

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

TUTORIAL QUESTION BANK 2016 - 2017

Course Name	:	DESIGN AND ANALYSIS OF ALGORITHMS	
Course Code	:	A40508	
Class	:	II B. Tech II Semester	
Branch	:	Computer Science and Engineering	
Year	:	2016 – 2017	
Course Faculty : Dr. L V Narasimha Prasad Professor, Mr. Y Subba Rayudu Assista		Dr. L V Narasimha Prasad Professor, Mr. Y Subba Rayudu Assistant	
		Professor Mrs. G.Vasavi Assistant Professor.	

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

PART – A (SHORT ANSWER QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Program Outcome
	UNIT – I		
1	Define the term algorithm and state the criteria the algorithm should satisfy.	Knowledge	1
2	Write order of an algorithm and the need to analyze the algorithm.	Knowledge	2
3	Define asymptotic notations: big 'Oh', omega and theta?	Knowledge	2
4	List the two different types of recurrence	Knowledge	4
5	State the best case and worst case analysis for linear search	Knowledge	7
6	If $f(n)=5n^2+6n+4$, then prove that $f(n)$ is $O(n^2)$	Apply	3
7	Give the recurrence equation for the worst case behavior of merge sort.	Knowledge	7
8	Compute the average case time complexity of quick sort	Apply	7
9	Define algorithm correctness	Knowledge	3
10	Describe best case, average case and worst case efficiency of an algorithm?	Understand	3
11	Explain the term amortized efficiency	Understand	3

S. No	Question	Blooms	Program
		Taxonomy	Outcome
		Level	
12	Define order of growth	Knowledge	2
13	How do you measure the algorithm running time?	Understand	1
14	Describe the role of space complexity and time complexity of a program ?	Knowledge	1
15	Explain algorithm design technique?	Understand	3
16	Use step count method and analyze the time complexity when two n×n matrices are added	Apply	3
17	What is meant by divide and conquer? Give the recurrence relation for	Understand	7
17	divide and conquer.	Onderstand	,
18	Define Control Abstraction and write the computing time of divide and	Knowledge	7
	conquer.		
19	List out any two drawbacks of binary search algorithm.	Knowledge	7
20	What are the drawbacks of Merge Sort algorithm.	Knowledge	7

PART – B (LONGANSWER QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Program Outcome
1	Discuss various the asymptotic notations used for best case average case and worst case analysis of algorithms.	Understand	1
2	Differentiate between priori analysis and posteriori analysis.	Understand	3
3	Write binary search algorithm and analyze its time complexity	Understand	7
4	Explain quick sort algorithm and simulate it for the following data 20, 35, 10, 16, 54, 21, 25	Apply	7
5	Discuss Iterative binary search algorithm	Understand	7
6	Illustrate merge sort algorithm and discuss time complexity	Understand	7
7	Describe strassen's matrix multiplication.	Understand	7
8	Explain amortized analysis	Understand	3
9	Explain probabilistic analysis	Understand	3
10	Sort the list of numbers using merge sort: 78, 32, 42, 62, 98, 12, 34, 83	Apply	7

PART – C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Program Outcome
1	Solve the following recurrence relation	Apply	4
	$T(n) = \left\{2T\left(\frac{n}{2}\right) + n, and \ T(1) = 2\right\}$		
2	Solve the following recurrence relation $T(n) = 7T(n/2) + cn^2$	Apply	4
3	Solve the recurrence relation $T(n) = \begin{cases} k, & n = 1 \\ 3T(\frac{n}{2}) + kn, & n > 1, & n \text{ is power of } 2 \end{cases}$	Apply	4
4	Explain quick sort algorithm and simulate it for following data sequence: 3 5 9 7 1 4 6 8 2	Apply	7
5	Sort the list of numbers using merge sort 33, 44, 2, 10, 25, 79, 86, 47, 14, 36	Apply	7
6	Show that the average case time complexity of quick sort is O(nlogn)		7

