

# INSTITUTE OF AERONAUTICAL ENGINEERING

DUNDIGAL – 500 043, HYDERABAD

### **COMPUTER SCIENCE AND**

# **ENGINEERING** TUTORIAL QUESTION

## BANK

| Course Name    | : | FORMAL LANGUAGES AND AUTOMATA THEORY                                                                                                               |
|----------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | : | A40509                                                                                                                                             |
| Class          | : | II B. Tech II Semester                                                                                                                             |
| Branch         | : | Computer Science and Engineering                                                                                                                   |
| Year           | : | 2016 - 2017                                                                                                                                        |
| Course Faculty | : | Dr K Rajendra Prasad , Professor<br>Ms N Mamatha, Assistant Professor<br>Ms M Sandhya Rani, Assistant Professor<br>Ms T Ramya, Assistant Professor |

#### **OBJECTIVES**

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

### **Group - A** (Short Answer Questions)

| S. No.  | Questions                                                                                                       | Blooms<br>Taxonomy<br>Level | Course<br>Outcomes |
|---------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|
|         | UNIT - I                                                                                                        |                             |                    |
| Part- A | (Short Answer Questions)                                                                                        |                             |                    |
| 1.      | Explain transition diagram, transition table with example.                                                      | Understand                  | 1                  |
| 2.      | Define transition function of DFA.                                                                              | Remember                    | 2                  |
| 3.      | <b>Define</b> $\varepsilon$ –transitions.                                                                       | Remember                    | 2                  |
| 4.      | <b>Construct</b> a DFA to accept even number of 0's.                                                            | Apply                       | 2                  |
| 5.      | Define Kleene closure and positive closure.                                                                     | Remember                    | 1                  |
| 6.      | <b>Construct</b> a DFA to accept empty language.                                                                | Apply                       | 2                  |
| 7.      | <b>Explain</b> power of an alphabet $(\sum^*)$ ?                                                                | Understand                  | 1                  |
| 8.      | Write transition diagram for DFA accepting string ending with 00 defined over an alphabet $\Sigma = \{0,1\}$    | Apply                       | 2                  |
| 9.      | <b>Write</b> transition diagram for DFA to accept exactly one a defined<br>over an alphabet $\Sigma = \{a, b\}$ |                             | 2                  |
| 10.     | <b>Define</b> NFA with an example.                                                                              | Remember                    | 2                  |
| 11.     | Explain the different Operations on the languages.                                                              | Understand                  |                    |
| 12.     | <b>Construct</b> a finite automaton accepting all strings over {0, 1} having even number of 0's                 | Apply                       | 2                  |

| 13.               | Define Moore Machines.                                                                                                                                                                                                                                                                                                              | Remember   | 3 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| 14.               | Define Mealy Machines.                                                                                                                                                                                                                                                                                                              | Remember   | 3 |
| 15.               | Write DFA for odd number of 1's.                                                                                                                                                                                                                                                                                                    | Apply      | 2 |
| 16.               | <b>Write</b> NFA for (0+1)*101(0+1)*.                                                                                                                                                                                                                                                                                               | Apply      | 2 |
| 17.               | Write DFA for (0+1)*10(0+1)*.                                                                                                                                                                                                                                                                                                       | Apply      | 2 |
| 18.               | <b>Define</b> $\varepsilon$ - closure.                                                                                                                                                                                                                                                                                              | Remember   | 2 |
| <u>18.</u><br>19. | <b>Write</b> NFA for (0+1)*001(0+1)*.                                                                                                                                                                                                                                                                                               | Apply      | 2 |
| 20.               | Write DFA for (0+1)*00(0+1)*.                                                                                                                                                                                                                                                                                                       | Apply      | 2 |
| 21                | <b>Define</b> FSM and its structure with an example.                                                                                                                                                                                                                                                                                | Remember   | 2 |
| 22                | Give any two comparisions between NFA and DFA                                                                                                                                                                                                                                                                                       | Remember   | 2 |
|                   | Part- B (Long Answer Questions)                                                                                                                                                                                                                                                                                                     |            |   |
| 1.                | <b>Construct</b> a DFA to accept set of all strings ending with 010.<br>Define language over an alphabet $\sum = \{0,1\}$ and write for the above DFA.                                                                                                                                                                              | Apply      | 2 |
| 2.                | <b>Construct</b> a Moore machine to accept the following language. $L = \{w   w \mod 3 = 0\}$ on $\sum = \{0, 1, 2\}$                                                                                                                                                                                                               | Apply      | 3 |
| 3.                | Write any six differences between DFA and NFA                                                                                                                                                                                                                                                                                       | Apply      | 2 |
| 4.                |                                                                                                                                                                                                                                                                                                                                     | Understand | 2 |
| 5.                | <b>Write</b> NFA with $\xi$ to NFA conversion with an example.<br><b>Construct</b> NFA for $(0 + 1)*(00 + 11)(0 + 1)*$ and Convert to                                                                                                                                                                                               |            | 2 |
| 5.                | DFA. Construct NFA for $(0+1)^*(00+11)(0+1)^*$ and convert to                                                                                                                                                                                                                                                                       | Apply      | 2 |
| 6.                | <ul> <li>Design DFA for the following languages shown below</li> <li>∑ = { a,b}</li> <li>a) L={w/w does not contain the substring ab}</li> <li>b) L={w/w contains neither the substring ab nor ba}</li> <li>c) L={w/w is any string that doesn't contain exactly two a}</li> <li>d) L={w/w is any string except a and b}</li> </ul> | Apply      | 2 |
|                   | Illustrate given 2 FA's are equivalent or not with an example.                                                                                                                                                                                                                                                                      | Apply      | 6 |
| 8.                | <b>Construct</b> Mealy machine for $(0 + 1)^*(00 + 11)$ and convert to Moore machine.                                                                                                                                                                                                                                               | Apply      | 3 |
| 9.                | <b>Convert</b> NFA with $\boldsymbol{\xi} - \mathbf{a}^* \mathbf{b}^*$ to NFA.                                                                                                                                                                                                                                                      | Understand | 2 |
| 10.               | <b>Construct</b> NFA for $(0 + 1)$ *101 and Convert to DFA.                                                                                                                                                                                                                                                                         | Apply      | 2 |
| 11.               | <b>Construct</b> a mealy machine that takes binary number as input and produces 2's complement of that number as output. Assume the string is read LSB to MSB and end carry is discarded.                                                                                                                                           | Understand | 3 |
| 12.               | Explain with the following example the Minimize the DFA .                                                                                                                                                                                                                                                                           | Understand | 2 |
| 13.               | <b>Construct</b> a DFA, the language recognized by the Automaton being $L = \{a^n b/n \ge 0\}$ . Draw the transition table.                                                                                                                                                                                                         | Apply      | 2 |
| 14.               | Construct the Minimized DFA                                                                                                                                                                                                                                                                                                         | Apply      | 2 |
| 15.               | <b>b</b><br><b>Construct</b> the DFA that accepts/recognizes the language $L(M) =  $<br>$w \in \{a, b, c\}^*$ and <i>w</i> contains the pattern <i>abac</i> }. Draw the                                                                                                                                                             | Apply      | 2 |

