

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

TUTORIAL QUESTION BANK

Course Name	:	Digital Logic Design and Computer Organization
Course Code	:	A30402
Class	:	II B. Tech I Semester
Branch	:	Information Technology
Year	:	2016 – 2017
Course Faculty	:	Mr. E. Sunil Reddy, Assistant Professor, IT

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No	QUESTION	Blooms Taxonomy Level	Course Outcome		
	UNIT-1				
	Basic Structure of Computers and Data Representation				
Part	Part - A (Short Answer Questions)				
1	Define a Digital Computer?	Knowledge	1		
2	List the Functional Units.	Knowledge	1		
3	Discuss about Data Bus.	Understand	1		
4	Discuss about Bus Arbitration.	Understand	1		
5	Discuss about System software?	Understand	1		
6	Explain the term Compiler.	Understand	1		
7	Distinguish between high and low level languages.	Analyze	1		
8	Discuss about Assembler.	Understand	1		
9	Discuss about memory unit.	Understand	1		
10	Solve the decimal number 1234.5678 into binary form.	Apply	1		
11	List the steps involved in execution of a program?	Knowledge	1		
12	Solve the Hexadecimal number 2456 into decimal number.	Apply	1		

S. No	QUESTION	Blooms Taxonomy	Course
12		Level Understand	Outcome
13	Explain the one's and two's complements representation of a binary number.		1
14	Explain the importance of gray code.	Understand	1
15	Solve the following binary numbers into equivalent decimal number (a) 0.1111		
	(a) 0.1111 (b) 111.1011	Apply	1
16	Solve operation Subtract the following using 2's Complement method	Apply	1
10	(a) $(101011)_2$ from $(111001)_2$		
	(a) $(101011)_2 (1011 (111001)_2$ (b) $(111001)_2 from (101011)_2$	Apply	1
	(1) (111001)211011 (101011)2	Арріу	1
Part	- B (Long Answer Questions)		
		Blooms Taxonomy	Course
S. No	QUESTION	Level	Outcome
1	Explain the various types of computers and their applications.	Understand	1
2	Explain the basic functional units of a computer and explain each unit in detail.	Understand	1
3	Discuss the operational concepts of a digital computer.	Understand	1
4	(a) Define by system software?		
-	(b) Explain various functions of system software.	Understand	
	(c) Define a text editor?		1
5	Explain Various types of Buses.	Understand	1
6	Explain various performance measures used to represent computer	Understand	
	performance.		1
7	Differentiate between RISC and CISC	Analyze	1
8	Describe the introduction of each generation of computer system	Understand	2
9	Solve the number $(+465.5)_{10}$ as a floating point binary number with 24 bits the		
	Normalized fraction mantissa has 16 bits and the exponent has 8 bits.	Apply	1
10	Solve the single precision representation for 42.75 and 16.125.	Apply	1
11	Solve 32.75 and 18.125 in single precision IEEE 754 representation.	Apply	1
12	Solve the 1's and 2's complement of the following binary numbers,	11.	
	1010101,0111000,0000001,10000,00000		
	Also obtain 9's and 10's complement of the following decimal		
	Numbers, 09900, 10000, 00000.	Apply	1
13	Show decimal number 8620 in		
	(i) BCD		
	(ii) Excess-3 code		
	(iii) 2421 code		
	(iv) As a binary number	Apply	1
14	Explain the classification of binary codes.	Understand	1
15	Discuss in detail about binary signed number.	Understand	1
16	Calculate the following to binary and then to gray code,		
	(a) 1001 ₁₆		
	(b) ABEF ₁₆		
	(c) 7623 ₈		
	(d) 1234 ₈		
	(e) 1257 ₁₀ (f) 2230 ₁₂	Apply	1
	(f) 2239 ₁₀	Apply	1
Part	- C (Problem Solving and Critical Thinking Questions)		
1	Solve the following binary numbers into equivalent decimal number		
-	(a)0.111		
	(b)111.1011	Apply	1

