INSTITUTEOFAERONAUTICALENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043
COMPUTER SCIENCE AND ENGINEERING
TUTORIAL QUESTION BANK

Course Name	DIGITAL LOGIC DESIGN
Course Code	A30401
Class	II B. Tech I Sem
Branch	Computer Science Engineering
Year	$2016-17$
Course Coordinator	Ms. C.Deepthi, Assistant Professor, ECE
Course Faculty	Mr. C.Srihari, Assistant Professor, ECE Ms. Parvathy Sreekumar, Assistant Professor, ECE Mr. R.Gangadhar Reddy, Assistant Professor, ECE

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No	QUESTION UNIT-I DIGITAL SYSTEMS	Blooms Taxonomy Level	Course Outcome
Part - A (Short Answer Questions)			
1	Write short notes on binary number systems?	Understand	1
2	Discuss 1's and 2's complement methods of subtraction?	Understand	1
3	Discuss octal number system?	Understand	1
4	State and prove transposition theorem?	Knowledge	1
5	Explain how do you convert AOI logic to NAND logic?	Understand	2
	Write a short note on five bit BCD codes?	Understand	2

7	Explain the specialty of unit-distance code? State where they are used?	Understand	2
8	Write a short note on error correcting codes?	Understand	2
9	State and prove De-Morgan theorem?	Knowledge	3
10	Discuss what a logic design is and what do u mean by positive logic system?	Understand	2
11	Convert (4085)9 into base-5?	Understand	1
12	Write the first 20 decimal digits in base 3?	Understand	1
13	Write the steps involved in unsigned binary subtraction using complements with examples?	Understand	2
14	Explain the addition of two signed binary number along with examples?	Understand	2
15	Differentiate between binary code and BCD code?	Understand	3
16	Explain how binary values are stored in memory?	Understand	2
17	Write the Axiomatic Definitions of Boolean Algebra?	Understand	3
18	Write a table stating all the postulates and theorems of Boolean Algebra that are required for logic minimization?	Understand	3
19	Convert $f(x)=x+y^{\prime} z$ into canonical form?	Understand	3
20	State and prove idempotent laws of Boolean algebra?	Knowledge	3
Part - B (Long Answer Questions)			
1	a) Solve the subtraction with the following unsigned binary numbers by taking the 2 's complement of the subtrahend: i. $100-110000$ ii. 11010-1101. b) Construct a table for 4-3-2-1 weighted code and write 9154 using this code .Write short notes on binary number systems.	Apply	2
2	a) Solve arithmetic operation indicated below. Follow signed bit notation: i. $001110+110010$ ii. 101011-100110. b) Explain the importance of gray code?	Apply	
3	Solve (3250-72532)10using 10's complement?	Apply	
4	As part of an aircraft's functional monitoring system, a circuit is required to indicate the status of the landing gears prior to landing. Green LED display turns on if all three gears are properly extended	Understand	1

\begin{tabular}{|c|c|c|c|}
\hline \& when the \gear down" switch has been activated in preparation for landing. Red LED display turns on if any of the gears fail to extend properly prior to landing. When a landing gear is extended, its sensor produces a LOW voltage. When a landing gear is retracted, its sensor produces a HIGH voltage. Design a circuit to meet this requirement? \& \&

\hline 5. \& | Solve (a) Divide 01100100 by 00011001 |
| :--- |
| (b) Given that (292) $10=(1204) \mathrm{b}$ determine ${ }^{`} \mathrm{~b}^{\prime}$ | \& Apply \& 1

\hline 6. \& | Solve (a) What is the gray code equivalent of the Hex Number 3A7 |
| :--- |
| (b) Find the biquinary number code for the decimal numbers from |
| 0 to 9 |
| (c) Find 9's complement (25.639)10 | \& Apply \& 1

\hline 7. \& | Solve (a) Find (72532-03250) using 9's complement. |
| :--- |
| (b) Show the weights of three different 4 bit self complementing |
| codes whose only negative weight is -4 and write down number system from 0 to 9. | \& Apply \& 1

\hline 8. \& | Decimal system became popular because we have 10 fingers. A rich person On earth has decided to distribute Rs. one lakh equally to the following persons from various planets. Find out the amount each one of them will get in their respective currencies: |
| :--- |
| A from planet VENUS possessing 8 fingers |
| B from planet MARS possessing 6 fingers |
| C from planet JUPITER possessing 14 fingers |
| D from planet MOON possessing 16 fingers | \& Apply \& 1

