INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043

ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK

Course Title	ELECTRIC CIRCUITS			
Course Code	R15-A30204			
Course Structure	Lectures	Tutorials	Practicals	Credits
	4	1	-	4
Course Coordinator	Mr K.Sudhakar Reddy, Assistant Professor			
Team of Instructors	Ms Kalyani, Assistant Professor			

OBJECTIVES

This course deals with measuring instruments mainly indicating instruments and the associated torques, instrument transformers, power factor meter, frequency meter , synchro scopes, wattmeter, energy meter, potentiometer ,resistance measuring methods, ac bridges, ballistic galvanometer, flux meter, extension range of indicating instruments.

UNIT -1			
QUESTION BANK ON SHORT ANSWER QUESTION			
Q.NO	QUESTION TO BE ANSWERED	$\begin{gathered} \hline \text { BLOOM'S } \\ \text { TAXANOMY } \end{gathered}$	PO'S
1	Define circuit representing its parts.	UNDERSTAND	2,3
2	Define the potential difference.	UNDERSTAND	2,3
3	Define current.	UNDERSTAND	2,3
4	Define resistance.	UNDERSTAND	2,3
5	Write the expression for voltage in terms of C and Q .	REMEMBER	2,3
6	What is the charge of an electron?	REMEMBER	2,3
7	State OHM's law.	REMEMBER	2,3
8	State kirchoff's laws.	REMEMBER	2,3
9	Write the expressions of star-delta transformation.	REMEMBER	2,3
10	Define the power and energy.	UNDERSTAND	2,3
11	What is super mesh?	ANALYZE	2,3
12	What is super node?	ANALYZE	2,3
13	Write the limitations of mesh analysis.	REMEMBER	2,3
14	Write the limitations of nodal analysis.	REMEMBER	2,3
15	Calculate the equivalent resistance of the circuit if applied voltage is 23 V and current flowing through circuit is 4 A , receving an power 92 W .	APPLY	1,2
16	If the charge developed between two plates is 2C and capacitance is 4.5 F , calculate the voltage across the plates.	APPLY	1,2
17	If three capacitors are connected in series which are $2 \mathrm{~F}, 3.2 \mathrm{~F}$ and 6F	APPLY	1,2

UNIT -2			
QUESTION BANK ON SHORT ANSWER QUESTION			
Q.NO	QUESTION TO BE ANSWERED	$\begin{gathered} \text { BLOOM'S } \\ \text { TAXANOMY } \end{gathered}$	PO'S
1	Define the alternating quantity.	UNDERSTAND	2,3
2	Give the difference between periodic and non-periodic wave form.	ANALYZE	2,3
3	Define the peak, peak to peak, average, RMS value also peak and form factor of sine function.	UNDERSTAND	2,3
4	Represent the alternating current and voltage in terms of sine function.	REMEMBER	2,3
5	What is reactance? Explain in detail.	UNDERSTAND	2,3
6	What is impedance? Explain in detail.	UNDERSTAND	2,3
7	What is admittance? Explain in detail.	UNDERSTAND	2,3
8	If two impedances of $(2+3 \mathrm{j})$ ohms the total impedance, source current voltage applied is 50 V Ac . and $(4+5 \mathrm{j})$ ohms are in series find and power absorbed by 3 ohms if	APPLY	1,2
9	Draw the impedance triangle and explain in detail.	UNDERSTAND	2,3
10	Draw the power triangle and explain in detail.	UNDERSTAND	2,3
11	An AC circuit consists of 20 ohms resistance and an inductor in series, find the value of inductance if total impedance is $(20+25 \mathrm{j})$ ohms.	APPLY	1,2
12	Write the expressions for voltage wave forms if wave form B lags wave	APPLY	1,2

