

Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ELECTRIC CIRCUITS			
Course Code	R15 - A30204	1		
Course Structure	Lectures	Tutorials	Practicals	Credits
	4	1	-	4
Course Coordinator	Mr K.Sudhak	ar Reddy, Assis	tant Professor	
Team of Instructors	Ms Kalyani, A	Assistant Profes	sor	

OBJECTIVES

This course deals with measuring instruments mainly indicating instruments and the associated torques, instrument transformers, power factor meter, frequency meter, synchro scopes, wattmeter, energy meter, potentiometer, resistance measuring methods, ac bridges, ballistic galvanometer, flux meter, extension range of indicating instruments.

	UNIT -1 QUESTION BANK ON SHORT ANSWER QU	UESTION	
Q.NO	QUESTION TO BE ANSWERED	BLOOM'S TAXANOMY	PO'S
1	Define circuit representing its parts.	UNDERSTAND	2,3
2	Define the potential difference.	UNDERSTAND	2,3
3	Define current.	UNDERSTAND	2,3
4	Define resistance.	UNDERSTAND	2,3
5	Write the expression for voltage in terms of C and Q.	REMEMBER	2,3
6	What is the charge of an electron?	REMEMBER	2,3
7	State OHM's law.	REMEMBER	2,3
8	State kirchoff's laws.	REMEMBER	2,3
9	Write the expressions of star-delta transformation.	REMEMBER	2,3
10	Define the power and energy.	UNDERSTAND	2,3
11	What is super mesh?	ANALYZE	2,3
12	What is super node?	ANALYZE	2,3
13	Write the limitations of mesh analysis.	REMEMBER	2,3
14	Write the limitations of nodal analysis.	REMEMBER	2,3
15	Calculate the equivalent resistance of the circuit if applied voltage is 23V and current flowing through circuit is 4A, receiving an power 92W.	APPLY	1,2
16	If the charge developed between two plates is 2C and capacitance is 4.5 F, calculate the voltage across the plates.	APPLY	1,2
17	If three capacitors are connected in series which are 2F, 3.2F and 6F	APPLY	1,2

	calculate equivale	ent capacitance.		1 1	
18	If the three indu		lel with 20mH, 25mH and 5	iomH, APPLY	1,2
19			power delivered is equal to po	wer ANALYZE	2,3
20		e to current and o	current to voltage using sour	ce ANALYZE	2,3
21		nal an voltage sour	ce of 25V is in series with 15 of	hms APPLY	1,2
			n and redraw the circuit across		,
	terminals.				
22		ue resistors are in d	elta, find their equivalent value	es in APPLY	A,B
		OUESTION BA	ANK ON DISCRIPTIVE ANS	SWER OUESTION	
1	Write short notes	on voltage-current	relations in RLC parameters.	UNDERSTAND	2,3
2		on source transform		UNDERSTAND	2,3
3		off's laws with nea		UNDERSTAND	2,3
4		sions for star-delta		UNDERSTAND	2,3
5			ite mesh equation for an netwo	rk. UNDERSTAND	2,3
6	Explain the inspe	ction method to wr	ite nodal equation for an netwo	rk. UNDERSTAND	2,3
			per node and apply to electrica		
7	network.	-		UNDERSTAND	2,3
8		elements and expla		ANALYZE	2,3
9			cal energy sources.	ANALYZE	2,3
10			bility to electrical network.	REMEMBER,	2,3
11		sh analysis with an		UNDERSTAND	2,3
12		dal analysis with ar		UNDERSTAND	2,3
13		tions to study any e		UNDERSTAND	
	Define the terms	voltage, current, po	wer, energy, node and degree		• •
14	node.			REMEMBER	2,3
15	State voltage and	current division ru	les and explain with neat exam K ON ANALYTICAL ANSW	ple. REMEMBER	2,3
			source current for the given cir		
	element	From node	To node	cuit.	
	30 V source	a	0		
	4 ohms	a	b		
	5 ohms	b	0		
	2 ohms	b	c		
	3 ohms	c	0		
	5 ohms	с	d		
1	6 ohms	d	0	Apply	1,2
	Apply mesh analy	vsis and find the cu	rrent flowing through each eler		
	element	From node	To node		
	20 V source	a	0		
	4 ohms	a	b		
	5 ohms	b	0		
	2 ohms	b	с		
	3 ohms	с	0		
	5 ohms	с	d		
2	6 ohms	d	0	Apply	1,2
			rrent flowing through each eler		
	element	From node	To node		
	30 V source	a	0		
	4 ohms	а	b		
	4 ohms 5 ohms 2 ohms	a b b	b 0	Apply	1,2

	3 ohms	с	0			
	5 ohms	c	d			
	6 ohms	d	0			
		tages and the power		ime resistor		
	element	From node	To node			
	40 V source	a	0			
	10 ohms	a	b			
	8 ohms	b	0			
	7 ohms	b	c			
	6 ohms	b	c			
4	9 ohms	c	0		Apply	1,2
4		eduction technique		ach alamant	Apply	1,2
	element	From node	To node			
	25 V source		0			
	6 ohms	a a	b			
	8 ohms	b	0			
	2 ohms	b b	-			
	3 ohms	b b	c c	———		
5	5 ohms		<u>c</u> 0	—	A nult.	1.2
5			*		Apply	1,2
		AB = 10 OHMS, H				
		DA = 5 OHMS and				
		across A and C. ca	lculate equivalent	resistance, source		1.0
6		e drop across DA.			Apply	1,2
		rents for the given o	circuit along with	voltage across and		
	power consumed	by 3 ohms resistor.				
	element	From node	To node			
	30 V source	а	0			
	4 ohms	а	b			
	5 ohms	b	с			
	2 ohms	b	d			
	3 ohms	с	d			
	5 ohms	с	0			
7	6 ohms	d	0		Apply	1,2
	Find the node volt	tages for the given c	circuit and curren	t flowing through 3		
	ohms resistors.	0 0		0 0		
	element	From node	To node			
	30 V source	a	0			
	4 ohms	a	b			
	5 ohms	b	с			
	2 ohms	b	d			
	3 ohms	c	d			
	5 ohms	c	0			
8	6 ohms	d	0		Apply	1,2
~		method find the cur		and power loss in	J	
	each element.		ent in each medi	and poster 1000 m		
	element	From node	To node	—————— [
	30 V source		0	———		
		a		—		
	4 ohms 5 ohms	a	b			
l		b	C			
		1.				1
	2 ohms	b	d			
	2 ohms 3 ohms	с	d			
	2 ohms 3 ohms 5 ohms	c c	d 0			
9	2 ohms 3 ohms 5 ohms 6 ohms	c c d	d 0 0		Apply	1,2
9	2 ohms 3 ohms 5 ohms 6 ohms	c c	d 0 0	wer loss in each	Apply	1,2