\hline 9. \& State and prove any 4 Boolean theorems with examples? \& Knowledge \& 3

\hline 10. \& | Solve |
| :--- |
| a) Simplify to a sum of 3 terms: $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{AC}^{\prime}+\mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ |
| b) Given $\mathrm{AB}^{\prime}+\mathrm{AB}=\mathrm{C}$, Show that $\mathrm{AC}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}=\mathrm{B}$ | \& Apply \& 4

\hline 11 \& Convert 10101101.0111 to octal equivalent and hexadecimal equivalent? \& Understand \& 1

\hline 12 \& Apply the representation of +65 and -65 in sign magnitude, Sign 1's complement and sign 2's complement representation? \& Apply \& 1

\hline 13 \& State different ways for representing the signed binary numbers? \& Knowledge \& 2

\hline 14 \& Solve addition and subtraction of (456)8 and (341)8? \& Apply \& 1

\hline 15 \& Define weighted codes and non weighted codes with examples? \& Knowledge \& 1

\hline
\end{tabular}

16	Explain what do you mean by error detecting and correcting codes?	Understand	3
17	Illustrate the rules for XS3 addition and subtraction?	Apply	2
18	Explain error occurred in the data transmission can be detected using parity bit?	Understand	3
19	Illustrate IEEE standard floating formats for 32-bit and 64 bit with following examples?	Apply	1
20	Explain the truth tables of X-OR, NAND and NOR gates?	Understand	2
	Part - C (Problem Solving and Critical Thinking Questions)		
1.	In a 32 bit computer, what are the maximum and minimum possible binary numbers? Convert these into maximum and minimum possible positive decimal numbers?	Understand	1
2.	Convert the octal numbers into binary,decimal,BCD and Hexadecimal numbers (3600)octal,(1200)octal,(0200)octal,(0777)octal.	Understand	1
3.	Convert the decimal numbers into binary, BCD and Hexadecimal numbers (3600)d, (1200)d, (0200)d, (0777)d.	Understand	1
4.	Suppose you have a cheque for RS.10000/-.what is the number system used? Define base system used and what are the weights of the digits $1,0,0,0,0$ and 0 now?	Knowledge	1
5.	Illustrate why is (0.5252)octal twice of (0.2525)octal when (0.5050)d is twice of $(0.2525) \mathrm{d}$.	Apply	1
6.	write the octal Representation of the following fractional numbers: $(0.5) \mathrm{d},(1.5) \mathrm{d},(2.333) \mathrm{d},(3.875) \mathrm{d},(13.125) \mathrm{d},(14.666) \mathrm{d}$.	Understand	1
7.	Find the illegal Representation in the following: $(120 \mathrm{~A}) \mathrm{d}$, $(1010011) \mathrm{BCD},(0208)$ octal, $(10102011) \mathrm{b},(\mathrm{GC} 0 \mathrm{~A}) \mathrm{h}$.	Understand	1
8.	Convert the binary number to hexadecimal number: $0100001011010011,010110101001111 .$	Understand	1
9.	Convert the hexadecimal number to binary number: 0x5A9F, 42D3.	Understand	1
10	Understand by two examples that two's compliment of a number taken twice returns the original number?	Understand	2

UNIT-II			
Part - A (Short Answer Questions)			
1	Define K-map? Name its advantages and disadvantages?	Knowledge	5
2	Write the block diagram of 2-4 and 3-8 decoders?	Understand	8
3	Define magnitude comparator?	Knowledge	5
4	Describe what do you mean by look-ahead carry?	Understand	5
5	Summarize the Boolean function $\mathbf{x}^{\prime} \mathbf{y z}+\mathbf{x}^{\prime} \mathbf{y z}^{\prime}+\mathrm{xy}^{\prime} \mathbf{z}^{\prime}+\mathrm{xy}^{\prime} \mathbf{z u s i n g} \mathrm{K}$ map?	Understand	4
6	Explain how combinatorial circuits differ from sequential circuits?	Understand	5
7	Explain what are the IC components used to design combinatorial circuits with MSI and LSI?	Understand	5
8	Design the two graphic symbols for NAND gate?	Understand	6
9	Design the two graphic symbols for NOR gate?	Understand	6
10	Summarize the Boolean function $x^{\prime} y z+x^{\prime} y^{\prime}+x y^{\prime} z^{\prime}+x y^{\prime} z w i t h o u t$ using K- map?	Understand	4
11	Explain the properties of EX-OR gate?	Understand	6
12	Solve the function of fig with AND-OR INVRET implementations?	Apply	4
13	Solve the following using NAND gates? a) $(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})$ b) $A \cdot B+C D\left(A B^{1}+C D\right)$	Apply	4
14	Sketch the following equation using k-map and realize it using NAND gate? $\mathrm{Y}=\sum \mathrm{m}(4,5,8,9,11,12,13,15)$	Apply	5
15	Solve $\mathbf{Y}=\mathbf{A B}{ }^{\mathbf{I}}+\mathbf{C D}+\left(\mathbf{A}^{\text {I }} \mathbf{B}+\mathbf{C}^{\text {l }} \mathbf{D}^{\mathbf{I}}\right)$ using NAND gate?	Apply	4
16	State that AND-OR network is equivalent to NAND-NAND network?	Knowledge	4

