

## **INSTITUTE OF AERONAUTICALENGINEERING**

(Autonomous) Dundigal,Hyderabad-500043

## FRESHMAN ENGINEERING

## **TUTORIAL QUESTION BANK**

| Course Name                                                    | : | ENGINEERING PHYSICS                                             |
|----------------------------------------------------------------|---|-----------------------------------------------------------------|
| Course Code                                                    | : | AHS007                                                          |
| Class                                                          | : | I B. Tech I Semester                                            |
| Branch                                                         | : | Common for ECE/CSE/EEE/IT                                       |
| <b>Year</b> : 2016 – 2017                                      |   | 2016 - 2017                                                     |
| CourseCoordinator : Dr.Rizwana, Professor, Department of Fresh |   | Dr.Rizwana, Professor, Department of Freshman                   |
| Course Feeulty                                                 |   | Dr. A Jayanth Kumar, Dr. Rizwana, Ms. S Charvani, Ms. K Sowmya, |
| Course racuity                                                 | · | Mr. K Sai Baba, Dr. N RajeswaraRao, Mr. V S K Prasad Rao        |

## **OBJECTIVES**

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

| a N    |                                                          | Blooms     | Course   |
|--------|----------------------------------------------------------|------------|----------|
| S No   | QUESTION                                                 | taxonomy   | Outcomes |
|        |                                                          | level      |          |
|        | UNIT – I                                                 |            |          |
|        | DIELECTRIC AND MAGNETIC PROPERTIES                       | 5          |          |
| Part - | A(Short Answer Questions)                                |            |          |
| 1      | Explain the terms:                                       | Damanhan   | 1.2      |
| 1      | i Di-electric constant ii Electric polarization          | Remember   | 1, 3     |
| 2      | Explain the terms:                                       | Pamambar   | 13       |
| 2      | i. Displacement vector ii. Electric susceptibility       | Kemember   | 1, 5     |
| 3      | Explain the terms:                                       | Domomhor   | 1.2      |
|        | i. Polarization vector ii. Polarizability                | Remember   | 1, 5     |
| 4      | Explain the terms:                                       | Domonthon  | 1.2      |
| 4      | i. Electric dipole ii. Electric dipole moment            | Remember   | 1, 5     |
| 5      | <b>Define</b> the types of polarizations in dielectrics. | Remember   | 1, 3     |
| 6      | What is meant by polarization mechanism in dielectrics?  | Remember   | 1, 3     |
| 7      | What is electronic polarization?                         | Remember   | 1, 3     |
| 8      | What is ionic polarization?                              | Remember   | 1, 3     |
| 9      | What is orientation polarization?                        | Remember   | 1, 3     |
| 10     | What is internal field in dielectric material?           | Understand | 1, 3     |