	form A by 30 degrees from reference axis.		
13	For the given alternating voltage find peak, peak to peak, average, RMS values. $\mathrm{V}(\mathrm{t})=25 \text { sinwt. }$	APPLY	A,B
14	why form factor is defined for half cycle of sine wave?	ANALYZE	2,3
15	In an AC circuit source applied is $100 \sin 100 t$ across series combination of 4 ohms and 13 F , calculate source current flowing through circuit.	APPLY	1,2
16	If the voltage applied is $(3+7 \mathrm{j}) \mathrm{V}$ and current flowing through circuit is $(4+8 \mathrm{j}) \mathrm{A}$, calculate complex power and circuit constants.	APPLY	1,2
17	If the voltage applied is 50 V with 45 degrees and current flowing through circuit is 15 A with 15 degrees, calculate complex power and circuit constants.	APPLY	1,2
18	Define the power factor of the circuit and give its importance.	UNDERSTAND	1,2
19	In an ac circuit two parallel impedances are in series across $A B$ terminals , where AB terminals are fed by 100 V 0 degrees. Calculate total impedance, power factor and source current. $\begin{aligned} & \mathrm{Z} 1=(0.8+\mathrm{j}) \mathrm{ohms} \\ & \mathrm{Z} 2=(1+2 \mathrm{j}) \mathrm{ohms} \\ & \mathrm{Z} 3=(2+5 \mathrm{j}) \mathrm{ohms} \end{aligned}$	APPLY	1,2
20	In an ac circuit two parallel impedances are in series across $A B$ terminals , where AB terminals are fed by 100 V 0 degrees. Calculate total impedance, admittance and current flowing through each element $\begin{aligned} & \mathrm{Z} 1=(0.8+\mathrm{j}) \mathrm{ohms} \\ & \mathrm{Z} 2=(1+2 \mathrm{j}) \mathrm{ohms} \end{aligned}$ $\mathrm{Z} 3=(2+5 \mathrm{j}) \text { ohms } .$	APPLY	1,2
QUESTION BANK ON DISCRIPTIVE ANSWER QUESTION			
1	Define the terms peak,, peak to peak, average, RMS values and peak and form factor of sine wave.	REMEMBER	2,3
2	Derive the expression for average and RMS values of sine wave.	UNDERSTAND	2,3
3	Explain the concept of reactance and impedance offered by RLC parameters.	UNDERSTAND	2,3
4	Explain the concept of susceptance and admittance offered by RLC parameters.	ANALYZE	2,3
5	Explain all types of relations between two wave forms and write the relevant expressions.	ANALYZE	2,3
6	Explain the concept of active, reactive and apparent power and draw the power triangle.	UNDERSTAND	2,3
7	Co-relate the impedance triangle with power triangle and explain In detail.	ANALYZE	2,3
8	Explain the steady state analysis of series RL circuit .	UNDERSTAND	2,3
9	Explain the steady state analysis of series RC circuit .	UNDERSTAND	2,3
10	Explain the steady state analysis of series RLC circuit .	UNDERSTAND	2,3
11	Explain the terms phase, phase difference and phasor diagram with neat example.	UNDERSTAND	2,3
12	Compare current in DC and AC circuits.	ANALYZE	2,3
13	Explain the nature of power factor in inductive and capacitive circuits.	UNDERSTAND	2,3