17	Show both NAND and NOR gates are called Universal gates?	Apply	4
18	Sketch the following logic function using k-map and implement it using logic gates? $\mathrm{Y}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,3,4,7,8,9,10,11,12,14)$	Apply	5
19	Summarize the rules and limitations of K-map simplification?	Understand	5
20	Analyze the steps for simplification of POS expression?	Apply	4
Part - B (Long Answer Questions)			
1.	A combinational circuit has 4 inputs(A,B,C,D) and three outputs($\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \mathrm{XYZ}$ represents a binary number whose value equals the number of 1 's at the input istate the minterm expansion for the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ii. state the maxterm expansion for the Y and Z	Knowledge	3
2.	A combinational circuit has four inputs (A,B,C,D), which represent a binarycoded-decimal digit. The circuit has two groups of four outputs S,T,U,V(MSB digit) and W,X,Y,Z.(LSB digit)Each group represents a BCD digit. The output digits represent a decimal number which is five times the input number. Illustrate the minimum expression for all the outputs?	Apply	3
3.	Summarize the following Boolean expressions using K-map and implement them using NOR gates: (a) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AC}+\mathrm{A}^{\prime} \mathrm{CD}^{\prime}$ (b) $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{W}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}+\mathrm{WXY} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}+\mathrm{W}^{\prime} \mathrm{X}^{\prime} \mathrm{YZ}+\mathrm{WXYZ}$.	Understand	4
4.	Design BCD to Gray code converter and realize using logic gates?	Understand	4
5.	Design EX-OR using NAND gates?	Understand	4
6.	compile the following expression using Karnaugh map (B 'A + A'B + AB')	Understand	5
7.	Design a circuit with three inputs(A,B,C) and two outputs(X, Y) where the outputs are the binary count of the number of "ON" (HIGH) inputs?	Understand	4
8.	Implement the INVERTER gate, OR gate and AND gate using NAND gate, NOR gate?	Understand	3
9.	Design a circuit with four inputs and one output where the output is 1 if the input is divisible by 3 or 7 ?	Understand	4
10.	Implement the Boolean function $\mathrm{F}=\mathrm{AB}+\mathrm{CD}+\mathrm{E}$	Understand	3
11	Implement the Boolean function $\mathrm{F}=\mathrm{AB}+\mathrm{CD}+\mathrm{E}$ using NAND gates only?	Understand	3
12	Summarize the Boolean function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,3,7,11,15)+$ $\mathrm{d}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0.2,5)$	Understand	3
13	Construct the logic diagram of a full subtractor using only 2-input NAND gates?	Apply	3
14	Construct the logic diagram of a full subtractor using only 2-input NOR gates?	Apply	3