S. No	Question	Blooms Taxonomy Level	Program Outcome
7	Apply merge sort on letters H, K, P,C,S,K,R,A,B,L	Apply	7
8	Apply strassen's matrix multiplication on following matrices $\begin{bmatrix} 4 & 5 \\ 5 & 9 \end{bmatrix}, \begin{bmatrix} 2 & 10 \\ 1 & 6 \end{bmatrix}$	Apply	7
9	Write and solve recurrence relation for strassen's matrix multiplication	Apply	7
10	Solve the following recurrence relation $T(n) = \left\{2T\left(\frac{n}{2}\right) + 1, and \ T(1) = 2\right\}$	Apply	4
	UNIT-II		
PART -	- A (SHORT ANSWER QUESTIONS)		
S.No	Question	Blooms Taxonomy Level	Program Outcome
1	Discuss about union operation on sets	Knowledge	5
2	Describe find operation on sets	Knowledge	5
3	Define spanning tree and minimal spanning tree	Knowledge	6

S.No	Question	Blooms Taxonomy	Program Outcome
		Level	
1	Discuss about union operation on sets	Knowledge	5
2	Describe find operation on sets	Knowledge	5
3	Define spanning tree and minimal spanning tree	Knowledge	6
4	What do mean by depth first search	Knowledge	5
5	Define breadth first search	Knowledge	5
6	Differentiate Breadth first search and depth first search	Analyze	5
7	Describe AND/OR graph	Knowledge	5
8	Explain game tree	Understand	5
9	Define an articulation point?	Knowledge	5
10	Define a connected and bi-connected component.	Knowledge	5

PART – B (LONGANSWER QUESTIONS)

S.No	Question	Blooms Taxonomy Level	Program Outcome
1	Write an algorithm for breadth first search. Give example	Understand	5
2	Explain depth first search algorithm with example	Understand	5
3	Discuss various tree traversal techniques with examples	Understand	5
4	Compare and contrast BFS and DFS.	Analyze	5
5	Explain in detail about AND/OR graphs	Understand	5
6	Discuss about weighting rule for finding UNION of sets and collapsing rule	Understand	5
7	Differentiate divide and conquer and greedy method	Understand	6,7
8	Discuss game trees	Understand	5
DADT	CODODIEM SOLVING AND ODITICAL THINKING OLIESTI	ONC)	

PART – C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)

1	Solve BFS traversal of following graph		
		Understand	5

S. No	Question	Blooms Taxonomy Level	Program Outcome
		20,02	
	2 3 4		
	S 9 0		
2	List the articulation points from the following graph		5
2		Understand	3
	2 3——5		
	6		
3	Write inorder, preoreder, post order traversal of the following tree	Understand	5
	8		
	(9) (7) (11)		
	1 2 3		
	2		
4	Apply DFS and BFS traversals of following graph	Understand	5
	(A) (D)		
	b		
5	Illustrate DFS traversal of following graph	Understand	5
3	mustrate Dr's traversar or ronowing graph	Onderstand	,
	2 3 4		
	of of the		
	8		
6	Apply BFS traversal of following graph	Understand	5

S. No	Question	Blooms Taxonomy Level	Program Outcome
	B D E		
7	List the articulation points from the following graph 1 2 5	Understand	5
8	Write inorder, preorder, post order traversal of the following tree B C H I	Understand	5
9	Illustrate BFS and DFS traversals of following graph 1 2 5	Understand	5
10	Apply DFS traversal of following graph B C F	Understand	5