14	Derive the expression for true power in ac circuits.	UNDERSTAND	2,3
15	Derive the expressions for reactance and admittance of inductor and capacitor.	UNDERSTAND	2,3
QUESTION BANK ON ANALYTICAL ANSWER QUESTION			
1	In an AC circuit source applied is 500sin100t across series combination of 10 ohms and 10 F , calculate source current flowing through circuit, form impedance and power triangle.	Apply	1,2
2	In an ac circuit two parallel impedances are in series across AB terminals where AB terminals are fed by 150 V 0 degrees. Calculate total impedance, power factor source current and voltage drop across Z2 $\begin{aligned} & \mathrm{Z} 1=(1+\mathrm{j}) \text { ohms } \\ & \mathrm{Z} 2=(3+5 \mathrm{j}) \text { ohms } \\ & \mathrm{Z} 3=(2+5 \mathrm{j}) \text { ohms } \end{aligned}$	Apply	1,2
3	In an ac circuit two parallel impedances are in series across AB terminals , where AB terminals are fed by 200 V 0 degrees. Calculate total impedance, admittance and current flowing through each element $\begin{aligned} & \mathrm{Z} 1=(8+\mathrm{j}) \mathrm{ohms} \\ & \mathrm{Z} 2=(1+6 \mathrm{j}) \mathrm{ohms} \\ & \mathrm{Z} 3=(3+5 \mathrm{j}) \text { ohms. } \end{aligned}$	Apply	1,2
4	If the voltage applied is $(10+8 \mathrm{j}) \mathrm{V}$ and current flowing through circuit is $(3+5) \mathrm{A}$, calculate complex power and circuit constants.	Apply	1,2
5	In an ac circuit two parallel impedances are in series across AB terminals , where AB terminals are fed by 200 V 50 degrees. Calculate total impedance, admittance , power, power factor and current flowing through each element $\begin{aligned} & \mathrm{Z} 1=(2+\mathrm{j}) \text { ohms } \\ & \mathrm{Z} 2=(3+5 \mathrm{j}) \text { ohms } \\ & \mathrm{Z} 3=(3+5 \mathrm{j}) \text { ohms.And load impedance of } \mathrm{Z} 4=(6+7 \mathrm{j}) . \end{aligned}$	Apply	1,2
6	In an AC circuit source applied is 500sin100t across series combination of 10 ohms and 10 F , calculate total impedance, phase angle between voltage and current in circuit and power factor of the circuit.	Apply	1,2
7	In an ac circuit two parallel impedances are connected in series with Z1 across $A B$ terminals, where $A B$ terminals are fed by 150 V 0 degrees. Calculate total impedance, power factor, source current and voltage drop across Z2 $\begin{aligned} & \mathrm{Z} 1=(2+\mathrm{j}) \text { ohms } \\ & \mathrm{Z} 2=(4+5 \mathrm{j}) \text { ohms } \\ & \mathrm{Z} 3=(1+5 \mathrm{j}) \text { ohms } \end{aligned}$	Apply	1,2
8	In an ac circuit two parallel impedances are connected in series with Z1 across $A B$ terminals, where $A B$ terminals are fed by 200 V 0 degrees. Calculate total impedance, power factor, source current and voltage drop across Z3 $\begin{aligned} & \mathrm{Z} 1=(8+\mathrm{j}) \mathrm{ohms} \\ & \mathrm{Z} 2=(1+6 \mathrm{j}) \mathrm{ohms} \\ & \mathrm{Z} 3=(3+5 \mathrm{j}) \mathrm{ohms} . \end{aligned}$	Apply	1,2
9	If the voltage applied is $(10-8 \mathrm{j}) \mathrm{V}$ and current flowing through circuit is $(3-5 \mathrm{j}) \mathrm{A}$, calculate complex power and circuit constants.	Apply	1,2
10	In an ac circuit two parallel impedances are connected in series with Z 1 across AB terminals, where AB terminals are fed by 200 V 50 degrees. Calculate total impedance, admittance , power, power factor and current flowing through each element $\mathrm{Z} 1=(1+\mathrm{j}) \mathrm{ohms}$	Apply	1,2