15	Use a multiplexer having three data select inputs to solve the logic for the function $\mathrm{F}=\Sigma(0,1,2,3,4,10,11,14,15)$	Apply	4
16	Identify all the prime implicants and essential prime implicants of the following functions Using karnaugh map. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=$ $\Sigma(0,1,2,5,6,7,8,9,10,13,14,15)$.	Knowledge	5
	Part - C (Problem Solving and Critical Thinking Questions)		
1.	Use De-morgan theorem to simplify $\mathrm{F}=\mathrm{A}+\mathrm{B}+\mathrm{C}$. D.E.	Apply	3
2.	State that for constructing XOR from NANDs we need four NAND gates?	Knowledge	3
3.	State $\mathrm{X}+(\mathrm{Y} . \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) .(\mathrm{X}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y}) .(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$ a distributive law using De-Morgan theorem?	Knowledge	5
4.	Convert A.B.C+A.D expression into standard SOP format?	Understand	4
5.	Convert (A+B+C). $\mathrm{A}+\mathrm{D}$) expression into standard POS format?	Understand	4
6.	Construct XOR from NOR gates?	Understand	3
7.	Construct SOP expression and POS expression for a four input NAND gate?	Understand	4
8.	Understand Excess-3 codes for 3 and 7?	Understand	3
9.	Find the logic function F using AND-OR two level realization?	Understand	4
10	Find transmitted 11 bits for 0110001 when hamming code is used?	Understand	4
UNIT-IIICOMBINATIONAL CIRCUITS			
Part - A (Short Answer Questions)			
1	Explain the design procedure for combinational circuits?	Understand	7
2	Apply various code conversion methods?	Apply	7
3	Design a 4-bit binary to BCD converter?	Understand	7
4	Design and implement a 8421 Gray code converter?	Understand	7
5	Design a combinational logic circuit with 3 input variables that will produce logic 1 output when more than one input variables are logic 1 ?	Understand	7
6	Compose and explain the block diagram of 4-bit parallel adder?	Understand	7
7	Design a logic circuit to convert BCD and gray code?	Understand	7
8	Design a full adder using two half adders?	Understand	7
9	Explain magnitude comparator? Design a 3-bit comparator using logic gates?	Understand	7
10	Compose the circuit for 3 to 8 decoder and explain it with logic gate?	Understand	7

11	Construct the logic circuit for full subtractor using decoder?	Understand	7
12	Define binary decoder? Explain the working of 2:4 binary decoder?	Knowledge	7
13	Design Full adder using a suitable Decoder?	Apply	7
14	Define encoder? Design octal to binary encoder?	Knowledge	7
15	Design a 4-bit priority encoder?	Understand	7
16	Design the block diagram of a 4:1 multiplexer using 2:1 multiplexer?	Understand	7
17	Summarize the following Boolean function using 8:1 mux $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(0,3,5,8,9,10,12,14)$	Knowledge	7
18	Explain how decoder acts as a demultiplexer?	Understand	7
19	Differentiate multiplexer and demultiplexer?	Apply	7
20	Explain the working of 8:1 multiplexer?	Understand	7
Part - B (Long Answer Questions)			
1.	Design a combinational circuit that generates the 9's complement of BCD digit?	Understand	7
2.	Design a combinational circuit to find the 2's complement of given binary number and realize using NAND gates?	Understand	7
3.	Design a logic circuit to convert gray code to binary code?	Understand	7
4.	Design circuit to detect invalid BCD number and implement using NAND gate only?	Understand	7
5.	Explain the design procedure for code converter with the help of example?	Understand	7
6.	Construct half subtractor using NAND gates?	Apply	7
7.	Design an 8-bit adder using two 74283?	Understand	7
8.	Explain the working of carry look-ahead generator?	Understand	10
9.	Explain carry propagation in parallel adder with neat diagram?	Understand	7
10.	Explain the circuit diagram of full subtractor and full adder?	Understand	7
11	Construct and explain the working of decimal adder?	Apply	7
12	Design 2-digit BCD adder with the help of binary adders?	Understand	7
13	Design Multiply 0112by 1102using binary multiplication method?	Understand	7

14	Design 4-bit comparator using logic gates?	Understand	7
15	State the procedure to implement Boolean function using decoder and also mention the uses of decoders?	Knowledge	7
16	Design and implement a full adder circuit using a 3:8 decoder?	Understand	7
17	Describe the operation performed by the following logic circuit with an example. Encoder?		7
18	Design and Implement full adder circuit using Quadruple 2 to 1 multiplexer?	Understand	7
19	Construct 16:1 multiplexer using 8:1 and 2:1 multiplexer?	Apply	7
20	Construct a full adder using a suitable multiplexer?	Apply	7
Part - C (Problem Solving and Critical Thinking Questions)			
1.	Design a combinational logic circuit that produces the product of 2 binary number? $\mathrm{A}=(\mathrm{A} 1, \mathrm{~A} 0) * \mathrm{~B}=(\mathrm{B} 2, \mathrm{~B} 1, \mathrm{~B} 0)$	Understand	7
2.	Solve the function using multiplexer $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,2,6,7)$	Apply	7
3.	A combinational circuit has 4 inputs(A,B,C,D) and three outputs($\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \mathrm{XYZ}$ represents a binary number whose value equals the number of 1's at the input: i. Find the minterm expansion for the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ii. Find the maxterm expansion for the Y and Z	Understand	7
4.	Design a combinational logic circuit with 4 inputs A, B, C, D. The output Y goes High if and only if A and C inputs go High. Draw the truth table. Minimize the Boolean function using K-map. Draw the circuit diagram?	Understand	7
5.	Design a logic circuit to convert excess-3 code to BCD code?	Understand	7
6.	Design a 24-bit group ripple adder using 74X283 ICs?	Understand	7
7.	Design a multiple circuit to multiply the following binary number $\mathrm{A}=\mathrm{A} 0 \mathrm{~A} 1 \mathrm{~A} 2$ and $\mathrm{B}=\mathrm{B} 0 \mathrm{~B} 1 \mathrm{~B} 2 \mathrm{~B} 3$ using required number of binary parallel adders?	Understand	7
8.	Solve the following Boolean functions using decoder and OR gates: $\begin{aligned} & \mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(2,4,7,9) \\ & \mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(10,13,14,15) \end{aligned}$	Apply	7
9.	Design the interfacing diagram of 10 key keypad interfaces to digital system using decimal to BCD encoder?	Understand	7
10	Solve the following Boolean function using 4:1 mux	Apply	7