S. No	Question	Blooms Taxonomy Level	Program Outcome
	UNIT-III	Level	
DADT	A (SHORT ANSWER QUESTIONS)		
IAKI -	A (SHORT ANSWER QUESTIONS)		
1	Define greedy method	Knowledge	8
2	What is job sequencing with deadlines problem	Knowledge	8
3	Define minimum cost spanning tree	Knowledge	8
4	State the principle of optimality	Knowledge	8
5	State prims algorithm	Knowledge	8
6	Explain kruskals algorithm	Knowledge	8
7	Define single source shortest path problem	Knowledge	8
8	What is dynamic programming.	Knowledge	8
9	List the features of dynamic programming	Understand	8
10	Distinguish greedy method and dynamic programming	Analyze	8,9
PART -	B (LONGANSWER QUESTIONS)		
1	Explain in detail job sequencing with deadlines problem with an example	Apply	8
2	Discuss single source shortest path problem with example	Apply	8
3	Write an algorithm knapsack problem .Give example	Apply	8
4	Explain prims algorithm with an example	Understand	8
5	Discuss kruskals algorithm with an example	Understand	8
6	Explain the concept multistage graphs with example.	Apply	8
7	Write an algorithm for optimal binary search tree Give example	Apply	8
8	Explain 0/1 knapsack problem with example	Understand	8
9	Discuss all pairs shortest path problem with an example	Understand	8
10	Describe the travelling salesman problem and discuss how to solve it using dynamic programming?	Understand	9
PART -	C (PROBLEM SOLVING AND CRITICAL THINKING QUESTION)	ONS)	
1	Compute the optimal solution for job sequencing with deadlines using greedy method. N=4, profits $(p1,p2,p3,p4) = (100,10,15,27)$, Deadlines $(d1,d2,d3,d4) = (2,1,2,1)$	Apply	8
2	Compute the optimal solution for knapsack problem using greedy methodN=3, M= 20, (p1,p2,p3)= (25,24,15), (w1,w2,w3) =(18,15,10)	Apply	8
3	Construct minimum cost spanning tree using a) prims algorithm b) kruskal algorithm	Apply	8
	3 1		

S. No	Question	Blooms Taxonomy Level	Program Outcome
4	Apply single source shortest path algorithm for the following graph	Apply	8
	2 0		
5	Use optimal binary search tree algorithm and compute wij, cij, rij, 0<=i<=j<=4,p1=1/10, p2=1/5, p3=1/10, p4=1/120, q0=1/5, q1=1/10, q2=1/5, q3=1/20,q4=1/20.	Apply	8
6	Construct optimal binary search for (a1, a2, a3, a4) = (do, if,int, while), $p(1:4) = (3,3,1,1)$ $q(0:4) = (2,3,1,1,1)$	Apply	9
7	Solve the solution for 0/1 knapsack problem using dynamic programming(p1,p2,p3, p4) = (11, 21, 31, 33), (w1, w2, w3, w4) = (2, 11, 22, 15), M=40, n=4	Apply	9
8	Solve the solution for 0/1 knapsack problem using dynamic programming N=3, m=6 profits (p1,p2,p3) = (1,2,5) weights (w1,w2,w3) = (2,3,4)	Apply	9
9	Find the shortest tour of traveling sales person for the following cost matrix using dynamic Programming $ \begin{bmatrix} \infty & 12 & 5 & 7 \\ 11 & \infty & 13 & 6 \\ 4 & 9 & \infty & 18 \\ 10 & 3 & 2 & \infty \end{bmatrix} $	Apply	9
10	Calculate shortest distances using all pairs shortest path algorithm	Apply	9
UNIT-IV			

PART – A (SHORT ANSWER QUESTIONS)

1	State the principle of Backtracking	Remember	10
2	Write control abstraction for backtracking	Apply	10
3	List the applications of backtracking?	Remember	10