	Z2 $=(3+2 \mathrm{j}) \mathrm{ohms}$ $\mathrm{Z} 3=(3+2 \mathrm{j})$ ohms.And load impedance of $\mathrm{Z4}=(6+6 \mathrm{j})$.		
11	In an AC circuit source applied is $50 \sin 200 t$ across series combination of 10 ohms and 10 F , calculate source current flowing through circuit, form impedance and power triangle.	Apply	1,2
12	In an ac circuit two parallel impedances are connected in series with Z1 across $A B$ terminals, where $A B$ terminals are fed by 150 V 0 degrees. Calculate total impedance, power factor source current and voltage drop across Z3 $\begin{aligned} & \mathrm{Z} 1=(1+\mathrm{j}) \text { ohms } \\ & \mathrm{Z} 2=(3+5 \mathrm{j}) \text { ohms } \\ & \mathrm{Z} 3=(2+5 \mathrm{j}) \text { ohms } \end{aligned}$	Apply	1,2
13	In an ac circuit two parallel impedances are connected in series with Z1 across AB terminals, where AB terminals are fed by 200 V 0 degrees. Calculate total impedance, admittance and current flowing through each element Z2 $\begin{aligned} & \mathrm{Z} 1=(8+\mathrm{j}) \mathrm{ohms} \\ & \mathrm{Z} 2=(6+6 \mathrm{j}) \mathrm{ohms} \\ & \mathrm{Z} 3=(3+5 \mathrm{j}) \mathrm{ohms} \end{aligned}$	Apply	1,2
14	If the voltage applied is $(5+5 \mathrm{j}) \mathrm{V}$ and current flowing through circuit is $(3-5 \mathrm{j}) \mathrm{A}$, calculate complex power and circuit constants.	Apply	1,2
15	In an ac circuit two parallel impedances are connected in series with Z1 across $A B$ terminals, where $A B$ terminals are fed by 200 V 50 degrees. Calculate total impedance, admittance, power, power factor and current flowing through Z4 $\begin{aligned} & \mathrm{Z1}=(2+\mathrm{j}) \text { ohms } \\ & \mathrm{Z} 2=(3+5 \mathrm{j}) \text { ohms } \\ & \mathrm{Z} 3=(3+5 \mathrm{j}) \text { ohms.And load impedance of } \mathrm{Z} 4=(6+7 \mathrm{j}) . \end{aligned}$	Apply	1,2
UNIT -3			
QUESTION BANK ON SHORT ANSWER QUESTION			
Q.NO	Q QUESTION TO BE ANSWERED	BLOOM'S TAXANOMY	PO'S
1	What is locus diagram and give its importance?	UNDERSTAND	2,3
2	Define electrical resonance.	UNDERSTAND	2,3
3	Give the condition for circuit to be under resonance.	ANALYZE	2,3
4	Define series and parallel resonance.	UNDERSTAND	2,3
5	What is the importance of cut-off frequency.	ANALYZE	2,3
6	Write the expression for bandwidth in terms of resonant frequency and quality factor.	REMEMBER	2,3
7	Define quality factor and write Q-factor of inductor and capacitor.	UNDERSTAND	2,3
8	Write the expression for resonant frequency of series and parallel RLC circuit.	REMEMBER	2,3
9	In an series RLC circuit $R=1 \mathrm{~K}$ ohms, $\mathrm{L}=10 \mathrm{mH}$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$, calculate resonant frequency, cut -off frequencies, bandwidth and quality factor.	APPLY	1,2
10	Plot the locus diagram of series RL circuit with R as variable once and then XL as variable.	ANALYZE	2,3
11	In an series RLC circuit , $\mathrm{R}=10 \mathrm{ohms}, \mathrm{XL}=25$ ohms, calculate the C value if circuit is under resonance at 40 Hz and then determine impedance of the circuit at 50 Hz .	APPLY	1,2
12	What are the properties of coil?	UNDERSTAND	2,3