| 11                              | Write an expression for internal field in dielectric material.                                                                                                                                                                                                       | Remember   | 1, 3 |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|--|
| 12                              | Explain the terms:i. Magnetic inductionii. Magnetic susceptibility                                                                                                                                                                                                   | Remember   | 1, 4 |  |
| 13                              | Explain the terms:<br>i. Magnetic field intensity ii. Permeability                                                                                                                                                                                                   | Remember   | 1,4  |  |
| 14                              | Explain the terms:<br>i. Relative permeability ii. Magnetic moment                                                                                                                                                                                                   | Remember   | 1,4  |  |
| 15                              | Explain Magnetization.                                                                                                                                                                                                                                               | Remember   | 1,4  |  |
| 16                              | What is Bohr magneton? Explain.                                                                                                                                                                                                                                      | Analyze    | 1,4  |  |
| 17                              | Mention the types of magnetic materials based on electron spins.                                                                                                                                                                                                     | Analyze    | 1, 4 |  |
| 18                              | What is hysteresis loop?                                                                                                                                                                                                                                             | Understand | 1,4  |  |
| 19                              | Define retentivity.                                                                                                                                                                                                                                                  | Understand | 1, 4 |  |
| 20                              | <b>Define</b> coercivity.                                                                                                                                                                                                                                            | Understand | 1,4  |  |
| Part -                          | B (Long Answer Ouestions)                                                                                                                                                                                                                                            |            | ·    |  |
|                                 | <b>What</b> is meant by polarization mechanism in dielectrics? Discuss                                                                                                                                                                                               |            |      |  |
| 1                               | different polarization mechanism in dielectrics.                                                                                                                                                                                                                     | Understand | 1, 3 |  |
| 2                               | <b>What</b> is electronic polarization? Derive an expression for electronic polarizability in terms of the radius of the atom.                                                                                                                                       | Analyze    | 1, 3 |  |
| 3                               | <b>What</b> is ionic polarization? Derive an expression for ionic polarizability.                                                                                                                                                                                    | Analyze    | 1, 3 |  |
| 4                               | <b>What</b> is local field in a dielectric material? Derive an expression for it by Lorentz method                                                                                                                                                                   | Analyze    | 1, 3 |  |
| 5                               | <b>Explain</b> the origin of magnetic moment. Find the magnetic dipole moments due to orbital and spin motions of an electron.                                                                                                                                       | Remember   | 1, 4 |  |
| 6                               | What are the characteristics of diamagnetic, paramagnetic and ferromagnetic substances? Explain their behavior with the help of examples.                                                                                                                            | Understand | 1, 4 |  |
| 7                               | Explain domain theory of ferromagnetism.                                                                                                                                                                                                                             | Understand | 1,4  |  |
| 8                               | <b>Explain</b> the Hysteresis curve exhibited by Ferromagnetic material on the basis of domain theory                                                                                                                                                                | Understand | 1,4  |  |
| Part - C (Analytical Questions) |                                                                                                                                                                                                                                                                      |            |      |  |
| 1                               | Find the electric susceptibility of a dielectric gas having dielectric                                                                                                                                                                                               | A          | 2.2  |  |
| 1                               | constant of 1.000041.                                                                                                                                                                                                                                                | Арргу      | 2, 5 |  |
| 2                               | A parallel capacitor has an area of 100cm <sup>2</sup> , a plate separation of 1 cm and is charged to a potential of 100 Volts. <b>Calculate</b> the capacitance of the capacitor and the change on the plates.                                                      | Apply      | 2, 3 |  |
| 3                               | The dielectric constant of He gas is 1.0000684. Find the electronic polarizability of He atoms if the gas contains 2.7 x $10^{25}$ atoms per m <sup>3</sup> .                                                                                                        | Apply      | 2, 3 |  |
| 4                               | A solid dielectric with density 3 x $10^{28}$ atoms / m <sup>3</sup> shows an electronic polarizability of $10^{-40}$ farad -m <sup>-2</sup> . Assuming the internal electric field to be a Lorentz field, <b>calculate</b> the dielectric constant of the material. | Apply      | 2, 3 |  |
| 5                               | A parallel capacitor of area 650 mm <sup>2</sup> and a plate separation of 4 mm has a charge of $2x10^{-10}$ C on it. When a material of dielectric constant 3.5 is introduced between the plates, <b>what</b> is the resultant voltage across the capacitors.       | Apply      | 2, 3 |  |
| 6                               | <b>Calculate</b> magnetization and magnetic flux density if magnetic field intensity 250amp/m and relative permeability is 15.                                                                                                                                       | Apply      | 2, 4 |  |