S. No	Question	Blooms Taxonomy Level	Program Outcome
4	Define a dead node	Knowledge	10
5	Differentiate live node and dead node	Knowledge	10
6	Define state space tree	Knowledge	10
7	What do mean by solution space	Knowledge	10
8	Define solution states and answer state?	Knowledge	10
9	Explain 8 – Queens problem	Understand	10
10	Define Sum of Subsets problem	Understand	10
PART -	- B (LONGANSWER QUESTIONS)		1
1	Write an algorithm for N-queens problem using backtracking	Apply	11
2	Explain subset-sum problem and discuss the possible solution strategies using backtracking.	Apply	10
3	Describe graph coloring problem and write an algorithm for m-coloring problem	Understand	10
4	Write an algorithm for Hamiltonian cycle with an example	Apply	10
5	Explain the properties of LC search	Apply	11
6	Describe control abstraction for LC Search	Understand	11
7	Explain the principle of FIFO branch and bound	Apply	11
8	Discuss principle of LIFO branch and bound	Apply	11
9	Explain the method of reduction to solve travelling sales person problem using branch and bound	Apply	11
10	Solve TSP using branch and bound method with example	Apply	11
PART -	- C (PROBLEM SOLVING AND CRITICAL THINKING QUESTI	ONS)	I
1	Sketch the state space tree degenerated by 4 queens problem	Understand	10
2	Apply the backtracking algorithm to solve the following instance of the sum of subsets problem S={5,10,12,13,15,18} and d=30	Apply	10
3	Sketch the state space tree generated all possible 3-color,4-node graph 1 2 3 4	Apply	10
4	Identify Hamiltonian cycle from the following graph V ₅ V ₄ V ₂	Understand	10
5	Solve the following instance of travelling sales person problem using Least Cost Branch Bound	Apply	11

S. No	Question	Blooms Taxonomy Level	Program Outcome
	$ \begin{bmatrix} \infty & 12 & 5 & 7 \\ 11 & \infty & 13 & 6 \\ 4 & 9 & \infty & 18 \\ 10 & 3 & 2 & \infty \end{bmatrix} $		
6	Draw the portion of state space tree generated by LCBB by the following knapsack problem n=5, (p1,p2,p3,p4,p5) =(10,15,6, 8, 4), (w1,w2,w3,w4,w5)=(4,6,3,4,2) and m=12	Understand	11
7	Draw the portion of state space tree generated by FIFO knapsack for the instance N=4, (P1, P2, P3, P4)= (10, 10, 12, 18), (w1, w2,w3,w4) = (2, 4, 6, 9), m=15	Understand	11
8	Solve the following instance of travelling sales person problem using Least Cost Branch Bound 5 4 3 4 5 8	Apply	11
9	A C F E	Understand	10
10	Apply the backtracking algorithm to color the following graph Apply the backtracking algorithm to color the following graph B C	Understand	10

	UNIT-V		
PART -	- A (SHORT ANSWER QUESTIONS)		
S. No	Question	Blooms Taxonomy Level	Program Outcome
1	Define class P	Knowledge	12
2	Compare NP-hard and NP-completeness	Knowledge	12
3	Define NP- hard problem	Knowledge	12
4	What are NP-complete problem	Knowledge	12
5	Define deterministic problem?	Knowledge	12
6	Define non-deterministic problem	Knowledge	12
7	What is a decision problem?	Knowledge	12
8	Explain optimization problem	Understand	12
9	Define maxclique problem?	Understand	12
10	Define halting problem	Knowledge	12
1	State and prove cook's theorem	Apply	12
2	State and prove cook's theorem Explain deterministic and non deterministic elegations.	Apply Apply	12
3	Explain deterministic and non-deterministic algorithms Write non deterministic algorithm for sorting and searching	Understand	12
4	Discuss about non-deterministic knapsack algorithm	Apply	12
5	Explain how P and NP problems are related	Understand	12
6	Distinguish NP- hard and NP-complete problems	Understand	12
7	Explain decision problem with an example	Apply	12
8	What is chromatic number decision problem and clique decision problem	Apply	12
9	Explain the strategy to prove that a problem is NP-hard	Apply	12
10	Discuss various intractable problems give examples	Understand	12
PART -	- C (PROBLEM SOLVING AND CRITICAL THINKING QUES	TIONS)	
1	Show that satisfiability is at most three literals reduces to chromatic number	Understand	12
2	Prove Hamiltonian cycle is in NP	Apply	12
3	Prove circuit-SAT is in NP	Apply	12
4	List two problems that have polynomial time algorithms justify your answer	Understand	12
5	Explain 3CNF satisfiability problem	Understand	12
6	Discuss P type problems with examples	Understand	12

HOD-CSE