13	State faraday's law of electro-magnetic induction.	REMEMBER	2,3
14	Write the expression for co-efficient of coupling and Define perfect coupling.	REMEMBER	2,3
15	Define reluctance and write the expression their suggest Core to be chosen for magnetic circuit.	UNDERSTAND	2,3
16	Explain the dot convention for coil to write voltag Equation.	ANALYZE	2,3
17	Two coils of are connected in series, when they are aiding with each other total inductance is 25 H and when they are opposing each other is 15 H , calculate the mutual inductance and write all combinations of L1 and L2.	APPLY	1,2
18	Two coils of are connected in parallel, when they are aiding with each other if self inductance of each coil is 10 H and mutual inductance is 1 H , calculate equivalent inductance.	APPLY	1,2
19	Write flux density in terms of field intensiy.	REMEMBER	2,3
20	Calculate equivalent inductance if three coils are coupled with coil 1 has 8 H self inductance with current entering the dot, coil 2 has self inductance of 5 H with current entering the dot and self inductance of coil3 is 8 H with current leaving the dot, Mutual inductances are, between $1 \& 2=2 \mathrm{H}, 2 \& 3=3 \mathrm{H}$ and $3 \&$ $1=4 \mathrm{H}$.	APPLY	1,2
QUESTION BANK ON DISCRIPTIVE ANSWER QUESTION			
1	Draw and explain the locus diagram of series RL circit with R as variable.	UNDERSTAND	2,3
2	Draw and explain the locus diagram of series RL circit with XL as variable.	UNDERSTAND	2,3
3	Draw and explain the locus diagram of series RLC circit with R as variable.	UNDERSTAND	2,3
4	Define series resonance.Explain the voltage plots in series RLC circuit with resonance phenomenon.	ANALYZE	2,3
5	Define cut-off frequencies and bandwidth .Derive the expressions for cutoff frequencies and bandwidth of series RLC circuit.	REMEMBER	2,3
6	Define Q-factor. Derive the expressions for Q-factor of inductor and capacitor element in series RLC circuit.	REMEMBER	2,3
7	Explain the concept of DOT convention and state right hand thumb rule for coupled coils.	ANALYZE	2,3
8	Derive the expression for co-efficient of coupling.	REMEMBER	2,3
9	Explain the concept of composite magnetic circuit.	UNDERSTAND	2,3
10	Explain the concept of more than two coils coupled.	UNDERSTAND	2,3
11	Derive the expression total inductance for two coils coupled with each other and connected in parallel with dot convention both the currents entering the dot.	UNDERSTAND	2,3
12	Drive the expression for quality factor in series and parallel RLC circuits.	UNDERSTAND	2,3
13	Drive the expression for bandwidth in series RLC circuits.	UNDERSTAND	2,3

14	Drive the expression for bandwidth in parallel RLC circuits.	UNDERSTAND	2,3
15	Explain the impedance and admittance curves in series and parallel RLC circuits respectively.	UNDERSTAND	2,3
QUESTION BANK ON ANALYTICAL ANSWER QUESTION			
1	Draw the locus diagram of series R-L circuits with R variable.	APPLY	1,2
2	Draw the locus diagram of series $\mathrm{R}-\mathrm{C}$, with R variable circuits.	APPLY	1,2
3	Draw the locus diagram of series R-L with L variable circuits.	APPLY	1,2
4	A constant voltage at a frequency of 1 MHz is applied to an inductor in series with a variable capacitor when the capacitor is set to 500 PF , the current has the max value while it is reduced to one half when capacitor is of 600PF. Find resistance, inductance and Q factor of inductor.	APPLY	1,2
5	A series RLC circuit is connected across a variable frequency supply and has $\mathrm{R}=12$ ohms, $\mathrm{L}=1 \mathrm{mH}$ and $\mathrm{C}=1000 \mathrm{PF}$. Calculate resonant frequency, Q factor and cut of frequencies.	APPLY	1,2
6	A voltage $\mathrm{V}=10 \sin$ wt Is applied to series RLC circuit. Under resonance condition the max voltage across capacitor is found to be 500 V , bandwidth is $400 \mathrm{rad} / \mathrm{sec}$ and the impedance at resonance is 100 ohms. Find the resonant frequency and circuit constants.	APPLY	1,2
7	An iron ring 10 cm dia and 15 cm 2 in cross section is wound with 250 turns of wire for a flux density of $1.5 \mathrm{wb} / \mathrm{cm} 2$ and permeability 500 . Find the exciting current the inductance and stored energy. Find corresponding quantities when there is a 2 mm air gap.	APPLY	1,2
8	Draw the locus diagram of series R-C, with C variable circuits.	APPLY	1,2
9	A series RLC circuit is connected across a variable frequency supply and has $\mathrm{R}=1000$ ohms, $\mathrm{L}=1 \mathrm{mH}$ and $\mathrm{C}=0.01 \mathrm{microF}$. Calculate resonantfrequency, Q factor, bandwidth and cut of frequencies.	APPLY	1,2
10	A series RLC circuit is connected across a supply of and has $\mathrm{R}=2$ ohms, $\mathrm{L}=1 \mathrm{mH}$ and $\mathrm{C}=0.4$ microF. Calculate resonant frequency, Q factor, bandwidth and cut of frequencies, current at resonant frequency and cut-off frequencies.	APPLY	1,2
11	Series RLC circuit has $\mathrm{L}=50 \mu \mathrm{H}, \mathrm{C}=2000 \mathrm{pF}$ and $\mathrm{R}=50 \Omega$ a. Calculate Q factor of the circuit b. Find the new value of C required for resonance at the same frequency if the inductance is doubled. c. Find the new value of Q factor	APPLY	1,2
12	A constant voltage at frequency of 1 MHz is applied to a coil in series with a variable capacitor . a. when the capacitor is set at 500 pF , the current in the circuit is maximum. b. When the capacitor is set at 600 pF , the current is half the maxi. value. Find Resistance, Inductance, and Q factor of the coil	APPLY	1,2
13	series resonance network consisting of a resistor of 30Ω, a capacitor of 2 uF and an inductor of 20 mH is connected across a sinusoidal supply voltage which has a constant output of 9 volts at all frequencies. Calculate: a. The resonant frequency, b. The current at resonance,	APPLY	1,2