	element	From node	To node			
	30 V source	а	0			
	4 ohms	a	b			
	5 ohms	b	с			
	2 ohms	b	d			
	3 ohms	с	d			
	5 ohms	с	0			
	6 ohms	d	0			
	In an circuit brach	AB = 1 OHMS, B	C = 2 OHMS, CD =	1 OHMS ,		
	BD = 8 ohms and I	DA = 5 OHMS an	d an source of 100V	in series with 5		
	OHMS connected a	across A and C. ca	lculate equivalent res	sistance, source		
11	current and voltage	drop across DA.			Apply	1,2
			BC = 20 OHMS, CD			
	BD = 8 ohms and I	DA = 15 OHMS a	nd an source of 100V	in series with 5		
12			nd the mesh currents.		Apply	1,2
	Consider an coil al	lowing an current	of $i(t) = 4t^2$, find vol	ltage induced,		
13			inductor, if its induc		Apply	
	Consider an capaci	tor allowing an cu	rrent of $v(t) = 4t^2 + 2t$	+1, find		
	current flowing, po	wer absorbed and	energy stored by cap	acitor, if its		
14	capacitance is 5H.				Apply	1,2
			ce current, voltage di	op and power		
	dissipated in each r	esistor.				
	element	From node	To node	I		
	20 V source	a	0			
	4 ohms	a	b	_		
	5 ohms	b	0	_		
	2 ohms	b	c	_		
15	3 ohms	С	0		APPLY	1,2

	UNIT -2		-
	QUESTION BANK ON SHORT ANSWER QUEST	ION	
Q.NO	QUESTION TO BE ANSWERED	BLOOM'S	PO'S
		TAXANOMY	
1	Define the alternating quantity.	UNDERSTAND	2,3
2	Give the difference between periodic and non-periodic wave form.	ANALYZE	2,3
3	Define the peak, peak to peak, average, RMS value also peak and form factor of sine function.	UNDERSTAND	2,3
4	Represent the alternating current and voltage in terms of sine function.	REMEMBER	2,3
5	What is reactance? Explain in detail.	UNDERSTAND	2,3
6	What is impedance? Explain in detail.	UNDERSTAND	2,3
7	What is admittance? Explain in detail.	UNDERSTAND	2,3
8	If two impedances of $(2 + 3j)$ ohms the total impedance, source current voltage applied is 50V Ac. and $(4 + 5j)$ ohms are in series find and power absorbed by 3 ohms if	APPLY	1,2
9	Draw the impedance triangle and explain in detail.	UNDERSTAND	2,3
10	Draw the power triangle and explain in detail.	UNDERSTAND	2,3
11	An AC circuit consists of 20 ohms resistance and an inductor in series , find the value of inductance if total impedance is $(20 + 25j)$ ohms.	APPLY	1,2
12	Write the expressions for voltage wave forms if wave form B lags wave	APPLY	1,2

13	form A by 30 degrees from reference axis.For the given alternating voltage find peak, peak to peak, average, RMS	APPLY	A,B
	values. $V(t) = 25$ sinwt.		
14	why form factor is defined for half cycle of sine wave?	ANALYZE	2,3
15	In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit.	APPLY	1,2
16	If the voltage applied is $(3 + 7j)V$ and current flowing through circuit is $(4 + 8j)A$, calculate complex power and circuit constants.	APPLY	1,2
17	If the voltage applied is 50V with 45 degrees and current flowing through circuit is 15A with 15 degrees, calculate complex power and circuit constants.	APPLY	1,2
18	Define the power factor of the circuit and give its importance.	UNDERSTAND	1,2
19	In an ac circuit two parallel impedances are in series across AB terminals , where AB terminals are fed by 100V 0 degrees. Calculate total impedance, power factor and source current. Z1 = (0.8 + j)ohms Z2 = (1 + 2j)ohms Z3 = (2 + 5j)ohms	APPLY	1,2
20	In an ac circuit two parallel impedances are in series across AB terminals , where AB terminals are fed by 100V 0 degrees. Calculate total impedance, admittance and current flowing through Z1 = (0.8 + j)ohms Z2 = (1 + 2j)ohms Z3 = (2 + 5j)ohms.	APPLY	1,2
	QUESTION BANK ON DISCRIPTIVE ANSWER Define the terms peak, peak to peak, average, RMS values and peak and	QUESTION	
1	form factor of sine wave.	REMEMBER	2,3
2	Derive the expression for average and RMS values of sine wave.	UNDERSTAND	2,3
3	Explain the concept of reactance and impedance offered by RLC parameters. Explain the concept of susceptance and admittance offered by RLC	UNDERSTAND	2,3
4	parameters.	ANALYZE	2,3
5	Explain all types of relations between two wave forms and write the relevant expressions. Explain the concept of active, reactive and apparent power and draw the	ANALYZE	2,3
6	power triangle.	UNDERSTAND	2,3
7	Co-relate the impedance triangle with power triangle and explain In detail.	ANALYZE	2,3
8	Explain the steady state analysis of series RL circuit .	UNDERSTAND	2,3
9	Explain the steady state analysis of series RC circuit .	UNDERSTAND	2,3
10	Explain the steady state analysis of series RLC circuit . Explain the terms phase, phase difference and phasor diagram with neat	UNDERSTAND	2,3
11	example.	UNDERSTAND	2,3
12	Compare current in DC and AC circuits.	ANALYZE	2,3

