and } T(1)=2\right.$	Understand	4
UNIT - II			
1	Illustrate BFS traversal of following graph	Understand	5
2	List the articulation points from the following graph	Understand	5
3	Writeinorder, preoreder, post order traversal of the following tree	Understand	5

S. No	Question	Blooms Taxonomy Level	Program Outcome
4	Illustrate DFS and BFS traversals of following graph	Understand	5
5	Illustrate DFS traversal of following graph	Understand	5
6	Illustrate BFS traversal of following graph	Understand	5
7	List the articulation points from the following graph	Understand	5
8	Writeinorder, preorder, post order traversal of the following tree	Understand	5

S. No	Question	Blooms Taxonomy Level	Program Outcome
9	Illustrate BFS and DFS traversals of following graph	Understand	5
10	Illustrate DFS traversal of following graph	Understand	5
UNIT - III			
1	Compute the optimal solution for job sequencing with deadlines using greedy method. $\mathrm{N}=4$, profits ($\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(100,10,15,27)$, Deadlines (d1, d2,d3,d4) $=(2,1,2,1)$	Understand	8
2	Compute the optimal solution for knapsack problem using greedy methodN=3, $\mathrm{M}=20$, (p1,p2,p3)=(25,24,15), (w1,w2,w3) $=(18,15,10)$	Understand	8
3	Construct minimum cost spanning tree using a) prims algorithm b) kruskal algorithm	Understand	8
4	Apply single source shortest path algorithm for the following graph	Apply	8
5	Use optimal binary search tree algorithm and compute wij, cij, rij, $\begin{aligned} & 0<=\mathrm{i}<=\mathrm{j}<=4, \mathrm{p} 1=1 / 10, \mathrm{p} 2=1 / 5, \mathrm{p} 3=1 / 10, \mathrm{p} 4=1 / 120, \mathrm{q} 0=1 / 5, \mathrm{q} 1=1 / 10, \\ & \mathrm{q} 2=1 / 5, \mathrm{q} 3=1 / 20, \mathrm{q} 4=1 / 20 . \end{aligned}$	Understand	9
6	Construct optimal binary search for (a1, a2, a3, a4) $=(\mathrm{do}$, if,int, while), $p(1: 4)=(3,3,1,1) \quad q(0: 4)=(2,3,1,1,1)$	Understand	9

7 |Page

S. No	Question	Blooms Taxonomy Level	Program Outcome
7	Solve the solution for $0 / 1$ knapsack problem using dynamic $\operatorname{programming}(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(11,21,31,33),(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(2,11$, $22,15), \mathrm{M}=40, \mathrm{n}=4$	Apply	9
8	Solve the solution for 0/1 knapsack problem using dynamic programming $\mathrm{N}=3, \mathrm{~m}=6$ profits $(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3)=(1,2,5)$ weights $(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3)=(2,3,4)$	Apply	9
9	Find the shortest tour of traveling sales person for the following cost matrix using dynamic Programming $\left[\begin{array}{cccc} \infty & 12 & 5 & 7 \\ 11 & \infty & 13 & 6 \\ 4 & 9 & \infty & 18 \\ 10 & 3 & 2 & \infty \end{array}\right]$	Understand	9
10	Calculate shortest distances using all pairs shortest path algorithm	Understand	9
UNIT - IV			
1	Sketch the state space tree degenerated by 4 queens problem	Understand	10
2	Apply the backtracking algorithm to solve the following instance of the sum of subsets problem $S=\{5,10,12,13,15,18\}$ and $d=30$	Understand	10
3	Sketch the state space tree generated all possible 3-color,4-node graph	Understand	10
4	Identify Hamiltonian cycle from the following graph	Understand	10
5	Solve the following instance of travelling sales person problem using Least Cost Branch Bound	Understand	11

S. No	Question	Blooms Taxonomy Level	Program Outcome
	$\left[\begin{array}{cccc} \infty & 12 & 5 & 7 \\ 11 & \infty & 13 & 6 \\ 4 & 9 & \infty & 18 \\ 10 & 3 & 2 & \infty \end{array}\right]$		
6	Draw the portion of state space tree generated by LCBB by the following knapsack problem $\mathrm{n}=5,(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5)=(10,15,6,8,4)$, (w1,w2,w3,w4,w5)=(4,6,3,4,2) and m=12	Understand	11
7	Draw the portion of state space tree generated by FIFO knapsack for the instance $\mathrm{N}=4,(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4)=(10,10,12,18),(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=($ $2,4,6,9$) , m=15	Understand	11
8	Solve the following instance of travelling sales person problem using Least Cost Branch Bound	Understand	11
9	Identify Hamiltonian cycle from the following graph	Understand	10
10	Apply the backtracking algorithm to color the following graph	Understand	10

S. No	Question	Blooms Taxonomy Level	Program Outcome
UNIT - V			
1	Show that satisfiability is at most three literals reduces to chromatic number	Remember	12
2	Prove Hamiltonian cycle is in NP	Understand	12
3	Prove circuit-SAT is in NP	Understand	12
4	List two problems that have polynomial time algorithms justify your answer	Understand	12
5	Explain 3CNF satisfiability problem	Remember	12
6	Explain P type problems with examples	Remember	12

HOD, INFORMATION TECHNOLOGY