	c. The voltage across the inductor d. capacitor at resonance, e. The quality factor f. The bandwidth of the circuit.		
14	A series circuit consists of a resistance of 4Ω, an inductance of 500 mH and a variable capacitance connected across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate: a. The capacitance require to give series resonance b. The voltages generated across both the inductor and the capacitor	APPLY	1,2
UNIT -4			
QUESTION BANK ON SHORT ANSWER QUESTION			
Q.NO	QUESTION TO BE ANSWERED	BLOOM'S TAXANOMY	PO'S
1	What is network topology and write their applications?	ANALYZE	2,3
2	Define tree and co-tree.	REMEMBER	2,3
3	Write the expression for number of links.	REMEMBER	2,3
4	Write the importance and properties of incidence matrix.	ANALYZE	2,3
5	For 8 element 5 node graph, determine number of links.	APPLY	1,2
6	Explain the steps to form tie-set matrix.	ANALYZE	2,3
7	Explain the steps to form cut-set matrix.	ANALYZE	2,3
8	Draw the graph of wheat stone bridge and find incidence matrix.	UNDERSTAND	2,3
9	Draw the graph of wheat stone bridge and find tie-set matrix.	UNDERSTAND	2,3
10	Draw the graph of wheat stone bridge and find cut-set matrix.	UNDERSTAND	2,3
11	Define the duality and the dual elements.	UNDERSTAND	2,3
12	what is the importance of tie-set matrix with electrical networks.	ANALYZE	2,3
13	what is the importance of cut-set matrix with electrical networks.	ANALYZE	2,3
14	How many fundamental cutest and tie-set are possible for a graph.	APPLY	2,3
15	Take any original network and draw the dual network for that original network.	ANALYZE	2,3
QUESTION BANK ON DISCRIPTIVE ANSWER QUESTION			
1	What is network topology and its importance with electrical networks?	UNDERSTAND	2,3
2	Give the rules, properties of incidence matrix an explain with an example.	UNDERSTAND	2,3
3	Give the rules, properties of tie-set matrix an explain with an example.	UNDERSTAND	2,3
4	Give the rules, properties of cut-set matrix an explain with an example.	UNDERSTAND	2,3
5	Drive the relation between link currents and branch currents and write mesh equations.	REMEMBER	2,3
6	Drive the relation between twig voltages and branch voltages and write current equations.	REMEMBER	2,3
7	Define duality and explain how to form dual network for original network.	UNDERSTAND	2,3
8	Take any graph and draw all possible trees and explain condition to form tree.	APPLY	2,3
9	Define terms graph, oriented and non-oriented graph, planar and nonplanar graph, tree and co-tree, branches and links, nodes and degree of the node.	REMEMBER	2,3