14	Derive the expression for true power in ac circuits.	UNDERSTAND	2,3
1.5	Derive the expressions for reactance and admittance of inductor and		
15	capacitor.	UNDERSTAND	2,3
	QUESTION BANK ON ANALYTICAL ANSWER QU	IESTION	
	In an AC circuit source applied is 500sin100t across series combination		
	of 10 ohms and 10F, calculate source current flowing through circuit,		
1	form impedance and power triangle.	Apply	1,2
	In an ac circuit two parallel impedances are in series across AB terminals		
	, where AB terminals are fed by 150V 0 degrees. Calculate total		
	impedance, power factor source current and voltage drop across Z2		
	Z1=(1+j)ohms		
2	Z2=(3+5j)ohms	A	1.2
2	$\frac{Z3=(2+5j)ohms}{In an ac circuit two parallel impedances are in series across AB terminals}$	Apply	1,2
	, where AB terminals are fed by 200V 0 degrees. Calculate total		
	impedance, admittance and current flowing through each element		
	Z1=(8+j)ohms		
	Z2=(1+6j)ohms		
3	Z3=(3+5j)ohms.	Apply	1,2
	If the voltage applied is		
	(10+8j)V and current flowing through circuit is $(3+5)A$, calculate		
4	complex power and circuit constants.	Apply	1,2
	In an ac circuit two parallel impedances are in series across AB terminals		
	, where AB terminals are fed by 200V 50 degrees. Calculate total		
	impedance, admittance ,power, power factor and current flowing through		
	each element $71-(2+i)$ shows		
	Z1=(2+j)ohms $Z2=(3+5j)ohms$		
5	$Z_{3} = (3 + 5)$ ohms. And load impedance of $Z_{4} = (6 + 7)$.	Apply	1,2
5	In an AC circuit source applied is $500\sin 100t$ across series combination	Арргу	1,2
	of 10 ohms and 10F, calculate total impedance, phase angle between		
6	voltage and current in circuit and power factor of the circuit.	Apply	1,2
	In an ac circuit two parallel impedances are connected in series with Z1		,
	across AB terminals, where AB terminals are fed by 150V 0 degrees.		
	Calculate total impedance, power factor, source current and voltage drop		
	across Z2 $Z_{1-(2+i)}$ above		
	Z1=(2+j)ohms $Z2=(4+5i)ohms$		
7	Z2=(4+5j)ohms $Z3=(1+5j)ohms$	Apply	1,2
,	In an ac circuit two parallel impedances are connected in series with Z1	rippiy	1,2
	across AB terminals, where AB terminals are fed by 200V 0 degrees.		
	Calculate total impedance, power factor, source current and voltage drop		
	across Z3		
	71 (0, i) shows		
	Z1=(8+j)ohms $Z2=(1+6j)ohms$		
8	$Z_{2}=(1+6)$ onms $Z_{3}=(3+5)$ ohms.	Apply	1,2
υ	25-(5+5)00000000000000000000000000000000000	дриу	1,2
	(10-8j)V and current flowing through circuit is $(3 - 5j)A$, calculate		
9	complex power and circuit constants.	Apply	1,2
	In an ac circuit two parallel impedances are connected in series with Z1		,
	across AB terminals, where AB terminals are fed by 200V 50 degrees.		
	Calculate total impedance, admittance ,power, power factor and current		
10	flowing through each element	A 1	1.0
10	Z1=(1+j)ohms	Apply	1,2