S. No	QUESTION	Blooms Taxonomy Level	Course Outcome
2	Solve operation Subtract the following using 2's Complement method		
	(a) $(101011)_2$ from $(111001)_2$		
	(b)(111001) ₂ from(101011) ₂		
		Apply	1
3	Solve the following		
	(a).Decimal number 1234.5678 into binary.		
	(b). Hexa decimal number 2456 into binary.	A	1
4	Solve the following binary numbers into decimal, octal and hexa decimal	Apply	1
4	numbers.		
5	Solve the following octal numbers into binary, decimal and hexadecimal		
	number system.		
	(a). 3711		
	(b). 4057.66	Apply	1
6	Solve the following hexadecimal numbers into binary, octal and decimal.		
	(a). 4236		
	(b). AB6.13	Apply	1
7	Solve the following.		
	(a). $(A6)_{16} = ($ $)_{10}$		
	(b). (1266) ₈ =() ₁₀		
	$(c).(10100011)_2=()_{10}$	A1	1
8	(d). $(372)_{10}$ = () ₁₆ Solve the hexadecimal number F3A7C2 to binary and octal.	Apply	1
٥	UNIT-II	Apply	1
	Digital Logic Circuits-I and Digital Logic Circuits-	п	
Part -	· · · · · · · · · · · · · · · · · · ·	T	
1.	Discuss the symbols of AND ,OR and NOT gates	Understand	2
2.	List the Universal gates and draw their symbols.	Knowledge	2
3.	Discuss gate level minimization?	Understand	2
4. 5.	Define K-map.	Knowledge	2
5.	Solve and Simplify the Boolean expression, $S(x, y, z) = \sum (1,2,4,7)$	Apply	4
6.	Solve and Simplify the following Boolean function using four-variable map $F(w, x, y, z) = \sum (1,3,7,11,15) + d(0,2,5)$.	Apply	4
7.	Define Latch.	Knowledge	6
8.	Design NAND and NOR latch.	Create	6
9.	Define a flip-flop.	Knowledge	6
10.	Define Synchronous and asynchronous inputs and their use.	Knowledge	7
11.	List the applications of shift registers.	Knowledge	7
12.	Define Counters and give its classifications.	Knowledge	7
13.	Define Combinational Circuit? Give Examples.	Knowledge	7
14.	Define half adder and full adder	Knowledge	7
15.	Define Decoder.	Knowledge	7
16.	List the applications of a Decoder.	Knowledge	7
Part	- B (Long Answer Questions)		

S. No	QUESTION	Blooms Taxonomy Level	Course Outcome
1.	Explain the basic logic functions along with their truth tables.	Understand	3
2.	Describe the truth tables, Boolean equations and symbols of the basic logic gates.	Understand	2
3.	Explain A NOR gate is also referred to as negative AND gate.	Understand	2
4.	Solve the expression $Y=AB^1 + A^1B$ using only 2 input NAND gates.	Apply	2
5.	Solve and Simplify the Boolean equation $Y = AB^1C^1 + A^1BC^1 + AB^1C + ABC^1$ and realize the logic circuit.	Apply	5
6	Solve and Simplify the following Boolean functions, using three-variable maps, $F(x, y, z) = \sum (0, 2, 6, 7)$ $F(a, b, c) = \sum (0, 1, 2, 3, 7)$.	Apply	5
7.	Solve and Simplify the following Boolean function using K map, $F(A,B,C,D) = \sum (3,7,11,13,14,15)$.	Apply	5
8.	Solve the following operation Minimize F (A,B,C,D)= \sum (3, 6, 8, 11, 13, 14) and don't cares \sum (4,10,15).	Apply	5
9.	Solve and Simplify the following Boolean function $F(W,X,Y,Z) = \sum (1,3,7,11,15)$ and the don't care conditions $d(W,X,Y,Z) = \sum (0,2,5)$	Apply	5
10.	Define a latch and a flip-flop. Mention the similarities and differences between them.	Knowledge	5
11.	Sketch a neat circuit diagram of positive triggered D flip-flop and explain its operation.	Apply	6
12.	Explain the operation of a JK flip flop using its block diagram and truth table. What are its limitations?	Understand	6
13.	Describe the working of a shift right register.	Understand	12
14.	Sketch and explain a 4-bit synchronous binary counter based on JK flip flops.	Apply	6
15.	Explain the operation of 3-to-8 decoder with circuit diagram.	Understand	7
16.	Sketch the logic diagram of a 2-to-4 line decoder using NOR gates and explain its functioning.	Apply	2
17.	Construct a 5-to-32 line decoder with four 3-to-8 line decoders with enable and one 2-to-4 line decoder.	Apply	2
18.	Describe a combinational logic circuit is defined by the following Boolean functions. $F_1 = \overline{A} \overline{B} \overline{C} + AC$ $F_2 = A \overline{B} \overline{C} + \overline{A} B$ $F_3 = A \overline{B} C + AB$		
19.	Construct a circuit with a decoder and external gates. Explain combinational PLD? List and describe the major types of	Understand	12
-/-	combinational PLDs.	Knowledge	9
20	Define PAL? Explain the internal structure of PAL.	Understand	9
21	Solve and Simplify the following Boolean functions with a PAL. $F_1(A,B,C) = \sum (0,1,2,4)$	Apply	5
22	$F_2(A,B,C) = \sum (0,5,6,7)$ Design a PAL for the following equation, $F = a^I b c + b^I c + ab$	Create	6
	- C (Problem Solving and Critical Thinking Questions)		<u> </u>
1	Describe a NOR gate is also referred to as negative AND gate why?	Understand	2
2	Solve the multi-level NAND circuit for the following expression (ABI+CDI)E+BC(A+B)	Apply	5
	UNIT-III	1	