| 7                                | Find relative permeability, if H=220amp/m and M=3300 amp/m.                                                                       | Apply      | 2,4  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|------|--|
| 8                                | The magnetic susceptibility of aluminum is $2.3 \times 10^{-5}$ . Find its                                                        | Apply      | 2.4  |  |
| 0                                | permeability and relative permeability.                                                                                           | rippiy     | 2, 1 |  |
| 9                                | If a magnetic field of strength 300 amp/meter produces a magnetization of $4200 \text{ A/m}$ in a ferromagnetic material find the | Apply      | 2 4  |  |
|                                  | relative permeability of the material.                                                                                            | дрргу      | 2,4  |  |
|                                  | A para magnetic material has a magnetic field intensity of $10^4$ A/m.                                                            |            |      |  |
| 10                               | If the susceptibility of the material at room temperature is $3.7 \times 10^{-3}$ ,                                               | Apply      | 2,4  |  |
| _                                | calculate the magnetization and magnetic flux density in the                                                                      | II J       | 7    |  |
|                                  | UNIT - II                                                                                                                         |            |      |  |
|                                  | LASERS                                                                                                                            |            |      |  |
| Part –                           | A (Short Answer Questions)                                                                                                        |            |      |  |
| 1                                | Explain the terms:                                                                                                                | Remember   | 5    |  |
|                                  | 1. Spontaneous emission 11. Stimulated emission                                                                                   |            |      |  |
| 2                                | i.Lasing action ii. Population inversion.                                                                                         | Remember   | 5    |  |
| 3                                | Explain the terms:                                                                                                                | Remember   | 5    |  |
| 4                                | i.Absorption ii. Pumping mechanism.                                                                                               | Demonstra  | 5    |  |
| 4                                | Explain metastable state.                                                                                                         | Remember   | 5    |  |
| 5                                | What are Einstein coefficients?                                                                                                   | Remember   | 5    |  |
| 6                                | <b>What</b> do you understand by population inversion? How it is achieved?                                                        | Understand | 5    |  |
| 7                                | Explain the characteristics of laser beam.                                                                                        | Understand | 5    |  |
| 8                                | Explain life time of an energy level.                                                                                             | Remember   | 5    |  |
| 9                                | Explain the basic principle for producing laser beam.                                                                             | Remember   | 5    |  |
| 10                               | Mention applications of lasers in medical field.                                                                                  | Remember   | 5    |  |
| 11                               | Write the industrial applications of lasers.                                                                                      | Analyze    | 5    |  |
| 12                               | Distinguish between Ruby laser and He-Ne laser.                                                                                   | Analyze    | 5    |  |
| 13                               | How is light amplification achieved in a laser system?                                                                            | Understand | 5    |  |
| 14                               | <b>Explain</b> the need for cavity resonator in a laser.                                                                          | Remember   | 5    |  |
| 15                               | Write various pumping mechanisms that are adopted in lasers.                                                                      | Analyze    | 5    |  |
| 16                               | Write any four applications of laser.                                                                                             | Analyze    | 5    |  |
| 17                               | <b>Explain</b> the purpose of an active medium in a laser.                                                                        | Remember   | 5    |  |
| Part - B (Long Answer Questions) |                                                                                                                                   |            |      |  |
| 1                                | What are Einstein's coefficients of radiation? Derive relation between                                                            | A          | F    |  |
| 1                                | them.                                                                                                                             | Analyze    | 5    |  |
| 2                                | <b>Explain</b> the principle, construction and working of a Ruby laser with the help of a suitable diagram.                       | Understand | 5    |  |
| 3                                | <b>Describe</b> the construction of He-Ne laser and discuss with relevant ELD, working of He-Ne laser.                            | Understand | 5    |  |
| 1                                | <b>Explain</b> the principle, construction and working of a semi conductor                                                        | Understand | 5    |  |
| 4                                | laser with the help of a suitable diagram.                                                                                        | Understand | 5    |  |
| 5                                | Write the applications of lasers in various fields.                                                                               | Understand | 5    |  |
| Part - C                         | Part - C (Analytical Questions)                                                                                                   |            |      |  |
| 1                                | <b>Calculate</b> the wavelength of emitted radiation from a semiconductor diode laser, which has a band gap of 1.44eV.            | Apply      | 2,5  |  |