	Z2=(3+2j)ohms Z2=(2+2j)ohms		
_	Z3= (3+2j)ohms. And load impedance of Z4 = (6+6j). In an AC circuit source applied is 50sin200t across series combination		
	of 10 ohms and 10F, calculate source current flowing through circuit,		
	form impedance and power triangle.	Apply	1,2
	In an ac circuit two parallel impedances are connected in series with Z1		7
	across AB terminals, where AB terminals are fed by 150V 0 degrees.		
	Calculate total impedance, power factor source current and voltage drop		
	$\frac{1}{2}$		
	Z1=(1 + j)ohms $Z2=(3 + 5j)ohms$		
12	$Z_{2} = (3 + 5))$ ohms $Z_{3} = (2 + 5))$ ohms	Apply	1,2
	In an ac circuit two parallel impedances are connected in series with Z1	Арргу	1,2
	across AB terminals, where AB terminals are fed by 200V 0		
	degrees. Calculate total impedance, admittance and current flowing		
	through each element Z2		
	Z1=(8+j)ohms		
12	Z2=(6+6j)ohms	A	1.0
13	Z3= (3 + 5j)ohms. If the voltage applied is	Apply	1,2
	(5+5j)V and current flowing through circuit is $(3-5j)A$, calculate		
14	complex power and circuit constants.	Apply	1,2
	in an ac circuit two parallel impedances are connected in series with Z1		-,-
	across AB terminals, where AB terminals are fed by 200V 50 degrees.		
	Calculate total impedance, admittance ,power, power factor and current		
f	lowing through Z4		
	Z1=(2+j)ohms		
15	Z2=(3 + 5j)ohms Z3=(3 + 5j)ohms.And load impedance of $Z4=(6 + 7j)$.	Apply	1,2
15	UNIT -3	дрргу	1,2
	0111-5		
	QUESTION BANK ON SHORT ANSWER QUESTIC	DN	r
			DOIS
Q.NO		BLOOM'S	PO'S
Q.NO		BLOOM'S TAXANOMY	PO'S
Q.NO		BLOOM'S	
	QUESTION TO BE ANSWERED	BLOOM'S TAXANOMY	2,3
1	QUESTION TO BE ANSWERED What is locus diagram and give its importance?	BLOOM'S TAXANOMY UNDERSTAND	2,3
1 2	QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance.	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND	2,3 2,3 2,3
1 2 3 4	QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance. Give the condition for circuit to be under resonance. Define series and parallel resonance.	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND	2,3 2,3 2,3 2,3 2,3
1 2 3 4 5	QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance. Give the condition for circuit to be under resonance. Define series and parallel resonance. What is the importance of cut-off frequency.	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE	2,3 2,3 2,3 2,3 2,3 2,3 2,3
1 2 3 4	QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance. Give the condition for circuit to be under resonance. Define series and parallel resonance. What is the importance of cut-off frequency. Write the expression for bandwidth in terms of resonant frequency and	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND	2,3 2,3 2,3 2,3 2,3 2,3 2,3
1 2 3 4 5	QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance. Give the condition for circuit to be under resonance. Define series and parallel resonance. What is the importance of cut-off frequency. Write the expression for bandwidth in terms of resonant frequency and quality factor.	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
1 2 3 4 5 6 7	QUESTION TO BE ANSWEREDWhat is locus diagram and give its importance?Define electrical resonance.Give the condition for circuit to be under resonance.Define series and parallel resonance.Define series and parallel resonance.What is the importance of cut-off frequency.Write the expression for bandwidth in terms of resonant frequency and quality factor.Define quality factor and write Q-factor of inductor and capacitor.	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER UNDERSTAND	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
1 2 3 4 5 6	QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance. Give the condition for circuit to be under resonance. Define series and parallel resonance. What is the importance of cut-off frequency. Write the expression for bandwidth in terms of resonant frequency and quality factor.	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
1 2 3 4 5 6 7 8	QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance. Give the condition for circuit to be under resonance. Define series and parallel resonance. What is the importance of cut-off frequency. Write the expression for bandwidth in terms of resonant frequency and quality factor. Define quality factor and write Q-factor of inductor and capacitor. Write the expression for resonant frequency of series and parallel RLC circuit.	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER UNDERSTAND REMEMBER	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
1 2 3 4 5 6 7	QUESTION TO BE ANSWEREDWhat is locus diagram and give its importance?Define electrical resonance.Give the condition for circuit to be under resonance.Define series and parallel resonance.What is the importance of cut-off frequency.Write the expression for bandwidth in terms of resonant frequency and quality factor.Define quality factor and write Q-factor of inductor and capacitor.Write the expression for resonant frequency of series and parallel RLC circuit.In an series RLC circuit R = 1K ohms , L = 10mH and C = 0.01 μF,	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER UNDERSTAND	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
1 2 3 4 5 6 7 8	QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance. Give the condition for circuit to be under resonance. Define series and parallel resonance. What is the importance of cut-off frequency. Write the expression for bandwidth in terms of resonant frequency and quality factor. Define quality factor and write Q-factor of inductor and capacitor. Write the expression for resonant frequency of series and parallel RLC circuit.	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER UNDERSTAND REMEMBER	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
1 2 3 4 5 6 7 8	QUESTION TO BE ANSWEREDWhat is locus diagram and give its importance?Define electrical resonance.Give the condition for circuit to be under resonance.Define series and parallel resonance.What is the importance of cut-off frequency.Write the expression for bandwidth in terms of resonant frequency and quality factor.Define quality factor and write Q-factor of inductor and capacitor.Write the expression for resonant frequency of series and parallel RLC circuit.In an series RLC circuit R = 1K ohms , L = 10mH and C = 0.01 μF, calculate resonant frequency, cut -off frequencies, bandwidth and quality factor.	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER UNDERSTAND REMEMBER	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 1,2
1 2 3 4 5 6 7 8 9	QUESTION TO BE ANSWEREDWhat is locus diagram and give its importance?Define electrical resonance.Give the condition for circuit to be under resonance.Define series and parallel resonance.What is the importance of cut-off frequency.Write the expression for bandwidth in terms of resonant frequency and quality factor.Define quality factor and write Q-factor of inductor and capacitor.Write the expression for resonant frequency of series and parallel RLC circuit.In an series RLC circuit R = 1K ohms , L = 10mH and C = 0.01 μF, calculate resonant frequency, cut -off frequencies, bandwidth and quality	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER UNDERSTAND REMEMBER APPLY	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
1 2 3 4 5 6 7 8 9	QUESTION TO BE ANSWEREDWhat is locus diagram and give its importance?Define electrical resonance.Give the condition for circuit to be under resonance.Define series and parallel resonance.What is the importance of cut-off frequency.Write the expression for bandwidth in terms of resonant frequency and quality factor.Define quality factor and write Q-factor of inductor and capacitor.Write the expression for resonant frequency of series and parallel RLC circuit.In an series RLC circuit R = 1K ohms , L = 10mH and C = 0.01 μF, calculate resonant frequency, cut -off frequencies, bandwidth and quality factor.Plot the locus diagram of series RL circuit with R as variable once and	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER UNDERSTAND REMEMBER APPLY	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 1,2
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \end{array} $	 QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance. Give the condition for circuit to be under resonance. Define series and parallel resonance. What is the importance of cut-off frequency. Write the expression for bandwidth in terms of resonant frequency and quality factor. Define quality factor and write Q-factor of inductor and capacitor. Write the expression for resonant frequency of series and parallel RLC circuit. In an series RLC circuit R = 1K ohms , L = 10mH and C = 0.01 µF, calculate resonant frequency, cut –off frequencies, bandwidth and quality factor. Plot the locus diagram of series RL circuit with R as variable once and then XL as variable. 	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER UNDERSTAND REMEMBER APPLY ANALYZE	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \end{array} $	QUESTION TO BE ANSWERED What is locus diagram and give its importance? Define electrical resonance. Give the condition for circuit to be under resonance. Define series and parallel resonance. What is the importance of cut-off frequency. Write the expression for bandwidth in terms of resonant frequency and quality factor. Define quality factor and write Q-factor of inductor and capacitor. Write the expression for resonant frequency of series and parallel RLC circuit. In an series RLC circuit R = 1K ohms , L = 10mH and C = 0.01 μF, calculate resonant frequency, cut –off frequencies, bandwidth and quality factor. Plot the locus diagram of series RL circuit with R as variable once and then XL as variable. In an series RLC circuit , R = 10 ohms, XL = 25 ohms , calculate the C	BLOOM'S TAXANOMY UNDERSTAND UNDERSTAND ANALYZE UNDERSTAND ANALYZE REMEMBER UNDERSTAND REMEMBER APPLY ANALYZE	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 1,2 2,3