	$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,3,5,7,8,9,0,2,10,12,13)$		
UNIT-IVSYNCHRONOUS SEQUENTIAL CIRCUITS			
Part - A (Short Answer Questions)			
1	Differentiate combinational and sequential logic circuits?	Apply	6
2	Explain basic difference between a shift register and counter?	Understand	6
3	Illustrate applications of shift registers?	Apply	6
4	Define bidirectional shift register?	Knowledge	6
5	Describe dynamic shift register?	Knowledge	6
6	Convert a JK Flip Flop to T	Understand	6
7	Classify the basic types of counters?	Understand	6
8	Differentiate the advantages and disadvantages of ripple counters?	Apply	6
9	Convert a JK Flip Flop to SR	Understand	6
10	Explain what is a variable modulus counter?	Understand	6
11	Design and explain gated latch logic diagram?	Understand	8
12	Define race around condition? How it can be avoided?	Knowledge	8
13	Convert a JK Flip Flop to D	Understand	6
14	Convert a SR Flip-Flop to JK	Understand	6
15	Explain what is a synchronous latch?	Understand	6
16	Construct a latch using universal gates?	Apply	8
17	Explain what do you mean a stable state?	Understand	8
18	Define a Flip-Flop?	Knowledge	6
19	Define applications of Flip-Flops?	Knowledge	6
20	Explain what is meant by clocked flip-flop?	Understand	6
Part - B (Long Answer Questions)			
1.	Explain the design of Sequential circuit with an example. Show the state reduction, state assignment?	Understand	6
2.	Write short notes on shift register? Mention its application along with the Serial Transfer in 4-bit shift Registers?	Understand	6

3.	Design a 4-bit BCD Ripple Counter by using T-FF?	Understand	6
4.	Define BCD Down Counter and Draw its State table for BCD Counter?	Knowledge	6
5.	Explain the state reduction and state assignment in designing sequential circuit. Consider one example in the above process?	Understand	10
6.	Design a sequential circuit with two D flip-ops A and B. and one input x . when $x=0$,the state of the circuit remains the same. When $x=1$, the circuit goes through the state transition from 00 to 11 to 11 to 10 back to 00 .and repeats?	Understand	6
7.	Design a Modulo-12 up Synchronous counter Using T-Flip Flops and draw the Circuit diagram?	Understand	6
8.	Explain the Ripple counter design. Also the decade counter design?	Understand	10
9.	Design a 3 bit ring counter? Discuss how ring counters differ from twisted ring counter?	Understand	6
10	Design a left shift and right shift for the following data 10110101?	Understand	6
11	Design Johnson counter and state its advantages and disadvantages?	Understand	6
12	Explain with the help of a block diagram, the basic components of a Sequential Circuit?	Understand	6
13	Explain about RS and JK flip-flops?	Understand	6
14	Define T-Flip-flop with the help of a logic diagram and characteristic table?	Knowledge	6
15	Define Latch. Explain about Different types of Latches in detail?	Knowledge	6
16	Illustrate pulse mode asynchronous circuit?	Apply	10
17	List the characteristic Tables and Equations for all Flip-Flops?	Knowledge	6
18	Construct the transition table for the following flip-flops i) D FF	Apply	6
19	Describe the steps involved in design of asynchronous sequential circuit in detail with an example?	Understand	10
20	Differentiate critical and non critical race conditions?	Apply	10
Part - C (Problem Solving and Critical Thinking Questions)			
1.	Design Universal Shift Register	Analyze	7