10	Element 1 2 3 4 5 6 7 In an graph br Form inciden	From node a a b b c a c connected tie-set m	To node 0 b c 0 0 c 0	APPLY	1,2
11	Element 1 2 3 4 5 6 7 In an graph bra Form tie-set	From node a a b b c a c connected matrix.	To node 0 b c 0 0 c 0	APPLY	1,2
12	Element 1 2 3 4 5 6 7 8 Draw the grap twigs, number	From node a b c d a b c d trees, degr	To node b c d a b c d a	APPLY	1,2
13	Element 1 2 3 4 5 6 7 8 Draw the graph, f	From node a b c d a b c d and tir-set m and tir-set m	To node b c d a b c d a	APPLY	1,2
14	Element 1 2 3 4 5 6 7 8 Draw the graph,	From node a b c d a b c d	To node b c d a b c d a	APPLY	1,2

UNIT -5			
QUESTION BANK ON SHORT ANSWER QUESTION			
Q.NO	QUESTION TO BE ANSWERED	BLOOM'S TAXANOMY	PO'S
1	State theveninn's theorem	REMEMBER	2,3
2	State nortan's theorem	REMEMBER	2,3
3	State super-position theorem	REMEMBER	2,3
4	State reciprocity theorem	REMEMBER	2,3
5	State compensation theorem	REMEMBER	2,3
6	State milliman's theorem	REMEMBER	2,3
7	What is the importance of thevenin's theorem?	UNDERSTAND	2,3
8	What is the importance of nortan's theorem?	UNDERSTAND	2,3
9	What is the importance of super-position theorem?	UNDERSTAND	2,3
10	What is the importance of milliman's theorem?	UNDERSTAND	2,3
11	What is the importance of compensation theorem?	UNDERSTAND	2,3
12	Give the application of reciprocity theorem.	ANALYZE	2,3
13	If the thevenin's equivalent consists of 25 v with 10 ohms drawthe nortan's equivalent.	APPLY	1,2
14	If $25 \mathrm{v}, 15 \mathrm{v}$ and 10 v are connected across ab terminals, what is voltage measured across ab terminals?	APPLY	1,2
15	Can be super-position theorem used to find power in an element? Justify your answer.	ANALYZE	1,2
16	The nortan's equivalent circuit consists of 10A in parallel with 8 ohms , find the load resistance for which maximum power transfer takes place.	APPLY	
17	If two branches are in parallel with 15 V in series with 5 ohms and 5 V in series with 1 ohm across $A B$ terminals, find the current and power absorbed by 5 ohms resistor if it is connected across AB terminals.	APPLY	$\begin{aligned} & 1,2 \\ & 1,2 \\ & \hline \end{aligned}$
QUESTION BANK ON DISCRIPTIVE ANSWER QUESTION			
1	State and prove tellegen's theorem with an example for DC excitation.	$\begin{gathered} \text { REMEMBER } \\ \text { AND } \\ \text { UNDERSTAND } \end{gathered}$	2,3
2	State and prove thevenin's theorem with an example for DC excitation.	$\begin{gathered} \text { REMEMBER } \\ \text { AND } \\ \text { UNDERSTAND } \end{gathered}$	2,3
3	State and prove nortan's theorem with an example for DC excitation.	$\begin{gathered} \text { REMEMBER } \\ \text { AND } \\ \text { UNDERSTAND } \end{gathered}$	2,3
4	State and prove super-position theorem with an example for DC excitation.	$\begin{gathered} \text { REMEMBER } \\ \text { AND } \\ \text { UNDERSTAND } \end{gathered}$	2,3
5	State and prove reciprocity theorem with an example for DC excitation.	$\begin{aligned} & \text { REMEMBER } \\ & \text { AND } \\ & \hline \end{aligned}$	2,3