13	State faraday's law of electro-magnetic induction.	REMEMBER	2,3
14	Write the expression for co-efficient of coupling and Define perfect coupling.	REMEMBER	2,3
15	Define reluctance and write the expression their suggest Core to be chosen for magnetic circuit.	UNDERSTAND	2,3
16	Explain the dot convention for coil to write voltag Equation.	ANALYZE	2,3
17	Two coils of are connected in series , when they are aiding with each other total inductance is 25H and when they are opposing each other is 15H, calculate the mutual inductance and write all combinations of L1 and L2.	APPLY	1,2
18	Two coils of are connected in parallel , when they areaiding witheach other if self inductance of each coil is 10H and mutual inductance is1H, calculate equivalent inductance.	APPLY	1,2
19	Write flux density in terms of field intensiy.	REMEMBER	2,3
	Calculate equivalent inductance if three coils are coupled with coil 1 has 8H self inductance with current entering the dot, coil 2 has self inductance of 5 H with current entering the dot and self inductance of coil3 is 8H with current leaving the dot,		
20	Mutual inductances are, between 1 & 2 =2H, 2 & 3 = 3H and 3 & $1=4H$.	APPLY	1,2
	QUESTION BANK ON DISCRIPTIVE ANSWER Q	DUESTION	
1	QUESTION BANK ON DISCRIPTIVE ANSWER Q Draw and explain the locus diagram of series RL circit with R as variable.	UESTION UNDERSTAND	2,3
1 2	Draw and explain the locus diagram of series RL circit with R as variable. Draw and explain the locus diagram of series RL circit with XL as variable.		2,3 2,3
	 Draw and explain the locus diagram of series RL circit with R as variable. Draw and explain the locus diagram of series RL circit with XL as variable. Draw and explain the locus diagram of series RLC circit with R as variable. 	UNDERSTAND	
2	 Draw and explain the locus diagram of series RL circit with R as variable. Draw and explain the locus diagram of series RL circit with XL as variable. Draw and explain the locus diagram of series RLC circit with R as variable. Define series resonance.Explain the voltage plots in series RLC circuit with resonance phenomenon. 	UNDERSTAND UNDERSTAND	2,3
2 3	 Draw and explain the locus diagram of series RL circit with R as variable. Draw and explain the locus diagram of series RL circit with XL as variable. Draw and explain the locus diagram of series RLC circit with R as variable. Define series resonance.Explain the voltage plots in series RLC circuit 	UNDERSTAND UNDERSTAND UNDERSTAND	2,3 2,3
2 3 4	 Draw and explain the locus diagram of series RL circit with R as variable. Draw and explain the locus diagram of series RL circit with XL as variable. Draw and explain the locus diagram of series RLC circit with R as variable. Define series resonance.Explain the voltage plots in series RLC circuit with resonance phenomenon. Define cut-off frequencies and bandwidth .Derive the expressions for cut-off frequencies and bandwidth of series RLC circuit. Define Q-factor. Derive the expressions for Q-factor of inductor and capacitor element in series RLC circuit. 	UNDERSTAND UNDERSTAND UNDERSTAND ANALYZE	2,3 2,3 2,3
2 3 4 5	Draw and explain the locus diagram of series RL circit with R as variable.Draw and explain the locus diagram of series RL circit with XL as variable.Draw and explain the locus diagram of series RLC circit with R as variable.Define series resonance.Explain the voltage plots in series RLC circuit with resonance phenomenon.Define cut-off frequencies and bandwidth .Derive the expressions for cut- off frequencies and bandwidth of series RLC circuit.Define Q-factor. Derive the expressions for Q-factor of inductor and	UNDERSTAND UNDERSTAND UNDERSTAND ANALYZE REMEMBER	2,3 2,3 2,3 2,3 2,3
2 3 4 5 6	Draw and explain the locus diagram of series RL circit with R as variable.Draw and explain the locus diagram of series RL circit with XL as variable.Draw and explain the locus diagram of series RLC circit with R as variable.Define series resonance.Explain the voltage plots in series RLC circuit with resonance phenomenon.Define cut-off frequencies and bandwidth .Derive the expressions for cut- off frequencies and bandwidth of series RLC circuit.Define Q-factor. Derive the expressions for Q-factor of inductor and capacitor element in series RLC circuit.Explain the concept of DOT convention and state right hand thumb rule	UNDERSTAND UNDERSTAND UNDERSTAND ANALYZE REMEMBER REMEMBER	2,3 2,3 2,3 2,3 2,3 2,3
2 3 4 5 6 7	 Draw and explain the locus diagram of series RL circit with R as variable. Draw and explain the locus diagram of series RL circit with XL as variable. Draw and explain the locus diagram of series RLC circit with R as variable. Define series resonance.Explain the voltage plots in series RLC circuit with resonance phenomenon. Define cut-off frequencies and bandwidth .Derive the expressions for cut-off frequencies and bandwidth of series RLC circuit. Define Q-factor. Derive the expressions for Q-factor of inductor and capacitor element in series RLC circuit. Explain the concept of DOT convention and state right hand thumb rule for coupled coils. 	UNDERSTAND UNDERSTAND UNDERSTAND ANALYZE REMEMBER REMEMBER ANALYZE	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
2 3 4 5 6 7 8	Draw and explain the locus diagram of series RL circit with R as variable.Draw and explain the locus diagram of series RL circit with XL as variable.Draw and explain the locus diagram of series RLC circit with R as variable.Define series resonance.Explain the voltage plots in series RLC circuit with resonance phenomenon.Define cut-off frequencies and bandwidth .Derive the expressions for cut- off frequencies and bandwidth of series RLC circuit.Define Q-factor. Derive the expressions for Q-factor of inductor and capacitor element in series RLC circuit.Explain the concept of DOT convention and state right hand thumb rule for coupled coils.Derive the expression for co-efficient of coupling.Explain the concept of more than two coils coupled.	UNDERSTAND UNDERSTAND UNDERSTAND ANALYZE REMEMBER REMEMBER ANALYZE REMEMBER	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
2 3 4 5 6 7 8 9	Draw and explain the locus diagram of series RL circit with R as variable.Draw and explain the locus diagram of series RL circit with XL as variable.Draw and explain the locus diagram of series RLC circit with R as variable.Define series resonance.Explain the voltage plots in series RLC circuit with resonance phenomenon.Define cut-off frequencies and bandwidth .Derive the expressions for cut- off frequencies and bandwidth of series RLC circuit.Define Q-factor. Derive the expressions for Q-factor of inductor and capacitor element in series RLC circuit.Explain the concept of DOT convention and state right hand thumb rule for coupled coils.Derive the expression for co-efficient of coupling.Explain the concept of composite magnetic circuit.	UNDERSTAND UNDERSTAND UNDERSTAND ANALYZE REMEMBER REMEMBER ANALYZE REMEMBER UNDERSTAND	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3
$ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \end{array} $	Draw and explain the locus diagram of series RL circit with R as variable.Draw and explain the locus diagram of series RL circit with XL as variable.Draw and explain the locus diagram of series RLC circit with R as variable.Define series resonance.Explain the voltage plots in series RLC circuit with resonance phenomenon.Define cut-off frequencies and bandwidth .Derive the expressions for cut- off frequencies and bandwidth of series RLC circuit.Define Q-factor. Derive the expressions for Q-factor of inductor and capacitor element in series RLC circuit.Explain the concept of DOT convention and state right hand thumb rule for coupled coils.Derive the expression for co-efficient of coupling.Explain the concept of more than two coils coupled.Derive the expression total inductance for two coils coupled with each other and connected in parallel with dot convention both the currents	UNDERSTAND UNDERSTAND UNDERSTAND ANALYZE REMEMBER REMEMBER ANALYZE REMEMBER UNDERSTAND UNDERSTAND	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3