6	Describe what is meant by memory expansion? Mention its limits?	Understand	9
7	List a note on magnetic tape?	Knowledge	9
8	Explain the configuration of PLD's?	Knowledge	9
9	Explain the block diagram of ROM?	Understand	9
10	Define Address and Data Bus?	Understand	9
Part - B (Long Answer Questions)			
1	Explain the internal construction of 4*4 RAM	Understand	9
2	Draw the Two-Dimensional Decoding Structure for a 1 K Word Memory	Understand	9
3	Tabulate the truth table for an $8 * 4$ ROM that implements the Boolean functions $\mathrm{A}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(1,2,4) \quad \mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,6,7) \quad \mathrm{C}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(2,6)$ $\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(1,2,3,5,7)$ Considering now the ROM as a memory, Specify the memory contents at Addresses 1 and 4.	Analyze	7
4	Derive the Programmable Logic Array Programming Table for the combinational circuit that squares a 3-bit number. Minimize the number of Product Terms.	Analyze	7
5	List the differences between Read Only Memories?	Understand	9
6	Tabulate the truth table for an ROM that implements the Boolean functions $\mathrm{A}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(1,2,4,7) \quad \mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,3,5,6) \quad \mathrm{C}(\mathrm{x}, \mathrm{y}, \mathrm{z})=$ $\Sigma \mathrm{m}(0,2,4,5,7) \mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(3,5,6,7)$	Analyze	7
7	Design and Implement the following boolean functions using PAL with four inputs and 3-wide AND-OR structure .F1(A,B,C,D) $=\Sigma \mathrm{m}(2,12,13)$, F2(A,B,C,D) $=\Sigma \mathrm{m}(7,8,9,10,11,12,13,14,15), \mathrm{F} 3(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=$ $\Sigma \mathrm{m}(0,2,3,4,5,6,7,8,10,11,15), \mathrm{F} 4(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,2,8,12,13)$.	Understand	9
8	List How many address bits are needed to operate a $2 \mathrm{~K} * 8$ ROM?	Knowledge	9
9	Design a BCD to Excess-3 code converter and implement using Suitable PLA?	Understand	
10	Distinguish between SRAM and DRAM and draw static RAM cell?	Understand	9
11	Explain the read and write operation a RAM can perform?	Understand	9
12	Sketch the PLA program table for the four Boolean functions Minimize the number of product terms? $\mathrm{A}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,3,5), \mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(2,6)$, $C(x, y, z)=\sum(1,2,3,5,7), D(x, y, z)=\sum(0,1,6)$	Apply	9
13	Sketch a PLA circuit to implement the logic functions $\mathrm{f} 1=\mathrm{A}^{\mathrm{I}} \mathrm{BC}+\mathrm{AB}{ }^{\mathrm{I}} \mathrm{C}+\mathrm{AC}^{\mathrm{I}}$ and $f 2=A^{1} B^{1} C^{1}+B C$.	Apply	9
14	Differentiate PAL with PLA with following examples?	Understand	9
Part - C (Problem Solving and Critical Thinking Questions)			
1	Solve the following two Boolean functions using a PLA having 3inputs, 4 product terms and 2 outputs? $\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,1,2,4)$, F2 $(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(0,5,6,7)$	Apply	9
2	Solve the following multi boolean function using 3- inputs 4 Product terms 2 outputs PLA PLD? $\mathrm{F} 1(\mathrm{a} 2, \mathrm{a} 1, \mathrm{a} 0)=\sum \mathrm{m}(0,1,3,5), \mathrm{F} 2(\mathrm{a} 2, \mathrm{a} 1, \mathrm{a} 0)=\sum \mathrm{m}(3,5,7)$	Apply	9

3	Design and implement 3-bit binary to gray code converter using PLA?	Understand	9
4	Design a combinational circuit using PAL. The circuit accepts 3-bit number and generates an output binary number equal to square of input	Understand	9
5	Design and implement Full Adder using PAL?	Understand	9
6	Tabulate the truth table for an $8 * 4$ ROM that implements the Boolean functions A(x,y,z) $=\Sigma m(1,2,3,4,5,7) \quad \mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,4,6,7) \quad \mathrm{C}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(2,6,7)$ Considering now the ROM as a memory, Specify the memory contents at Addresses 1 and 4.	Understand	9

Prepared By: C.Deepthi,C.Srihari,ParvathySreekumar,R.Gangadhar Reddy