		UNDERSTAND	
6	State and prove compensation theorem with an example for DC excitation.	$\begin{aligned} & \text { REMEMBER } \\ & \text { AND } \\ & \text { UNDERSTAND } \end{aligned}$	2,3
7	State and prove milliman's thoerem theorem with an example for DC excitation.	REMEMBER AND UNDERSTAND	2,3
8	State and prove thevenin's theorem with an example for AC excitation.	$\begin{gathered} \text { REMEMBER } \\ \text { AND } \\ \text { UNDERSTAND } \end{gathered}$	2,3
9	State and prove super-position theorem with an example for ACexcitation.	REMEMBER AND UNDERSTAND	2,3
10	State and prove nortan's theorem with an example for AC excitation.	REMEMBER AND UNDERSTAND	2,3
11	Prove the condition for maximum power transfer with DC excitation and explain	UNDERSTAND	2,3
12	Prove the condition for maximum power transfer with AC excitation and explain	UNDERSTAND	2,3
13	State and explain the milliman's theorem .(DC)	UNDERSTAND	2,3
14	State and explain the milliman's theorem.(AC)	UNDERSTAND	2,3
15	Explain the thevenin's equivalent and norton's equivalent circuit with their importance.		
QUESTION BANK ON ANALYTICAL ANSWER QUESTION			
1	Two parallel branches are connected across AB terminals, they 10 V in series with 2 ohms and 20 V in series with 5 ohms , use the necessary theorem and find the power absorbed by load resistor with maximum power across AB	APPLY	1,2
2	In an series circuit the source impedance is $(3+8 j)$ ohms with 100 V supply calculate load impedance to absorb maximum power and form the nortan's equivalent circuit.	APPLY	1,2
3	In an network consisting of AB terminals, firstly a branch across AB is defined as 20 V in series with 5 ohms , second branch 7 ohms and third branch 10 V in series with 4 ohms. Apply super-position theorem to find voltage drop across 7 ohms resistor.	APPLY	1,2
4	In an network consisting of AB terminals, firstly a branch across AB is defined as 100 V in series with $(3+4 \mathrm{j})$ ohms , second branch 7 ohms and third branch 50 V in series with $(2+3 \mathrm{j})$ ohms. Apply thevenin's theorem to find current flowing through 7 ohms	APPLY	1,2
5	In an circuit brach $\mathrm{AB}=10 \mathrm{OHMS}, \mathrm{BC}=20 \mathrm{OHMS}, \mathrm{CD}=15 \mathrm{OHMS}$, $\mathrm{BD}=8$ ohms and $\mathrm{DA}=5 \mathrm{OHMS}$ and an source of 100 V in series with 5 OHMS connected across A and C. verify the tellegen's theorem.	APPLY	1,2
6	In an series circuit $\mathrm{Z} 1=(10+10 \mathrm{j})$ ohms, $\mathrm{Z} 2=(5+3 \mathrm{j})$ ohms with 100 V 45 degrees supply. Apply compensation theorem and find the response in Z2.	APPLY	1,2
7	In an series circuits source resistance is 45 ohms and load resistor is R_{L} with 20 V DC supply. If R_{L} is variable of resistances $10,20,30,40,45$, $50,60,70$ ohms respectively. Find the for what resistance of load maximum power is transfer, maximum power value, current and voltage drops in each case.	APPLY	1,2

14	Find the current flowing through ($2+2 \mathrm{j}$)ohms impedance using superposition theorem. If the circuit is as below.			APPLY	1,2
	element	From node	To node		
	20 V with 0 degrees phase source	a	0		
	$(1+3 \mathrm{j})$) ohms	a	b		
	(2+2j) ohms	b	0		
	(3+2j))ohms	b	c		
	10 V with 0 degrees phase	c	0		
	State milliman's theorem and Find the current flowing through ($2+2 \mathrm{j}$)ohms impedance using s. If the circuit is as below.				1,2
	element	From node	To node		
	20 V with 0 degrees phase source	a	0		
	($1+3 \mathrm{j}$)) ohms	a	b		
	($2+2 \mathrm{j}$) ohms	b	0		
	($3+2 \mathrm{j}$) $)$ ohms	b	c		
15	10 V with 0 degrees phase	c	0		