14	Drive the expression for bandwidth in parallel RLC circuits.	UNDERSTAND	2,3
15	Explain the impedance and admittance curves in series and parallel RLC circuits respectively.	UNDERSTAND	2,3
	QUESTION BANK ON ANALYTICAL ANSWER QUES	TION	
1	Draw the locus diagram of series R-L circuits with R variable.	APPLY	1,2
2	Draw the locus diagram of series R-C, with R variable circuits.	APPLY	1,2
3	Draw the locus diagram of series R-L with L variable circuits.	APPLY	1,2
	A constant voltage at a frequency of 1MHz is applied to an inductor in series with a variable capacitor when the capacitor is set to 500PF, the current has the max value while it is reduced to one half when capacitor		
4	is of 600PF. Find resistance, inductance and Q factor of inductor.	APPLY	1,2
5	A series RLC circuit is connected across a variable frequency supply and has $R = 12$ ohms, $L = 1$ mH and $C = 1000$ PF. Calculate resonant frequency, Q factor and cut of frequencies.	APPLY	1,2
5	A voltage $V = 10$ sin wt Is applied to series RLC circuit. Under resonance condition the max voltage across capacitor is found to be 500V, bandwidth is 400 rad/sec and the impedance at resonance is 100	AFFLI	
6	ohms. Find the resonant frequency and circuit constants.An iron ring 10cm dia and 15cm2 in cross section is wound with 250	APPLY	1,2
	turns of wire for a flux density of 1.5 wb/cm2 and permeability 500. Find the exciting current the inductance and stored energy. Find		
7	corresponding quantities when there is a 2mm air gap.	APPLY	1,2
8	Draw the locus diagram of series R-C, with C variable circuits.	APPLY	1,2
9	A series RLC circuit is connected across a variable frequency supply and has $R = 1000$ ohms, $L = 1$ mH and $C = 0.01$ microF. Calculate resonantfrequency, Q factor, bandwidth and cut of frequencies.	APPLY	1,2
	A series RLC circuit is connected across a supply of and has $R = 2$ ohms, $L = 1$ mH and $C = 0.4$ microF. Calculate resonant frequency, Q factor, bandwidth and cut of frequencies, current at resonant		,
10	frequency and cut-off frequencies.	APPLY	1,2
	 Series RLC circuit has L = 50μH, C = 2000 pF and R = 50 Ω a. Calculate Q factor of the circuit b. Find the new value of C required for resonance at the same frequency if the inductance is doubled. c. Find the new value of Q factor 		
11		APPLY	1,2
	 A constant voltage at frequency of 1 MHz is applied to a coil in series with a variable capacitor . a. when the capacitor is set at 500 pF, the current in the circuit is maximum. 		
	 b. When the capacitor is set at 600 pF, the current is half the maxi. value . Find Resistance , Inductance , and Q factor of the coil 		
12	•	APPLY	1,2
12	Series resonance network consisting of a resistor of 30Ω , a capacitor of 2μ F and an inductor of 20mH is connected across a sinusoidal supply voltage which has a constant output of 9 volts at all frequencies.	ALLI	1,2
13	Calculate: a. The resonant frequency, b. The current at resonance,	APPLY	1,2

	c. The voltage across the inductord. capacitor at resonance,		
	e. The quality factorf. The bandwidth of the circuit.		
	 A series circuit consists of a resistance of 4Ω, an inductance of 500mH and a variable capacitance connected across a 100V,50Hz supply. Calculate: a. The capacitance require to give series resonance b. The voltages generated across both the inductor and the capacitor 		
14	b. The voluges generated across both the inductor and the capacitor	APPLY	1,2
	UNIT -4		
	QUESTION BANK ON SHORT ANSWER QUESTIO	N	
Q.NO	QUESTION TO BE ANSWERED	BLOOM'S	PO'S
		TAXANOMY	
1	What is network topology and write their applications?	ANALYZE	2,3
2	Define tree and co-tree.	REMEMBER	2,3
3	Write the expression for number of links.	REMEMBER	2,3
4	Write the importance and properties of incidence matrix.	ANALYZE	2,3
5	For 8 element 5 node graph, determine number of links.	APPLY	1,2
6	Explain the steps to form tie-set matrix.	ANALYZE	2,3
7	Explain the steps to form cut-set matrix.	ANALYZE	2,3
8	Draw the graph of wheat stone bridge and find incidence matrix.	UNDERSTAND	2,3
9	Draw the graph of wheat stone bridge and find tie-set matrix.	UNDERSTAND	2,3
10	Draw the graph of wheat stone bridge and find cut-set matrix.	UNDERSTAND	2,3
11	Define the duality and the dual elements.	UNDERSTAND	2,3
12	what is the importance of tie-set matrix with electrical networks.	ANALYZE	2,3
13	what is the importance of cut-set matrix with electrical networks.	ANALYZE	2,3
14	How many fundamental cutest and tie-set are possible for a graph.	APPLY	2,3
15	Take any original network and draw the dual network for that original network.	ANALYZE	2,3
	QUESTION BANK ON DISCRIPTIVE ANSWER QUES	TION	
1	What is network topology and its importance with electrical networks?	UNDERSTAND	2,3
2	Give the rules, properties of incidence matrix an explain with an example.	UNDERSTAND	2,3
3	Give the rules, properties of tie-set matrix an explain with an example.	UNDERSTAND	2,3
4	Give the rules, properties of cut-set matrix an explain with an example.	UNDERSTAND	2,3
5	Drive the relation between link currents and branch currents and write mesh equations.	REMEMBER	2,3
6	Drive the relation between twig voltages and branch voltages and write current equations. Define duality and explain how to form dual network for original	REMEMBER	2,3
7	network.	UNDERSTAND	2,3
8	Take any graph and draw all possible trees and explain condition to form tree.	APPLY	2,3
9	Define terms graph, oriented and non-oriented graph, planar and non- planar graph, tree and co-tree, branches and links, nodes and degree of the node.	REMEMBER	2,3