| 2                                                                                | A semiconductor diode laser has a wavelength of $1.55\mu$ m. Find its band gap in eV.                                                 | Apply         | 2,5    |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--|
| 3                                                                                | <b>Find</b> the relative population of the two states in a ruby laser that produces a light beam of wavelength 6943A° at 300K.        | Apply         | 2,5    |  |
| 4                                                                                | <b>Find</b> the relative population of the two states in a laser that produces a light beam of wavelength $1.06 \mu\text{m}$ at 300K. | Apply         | 2,5    |  |
|                                                                                  | UNIT-III<br>NANOMATERIAL                                                                                                              |               |        |  |
| Part - A                                                                         | A (Short Answer Questions)                                                                                                            |               |        |  |
| 1                                                                                | <b>Discuss</b> origin of nanotechnology.                                                                                              | Remember      | 6      |  |
| 2                                                                                | What are nanomaterials? Explain.                                                                                                      | Remember      | 6      |  |
| 3                                                                                | Write about nanoscale.                                                                                                                | Remember      | 6      |  |
| 4                                                                                | <b>Why</b> nanomaterials exhibit different properties? Explain.                                                                       | Remember      | 6      |  |
| 5                                                                                | <b>Explain</b> guantum confinement effect on nanoparticles.                                                                           | Remember      | 6      |  |
| 6                                                                                | Write the important applications of nanomaterials in bio fields.                                                                      | Remember      | 6      |  |
| 7                                                                                | <b>Describe</b> any three processes by which nanomaterials are fabricated.                                                            | Remember      | 7      |  |
| 8                                                                                | <b>Describe</b> the important applications of panotechnology                                                                          | Remember      | 6      |  |
| 9                                                                                | Write the applications of nanomaterials in industry                                                                                   | Analyze       | 6      |  |
| 10                                                                               | <b>Discuss</b> how TEM can be used to characterize papoparticles                                                                      | Understand    | 7      |  |
| 10                                                                               | <b>Cive</b> three methods of fabrication of nonometorials                                                                             | Analyza       | 7      |  |
| 11                                                                               | What are the advantages of TEM2                                                                                                       | Analyze       | 1<br>6 |  |
| 12<br>Part                                                                       | R (Long Answer Questions)                                                                                                             | Anaryze       | 0      |  |
|                                                                                  |                                                                                                                                       | <b>TT 1 1</b> | 6      |  |
|                                                                                  | Discuss in detail the basic principle of nanomaterials.                                                                               | Understand    | 6      |  |
| 2                                                                                | <b>Discuss</b> optical, physical and chemical properties of nanomaterials.                                                            | Analyze       | 6      |  |
| 3                                                                                | <b>Discuss</b> electrical, magnetic and mechanical properties of nanomaterials.                                                       | Analyze       | 6      |  |
| 4                                                                                | <b>Explain</b> top-down fabrication method using chemical vapour deposition technique.                                                | Remember      | 7      |  |
| 5                                                                                | <b>Describe</b> the process of sol-gel and precipitation in the fabrication of nanostructures.                                        | Remember      | 7      |  |
| 6                                                                                | <b>Explain</b> Transmission Electron Microscopy characterization technique of nanomaterials.                                          | Remember      | 6      |  |
| 7                                                                                | <b>Explain</b> how X-ray diffraction can be used to characterize nanoparticles.                                                       | Remember      | 6      |  |
| 8                                                                                | <b>Describe</b> any one method of preparation of nanomaterial.                                                                        | Analyze       | 7      |  |
| 9                                                                                | <b>List</b> out the applications of nanomaterials in various fields.                                                                  | Analyze       | 6      |  |
| Part - C (Analytical Questions)                                                  |                                                                                                                                       |               |        |  |
| <b>Calculate</b> the surface area to its volume ratio of a spherical particle of |                                                                                                                                       |               |        |  |
| 1                                                                                | diameter 8 mm.                                                                                                                        | Арргу         | 2,0    |  |
| 2                                                                                | If the radius of a sphere is made one-third, <b>how</b> its surface area to volume ratio changes.                                     | Apply         | 2,6    |  |
| 3                                                                                | If the dimension of a cube is doubled, <b>how</b> its surface area to volume ratio varies.                                            | Apply         | 2,6    |  |
| UNIT-IV                                                                          |                                                                                                                                       |               |        |  |
| QUANTUM MECHANICS                                                                |                                                                                                                                       |               |        |  |
| Part –                                                                           | Part – A (Short Answer Questions)                                                                                                     |               |        |  |