S. No	QUESTION	Blooms Taxonomy Level	Course Outcome
1		1	
	Computer Arithmetic and Instruction set & Addressin	g	
Part -	A (Short Answer Questions)		
1	List the two reasons when the divide overflow occurs?	Knowledge	12
2	Define high performance arithmetic?	Knowledge	12
3	Write short notes on residue arithmetic.	Understand	12
4	Describe register transfer notation?	Knowledge	12
5	Write short notes on three address instructions.	Knowledge	12
6	Describe Conditional jump?	Understand	12
7	Write short notes on 1's complement addition.	Knowledge	12
8	Describe divide overflow?	Understand	12
9	List the steps for addition or subtraction of two floating point numbers?	Knowledge	12
10	Write short notes on big-endian.	Knowledge	12
11	Write short notes on little-endian.	Knowledge	12
	Part - B (Long Answer Questions)		
1	Explain addition subtraction algorithm. With diagram.	Understand	8
2	Explain multiplication algorithm. With diagram.	Understand	8
3	Sketch and Explain booth multiplication algorithm. With numerical example.	Knowledge	8
4	Sketch and Explain division algorithm. With numerical example.	Knowledge	8
5	Explain floating point addition subtraction algorithm. With diagram.	Understand	8
6	Explain floating point addition subtraction algorithm. With diagram.	Understand	8
7	Explain floating-point division algorithm. With diagram.	Understand	8
		-	
8	Explain decimal division algorithm. With diagram.	Understand	8
9	Explain BCD-Adder with block diagram.	Understand	8
10	Discuss about the following.		
	(i) Condition codes	I I a danatan d	0
1.1	(ii) Straight line sequencing.	Understand	8
11	Explain various addressing modes of computer with examples.	Understand	11
12	Explain in detail the basic instruction types with examples.	Understand	11
13	Explain about the Addressing modes present in IA-32 Pentium processor.	Understand	11
14	Explain the format of an IA-32 instruction.	Understand	11
15	Describe the format of status register of IA-32 and explain each of the flag.	Understand	8
16	Describe how many address bits are needed to create an address space of 4G.	Understand	11
Part	- C (Problem Solving and Critical Thinking Questions)		
1	Discuss the program that uses indirect addressing to access successive numbers		
	in the list.	Understand	11
		Understand	11
2	Explain how the program for $C+ A + B $ is executed.	Chacistana	11
2	Explain how the program for C+ [A] + [B] is executed. UNIT-IV	Onderstand	11
2		Chacistana	11
2			
	UNIT-IV		11
	UNIT-IV Processor Organization and Memory Organization A (Short Answer Questions)		
Part -	UNIT-IV Processor Organization and Memory Organization A (Short Answer Questions) Write short notes on micro-program sequencing.	Knowledge	13
Part -	UNIT-IV Processor Organization and Memory Organization A (Short Answer Questions)		