10	Get the difference betwe	en basic and <u>augmented</u>	tie-set and cut-set.	ANALYZE	2,3
11	Explain the dual element	s and dual network with	neat example.	UNDERSTAND	2,3
12	Explain incidence, tie-se	t and cut-set matrices wt	UNDERSTAND	2,3	
13	Compare incidence, tie-s		·	ANALYSE	2,3
14	Explain the loop-set mat		UNDERSTAND	2,3	
11			ie-set and cut-set matrices	er(DERG1711(D	2,3
15	along their propertie.	· · · · · · · · · · · · · · · · · · ·			
			TICAL ANSWER QUES	TION	
	Draw the wheat stone br		on of R and L elements		
1	and replace that with its			APPLY	1,2
	Form the cut-set matrix f	form the graph			
	-1100010				
	-1 0 1 0 0 1 -1 -1 0 0 1 0 0 0				
2		nd also form nodal equat	ions	APPLY	1,2
2	Form the given tie-set m		10115.	AFFLI	1,2
	1 0 0 0 -1 0 0 1				
	001001-10				
	1001-1010				
3		nd also write mesh equati	ons.	APPLY	1,2
-	In an network between A		7		
	C2 are connected draw the				
4	form equations.			APPLY	1,2
	In an network between A				
	C2 are connected draw the graph for circuit and form cut-set matrix and				
5	form equations.			APPLY	1,2
	In an network between A				
6	ohms and DC 5F form th			APPLY	1,2
	In an circuit branch AB				
	BD = 8 ohms and DA = OHMS connected across				
7	degree of each node.	APPLY	1.2		
1	Form an graph with 5 no	des and 8 elements then	define all the values for	APPLI	1,2
8	that graph.	des and 6 éléments them	define all the values for	APPLY	1,2
					,
	Element	From node	To node		
	1	a	0		
	2 3	<u>a</u> b	b c		
	4	b	0		
	5	<u> </u>	0		
	6	a	c		
	7	c	0		
	In an graph branches				
	Draw the graph, possible trees, degree of all nodes, number of twigs,				
	number of links.				
9				APPLY	1,2

	Element	From node	To node		
	1	a	0		
	2	а	b		
	3	b	С		
	4	b	0		
	5	c	0		
	6	a	c		
	7	c	0		
	In an graph branche	s are connected as abo	ove:		
	in an gruph cranene				
10	Form incidence ma	APPLY	1,2		
	Element	E 1	Transla		
	Element	From node	To node		
	1	a	0		
	2	a	b		
	3	b	C		
	4	b	0		
	5	с	0		
	6	а	с		
	7	с	0		
11	In an graph branche Form tie-set and cut	s are connected as abo -set matrix.	ove:	APPLY	1,2
	Element	From node	To node		
	1	a	b		
	2	b	c		
	3		d		
	4	c d			
			a b		
	5	a			
	6	b	с		
	7	c	d		
	8	<u>d</u>	a		
12	twigs, number of lin	ks.	all nodes, number of	APPLY	1,2
	Element	From node	To node		
	1	a	b		
	2	b	c		
	3	c	d		
	4	d	a		
	5	a	b		
	6	b	c		1
	7	c	d		1
	8	d			1
13	Draw the graph, form inc		<u>a</u>	APPLY	1,2
	Element	From node	To node		
	1	а	b		
	2	b	с		1
	3	С	d		1
	4	d	a		
	5	а	b		1
	6	b	c		1
	7	c	d		
	8	d	a		
14	Draw the graph, form cut		u	APPLY	1,2
14	aw the graph, torin cut	-set and m-set mains.		ALLI	1,2

	UNIT -5		
	QUESTION BANK ON SHORT ANSWER QUESTIO	ON	
Q.NO	QUESTION TO BE ANSWERED	BLOOM'S TAXANOMY	PO'S
1	State theveninn's theorem	REMEMBER	2,3
2	State nortan's theorem	REMEMBER	2,3
3	State super-position theorem	REMEMBER	2,3
4	State reciprocity theorem	REMEMBER	2,3
5	State compensation theorem	REMEMBER	2,3
6	State milliman's theorem	REMEMBER	2,3
7	What is the importance of thevenin's theorem?	UNDERSTAND	2,3
8	What is the importance of nortan's theorem?	UNDERSTAND	2,3
9	What is the importance of super-position theorem?	UNDERSTAND	2,3
10	What is the importance of milliman's theorem?	UNDERSTAND	2,3
11	What is the importance of compensation theorem?	UNDERSTAND	2,3
12	Give the application of reciprocity theorem.	ANALYZE	2,3
13	If the thevenin's equivalent consists of 25v with 10 ohms drawthe nortan's equivalent.	APPLY	1,2
14	If 25v, 15v and 10v are connected across ab terminals, what is voltage measured across ab terminals?	APPLY	1,2
15	Can be super-position theorem used to find power in an element? Justify your answer.	ANALYZE	1,2
16	The nortan's equivalent circuit consists of 10A in parallel with 8 ohms, find the load resistance for which maximum power transfer takes place.	APPLY	
17	If two branches are in parallel with 15V in series with 5 ohms and 5V in series with 1 ohm across AB terminals , find the current and power absorbed by 5 ohms resistor if it is connected across AB terminals.	APPLY	1,2 1,2
	QUESTION BANK ON DISCRIPTIVE ANSWER QUES		
		REMEMBER AND	
1	State and prove tellegen's theorem with an example for DC excitation.	UNDERSTAND	2,3
2	State and prove thevenin's theorem with an example for DC excitation.	REMEMBER AND UNDERSTAND	2,3
_		REMEMBER	2,5
3	State and prove nortan's theorem with an example for DC excitation.	UNDERSTAND REMEMBER	2,3
4	State and prove super-position theorem with an example for DC excitation.	AND UNDERSTAND	2,3
5	State and prove reciprocity theorem with an example for DC excitation.	REMEMBER AND	2,3