| 1        | What are matter waves?                                                                                                                             | Understand | 1, 8 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 2        | Write an expression for de-Broglie wave length in terms of                                                                                         | Apply      | 1.8  |
|          | momentum and kinetic energy.                                                                                                                       | rippiy     | 1,0  |
| 3        | What is dual nature of light?                                                                                                                      | Remember   | 1, 8 |
| 4        | State Heisenberg's Uncertainty principle.                                                                                                          | Remember   | 1, 8 |
| 5        | <b>Show</b> that $\lambda = 12.26/\sqrt{V} A^{\circ}$ .                                                                                            | Analyze    | 1, 8 |
| 6        | Explain the physical significance of wave function.                                                                                                | Remember   | 1, 9 |
| 7        | <b>Write</b> expressions for wave function and energy of a particle in one dimensional potential box.                                              | Remember   | 1, 9 |
| 8        | What is de-Broglie hypothesis?                                                                                                                     | Remember   | 1, 8 |
| 9        | Write any two properties of matter waves.                                                                                                          | Understand | 1, 8 |
| 10       | What is degeneracy?                                                                                                                                | Understand | 1, 9 |
| 11       | What are degenerate energy levels?                                                                                                                 | Understand | 1, 9 |
| 12       | Write expressions for wave function and energy of a particle in three dimensional potential box.                                                   | Remember   | 1, 9 |
| Part –   | B (Long Answer Questions)                                                                                                                          |            |      |
| 1        | <b>Explain</b> the concept of dual nature of the light.                                                                                            | Understand | 8    |
| 2        | Explain the properties of matter waves.                                                                                                            | Understand | 8    |
| 3        | <b>Derive</b> an expression for de-Broglie wave length.                                                                                            | Analyze    | 8    |
| 1        | <b>Describe</b> the experimental verification of matter waves using                                                                                | Understand | 8    |
| 4        | Davisson-Germer experiment.                                                                                                                        | Understand | 0    |
| 5        | <b>Derive</b> Schrodinger's wave equation for the motion of an electron.                                                                           | Analyze    | 9    |
| 6        | <b>Show</b> that the energies of a particle in a potential box are quantized.                                                                      | Understand | 9    |
| 7        | <b>Show</b> that the wavelength associated with an electron of mass 'm'                                                                            | Apply      | 8    |
|          | and kinetic energy 'E' is given by $\lambda = h / \sqrt{2mE}$                                                                                      |            |      |
| 8        | <b>Describe</b> an experiment to establish the wave nature of electrons.                                                                           | Understand | 8    |
| 9        | <b>Discuss</b> extension of potential well concept to three dimensions.                                                                            | Analyze    | 9    |
| 10       | <b>Derive</b> expressions for wave function and energy of a particle in one dimensional potential box.                                             | Analyze    | 9    |
| Part - O | C (Analytical Questions)                                                                                                                           |            |      |
| 1        | <b>Calculate</b> the velocity and kinetic energy of an electron having wavelength of 0.21nm.                                                       | Apply      | 2, 8 |
| 2        | <b>Calculate</b> the de Broglie wavelength associated with a proton moving with a velocity of $\frac{1}{10}$ of velocity of light. (mass of proton | Apply      | 2, 8 |
|          | $=1.674 \times 10^{-27} \text{ kg}$                                                                                                                | A          |      |
| 3        | <b>Calculate</b> the wavelength of an electron raised to a potential 15kV.                                                                         | Арріу      | 2, 8 |
| 4        | <b>Calculate</b> its de-Broglie wavelength. (Given kinetic energy of the neutron is $0.025$ eV mass of neutron $-1.674 \times 10^{-27}$ kg)        | Apply      | 2, 8 |
|          | <b>Calculate</b> the energies that can be possessed by a particle of mass                                                                          | Apply      |      |
| 5        | $8.50 \times 10^{-31}$ kg which is placed in an infinite potential box of width $10^{-10}$                                                         |            | 2, 9 |
|          | <sup>9</sup> cm.                                                                                                                                   |            |      |
| 6        | <b>Calculate</b> the velocity and kinetic energy of an electron having wavelength of 0.21 nm.                                                      | Apply      | 2, 8 |
| 7        | <b>Find</b> the lowest energy of an electron confined in a square box of side 0.1nm.                                                               | Apply      | 2,9  |