S. No	QUESTION	Blooms Taxonomy Level	Course Outcome
5	Write short notes on flash memory.	Knowledge	13
6	Write short notes on cache memory.	Knowledge	13
7	Write short notes on Read only memories.	Knowledge	13
8	Describe direct mapping technique?	Understand	13
9	Write about set associative mapping technique.	Knowledge	13
10	Describe paged segmentation?	Understand	13
Part	- B (Long Answer Questions)		
1	Explain single-bus organization of the data path inside a Processor.	Understand	16
2	Explain about multiple bus organization.	Understand	16
3	Define the following (i) Micro operation (ii) Micro program (iii) Micro instruction	Knowledge	16
4	Define memory? Briefly explain micro computer memories.		
		Understand	17
5	Discuss the purpose of main memory and secondary memory in a computer. What is a non-volatile memory? Give examples of volatile and non-volatile memory.	Understand	17
6	Discuss in detail memory interleaving.	Understand	17
7	Explain in detail various cache memory organizations.	Understand	18
8	Define cache memory? Why has it become an integrated part of modern CPUs?	Onderstand	10
O	What is a hit and miss? What is meant by hit ratio?	Knowledge	18
9	Describe a brief note on page replacement algorithms.	Knowledge	18
10	Explain each of the following (i) Page fault (ii) Page table (iii) Page replacement		
	(iv) Translation look-aside buffer.	Understand	18
11	Compare the characteristics of a floppy disk and a hard disk.	Understand	17
12	Describe the limitations of a semiconductor memory? Explain in detail various		
	secondary storage devices.	Knowledge	18
13	Explain the memory management requirements.	Understand	18
Part	- C (Problem Solving and Critical Thinking Questions) Draw the timing diagram of a memory write operation and explain.	Understand	16
2	Explain the control sequence for execution of the instruction ADD(R2),R1 for		
	the single bus architecture.	Understand	18
3	Describe the steps required to execute Move R2,(R1)	Knowledge	18
4	Explain the register transfer notation for the following		
	(i).To transfers the contents of memory location LOC into processor register R1.		
	(ii). Adds the contents of register R1 and R2 and place their sum into register R3	Understand	17
5	Describe a computer uses Ram chips of 1024 X 1 capacity. (i). How many chips are needed and how should their address lines be connected to provide a memory capacity of 1024 bytes.		
	(ii). How many chips are needed to provide a memory capacity of 16 k bytes.	Understand	17
6	Describe an address space is specified by 24-bits and the corresponding memory space by 16-bits. (i). How many words are there in the address space (ii). How many words are there in the memory space.	Understand	17
	(1). 110 many mores are there in the memory space.	Chaorbiana	± /

S. No	QUESTION	Blooms Taxonomy Level	Course Outcome	
	UNIT-V	Levei	Outcome	
	OINIT-V			
	Input / Output Organization			
Part -	A (Short Answer Questions)			
1	List the advantages of interrupt driven I/O?	Knowledge	15	
2	Write short notes on bus request.	Knowledge	17	
3	Write short notes on control register.	Knowledge	17	
4	List the advantages of DMA transfers?	Knowledge	17	
5	Define a PCI bus.	Knowledge	14	
6	Define USB.	Knowledge	14	
7	Write short notes on bulk transfer.	Knowledge	14	
8	Write short notes on interrupt transfer.	Knowledge	14	
9	List the design issues of USB?	Knowledge	14	
10	Write short notes on dual address cycle command.	Knowledge	14	
	Part - B (Long Answer Questions)			
1	Explain the different kinds of I/O communication techniques? What are the			
	relative advantages and disadvantages? Compare and contrast all techniques	Knowledge	14	
2	Discuss with suitable example the concept of programmed I/O.	Understand	14	
3	Differentiate between a subroutine and an interrupt service routine?	Knowledge	14	
4	Sketch block diagram of typical daisy-chain priority interrupt scheme and			
	explain its operation.	Apply	14	
5	Write short notes on DMA controller.	Knowledge	14	
6	Write short notes on DMA Transfer.	Knowledge	14	
7	Explain the need for bus arbitration? Explain the two approaches to bus			
_	arbitration.	Understand	15	
8	Explain PCI with a neat sketch.	Understand	15	
9	Explain Brief notes on the following standard I/O Interfaces.			
	(a) SCSI	TY. 1	1.5	
10	(b) PCI	Understand	15	
10	Discuss about USB Protocols.	Understand	14	
11	Explain the disadvantage of the strobe method? Explain how handshake method	TTo 1 and and	1.5	
	solves the problem?	Understand	15	

Prepared By: Mr. E. Sunil Reddy, Assistant Professor, IT