		UNDERSTAND	
	State and prove compensation theorem with an example for DC	REMEMBER AND	
6	excitation.	UNDERSTAND	2,3
		REMEMBER	
7	State and prove milliman's theorem theorem with an example for DC	AND UNDERSTAND	2.2
7	excitation.	REMEMBER	2,3
	State and prove thevenin's theorem with an example for AC	AND	
8	excitation.	UNDERSTAND	2,3
0		REMEMBER	_,0
	State and prove super-position theorem with an example for	AND	
9	ACexcitation.	UNDERSTAND	2,3
		REMEMBER	
		AND	
10	State and prove nortan's theorem with an example for AC excitation.	UNDERSTAND	2,3
1.1	Prove the condition for maximum power transfer with DC excitation and		
11	explain	UNDERSTAND	2,3
12	Prove the condition for maximum power transfer with AC excitation and	UNDERSTAND	2,3
12	explain	UNDERSTAND	2,5
13	State and explain the milliman's theorem .(DC)	UNDERSTAND	2,3
14	State and explain the milliman's theorem .(AC)	UNDERSTAND	2,3
15	Explain the thevenin's equivalent and norton's equivalent circuit with their importance.		
	QUESTION BANK ON ANALYTICAL ANSWER QUES	TION	
	Two parallel branches are connected across AB terminals, they 10V in		
	series with 2 ohms and 20V in series with 5 ohms, use the necessary		
	theorem and find the power absorbed by load resistor with maximum		
1	power across AB	APPLY	1,2
	In an series circuit the source impedance is $(3 + 8j)$ ohms with 100V		
	supply calculate load impedance to absorb maximum power and form the		
2	nortan's equivalent circuit.	APPLY	1,2
	In an network consisting of AB terminals, firstly a branch across AB is		
	defined as 20V in series with 5 ohms, second branch 7 ohms and third branch 10V in series with 4 ohms. Apply super-position theorem to find		
3	voltage drop across 7 ohms resistor.	APPLY	1,2
5	In an network consisting of AB terminals, firstly a branch across AB is	AITLI	1,2
	defined as 100V in series with $(3 + 4j)$ ohms, second branch 7 ohms and		
	third branch 50V in series with $(2 + 3j)$ ohms. Apply the venin's theorem		
4	to find current flowing through 7 ohms	APPLY	1,2
	In an circuit brach $AB = 10$ OHMS, $BC = 20$ OHMS, $CD = 15$ OHMS,		
	BD = 8 ohms and $DA = 5$ OHMS and an source of 100V in series with 5		
5	OHMS connected across A and C. verify the tellegen's theorem.	APPLY	1,2
	In an series circuit $Z1 = (10 + 10j)$ ohms, $Z2 = (5 + 3j)$ ohms with 100V		
	45 degrees supply. Apply compensation theorem and find the response in		
6	Z2.	APPLY	1,2
	In an series circuits source resistance is 45 ohms and load resistor is R_L with 20V DC supply. If R_L is variable of resistances 10, 20, 30, 40, 45, 50,60, 70 ohms respectively.		
	Find the for what resistance of load maximum power is transfer, maximum power value, current and voltage drops in each case.		
7		APPLY	1,2
1		11111	1,2

	F ' 1 (1)					
			ns resistor using the	venin's theorem.		
	If the circuit is as b		T 1.	- I		1
	element	From node	To node	-		
	20 V source	a	0 b	-		1
	4 ohms	a	b	-		1
	5 ohms	b	0	-		
~	2 ohms	b	c	-		
8	3 ohms	c	0		APPLY	1,2
			ns resistor using nor	ton's theorem		
	theorem. If the circ	uit is as below.				
		Energy and a	Tanada	-		
	element	From node	To node			
	20 V source	a	0			
	4 ohms	a	b	_		
	5 ohms	b	0	- 1		
	2 ohms	b	c	-		
9	3 ohms	с	0		APPLY	1,2
	Find the current flo	wing through 4 ohn	ns resistor using sup	er position		
	theorem theorem. I	f the circuit is as be	low.			1
				_		
	element	From node	To node	4		
	20 V source	а	0	4		1
	2 ohms	a	b			1
	3 ohms	b	0			
	4 ohms	b	с			1
	5A source	с	0			
10	2A	а	С		APPLY	1,2
	State milliman's theorem and find current through 5 ohms using			using		
		n for following circu				1
	element	From node	To node	7		
	20 V source	а	0	7		1
	4 ohms	a	b	7		1
	5 ohms	b	0	7		1
	2 ohms	b	c	7		1
11	10V source	c	0	7	APPLY	1,2
)ohms impedance us	sing theyenin's		
	theorem.					
	If the circuit is as b	elow.				
	element	From node	To node	7		
	20 V with 0	a	0	7		
	degrees phase	~	Ŭ			
	source					
	(1+3j) ohms	a	b	7		
	(2+2j) ohms	b	0			
	(3+2j))ohms	b	c			
12	(2+3j) ohms	c	0	-	APPLY	1,2
12				sing norton's	11111	1,2
	Find the current flowing through (2+3j)ohms impedance using norton's theorem.					
	If the circuit is as below.					
	Element	From node	To node	- -		
	20 V with 0		0	-		
	degrees phase	а	U			
	- 1					
	source (1+2i)) obms		L	-		
	(1+3j)) ohms	a	b	-		
	(2+2j) ohms	b	0	-		
	(3+2j))ohms	b	c	-		
13	(2+3j) ohms	с	0		APPLY	1,2

	Find the current flow position theorem.	wing through (2+2j)	ohms impedance us	ing super-		
	If the circuit is as be					
	element	From node	To node	7		
	20 V with 0	а	0			
	degrees phase					
	source					
	(1+3j)) ohms	а	b			
	(2+2j) ohms	b	0			
	(3+2j))ohms	b	с			
	10V with 0	с	0			
14	degrees phase				APPLY	1,2
	State milliman's the	orem and Find the c	urrent flowing thro	ugh (2+2j)ohms		
	impedance using s.					
	If the circuit is as be	low.	-	_		
	element	From node	To node			
	20 V with 0	а	0			
	degrees phase					
	source					
	(1+3j)) ohms	а	b			
	(2+2j) ohms	b	0	_		
	(3+2j))ohms	b	с			
	10V with 0	с	0			
15	degrees phase				APPLY	1,2

HOD, ELECTRONICS AND COMMUNICATION ENGINEERING.