| 8                               | <b>Find</b> the wavelength associated with an electron rose to a potential 1600 V.                                                                                                            | Apply      | 2, 8  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| UNIT-V<br>SEMICONDUCTOR PHYSICS |                                                                                                                                                                                               |            |       |
| Part -                          | A (Short Answer Questions)                                                                                                                                                                    |            |       |
| 1                               | Classify semiconductors.                                                                                                                                                                      | Remember   | 10    |
| 2                               | Explain intrinsic semiconductor                                                                                                                                                               | Remember   | 10    |
| 3                               | What is carrier concentration?                                                                                                                                                                | Understand | 10    |
| 4                               | <b>Define</b> energy gap.                                                                                                                                                                     | Remember   | 11    |
| 5                               | Write a short note on p-type semiconductor.                                                                                                                                                   | Understand | 10    |
| 6                               | Write a short note on n-type semiconductor.                                                                                                                                                   | Understand | 10    |
| 7                               | What is Hall effect?                                                                                                                                                                          | Understand | 11    |
| 8                               | What are the applications of Hall effect?                                                                                                                                                     | Apply      | 11    |
| 9                               | Explain extrinsic semiconductor                                                                                                                                                               | Remember   | 10    |
| 10                              | Write expressions for carrier concentration of electrons and holes in intrinsic semiconductors.                                                                                               | Understand | 10    |
| 11                              | Write an expression for carrier concentration of electrons in p-type semiconductor.                                                                                                           | Understand | 10    |
| 12                              | Write an expression for carrier concentration of holes in n-type semiconductor.                                                                                                               | Understand | 10    |
| 13                              | <b>Where</b> does the Fermi level exists in case of p-type and n-type semiconductors at T=0K.                                                                                                 | Remember   | 10    |
| Part - l                        | 3 (Long Answer Questions)                                                                                                                                                                     |            |       |
| 1                               | Distinguish intrinsic and extrinsic semiconductors.                                                                                                                                           | Understand | 10    |
| 2                               | <b>Derive</b> an expression for intrinsic carrier concentration.                                                                                                                              | Apply      | 10    |
| 3                               | <b>Derive</b> an expression for carrier concentration of p-type semiconductors.                                                                                                               | Understand | 10    |
| 4                               | <b>Derive</b> an expression for carrier concentration of ntype semiconductors.                                                                                                                | Understand | 10    |
| 5                               | Write notes on direct band gap and indirect band gap semiconductors.                                                                                                                          | Understand | 11    |
| 6                               | Explain Hall effect and its importance.                                                                                                                                                       | Remember   | 11    |
| 7                               | <b>Derive</b> the expression for energy gap.                                                                                                                                                  | Analyze    | 11    |
| 8                               | <b>Explain</b> the variation of Fermi level with temperature in the case of p-type and n-type semiconductor.                                                                                  | Remember   | 10    |
| 9                               | <b>Derive</b> an expression for density of electrons in intrinsic semiconductor.                                                                                                              | Analyze    | 10    |
| 10                              | <b>Derive</b> an expression for density of holes in intrinsic semiconductor.                                                                                                                  | Analyze    | 10    |
| Part - C (Analytical Questions) |                                                                                                                                                                                               |            |       |
| 1                               | <b>Calculate</b> the density of charge carriers of semiconductor, given the Hall efficient is $-6.85 \times 10^{-5} \text{ m}^3/\text{Coulomb}$ .                                             | Apply      | 2,11  |
| 2                               | <b>Find</b> carrier concentration of an intrinsic semiconductor of band<br>gap 0.78eV at 300K. [Given that the effective mass of<br>electron=effective mass of hole = rest mass of electron.] | Apply      | 2,10  |
| 3                               | <b>What</b> temperature would the $E_F$ be shifted by 15% from middle of forbidden gap ( $E_g$ ). Given $E_{g=1.2ev}$ . Given effective mass of holes is 5 times that of electrons            | Apply      | 2, 10 |

| 4 | <b>Calculate</b> intrinsic carrier concentration for Ge at 27 <sup>o</sup> C. [for Ge atomic weight =72.6,Density=5400kg/m <sup>3</sup> Band gap Eg=0.7eV]                                                                                                                                                                                                                              | Apply | 2, 10 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 5 | <b>Calculate</b> Hall voltage developed across the width of the slab of a metallic slab carrying a current of 30A is subjected to a magnetic field of 1.75T. The magnetic field is perpendicular to the plane of the slab and to the current. The thickness of the slab is 0.35cm. The concentration of free electrons in the metal is $6.55 \times 10^{28}$ electrons/m <sup>3</sup> . | Apply | 2, 11 |
| 6 | Find carrier concentration, if the $R_H$ of a specimen is 3.66 x $10^{-4}$ m <sup>3</sup> c <sup>-1</sup> .                                                                                                                                                                                                                                                                             | Apply | 2,11  |

Prepared By:Dr.A Jayanth Kumar, Professor<br/>Dr.Rizwana, Associate Professor<br/>Ms S Charvani, Associate Professor<br/>Ms K Sowmya, Assistant Professor<br/>Mr K Saibaba, Assistant Professor<br/>Mr N RajeswaraRao, Assistant Professor<br/>Mr V S K Prasad, Assistant Professor

HOD, FRESHMAN