|       | transition table.                                                                                                                                     |            |   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| 16.   | <b>Construct</b> NFA for given NFA with <i>C</i> -moves                                                                                               | Apply      |   |
|       | Construct in the given that the moves                                                                                                                 | 1199-5     |   |
|       |                                                                                                                                                       |            | - |
|       | $-(A)^{\circ}(B)^{\circ}(C)$                                                                                                                          |            | 2 |
|       |                                                                                                                                                       |            |   |
|       | E                                                                                                                                                     |            |   |
| 17.   | Differentiate between DFA and NFA with an example.                                                                                                    | Understand | 2 |
| 18.   | <b>Construct</b> a finite automaton accepting all strings over {0, 1}                                                                                 | Apply      |   |
|       | having                                                                                                                                                | 11.7       | 2 |
|       | even number of 0's and even number of 1's.                                                                                                            |            |   |
| 19.   | <b>Construct</b> a Moore Machine to determine the residue mod 5 for                                                                                   | Apply      | 3 |
| 20.   | <ul><li>each binary string treated as integer. Sketch the transition table.</li><li>Construct the Moore Machine for the given Mealy machine</li></ul> |            |   |
| 20.   | Construct the Proofe Machine for the given Meany machine                                                                                              |            |   |
|       | STATE/I a b output                                                                                                                                    |            |   |
|       | <u>q0</u> q1 q2 1                                                                                                                                     | Understand | 3 |
|       | <u>q1</u> <u>q1</u> <u>q1</u> <u>0</u>                                                                                                                |            |   |
|       | q2 q1 q0 1                                                                                                                                            |            |   |
| Dort  | C (Problem Solving and Critical Thinking)                                                                                                             |            |   |
|       | <b>Construct</b> NFA for $(0 + 1)*0(0 + 1)0(0 + 1)*$ and convert to DFA.                                                                              | Apply      | 2 |
| 2     | <b>Construct</b> NFA for $(0+1)^{\circ}010(0+1)^{\circ}$ and convert to DFA.                                                                          | Apply      | 2 |
| 3     |                                                                                                                                                       | Apply      | 2 |
| 1     | Construct NFA with E for 0*1*12* and Convert to NFA .<br>Construct Mealy Machine for Residue Modulo of 5 for the ternary                              |            | 2 |
| +     | number system and convert to Moore Machines.                                                                                                          | Apply      | 2 |
| 5     | <b>Write</b> the DFA that will accept those words from $\Sigma = \{a, b\}$ where                                                                      | Apply      |   |
|       | the number of a's is divisible by two and the number of b's is                                                                                        | 11.2       | 2 |
|       | divisible by three. Sketch the transition table of the finite                                                                                         |            |   |
| 5     | Construct DFA for the given NFA as shown in fig. below                                                                                                | Apply      |   |
|       | $\sim 0^{\circ}$                                                                                                                                      |            |   |
|       |                                                                                                                                                       |            |   |
|       |                                                                                                                                                       |            |   |
|       | · · ·                                                                                                                                                 |            | 2 |
|       | (93)                                                                                                                                                  |            |   |
|       | <b>↓</b> 1                                                                                                                                            |            |   |
|       | <b>(4)</b>                                                                                                                                            |            |   |
|       |                                                                                                                                                       |            |   |
|       | UNIT – II                                                                                                                                             |            |   |
| Part- | A (Short Answer Questions)                                                                                                                            |            |   |
| 1.    | Define Regular Languages.                                                                                                                             | Remember   | 7 |
| 2.    | Define Pumping Lemma for Regular Languages.                                                                                                           | Remember   | 7 |
| 3.    | Write the applications of pumping lemma for regular languages.                                                                                        | Apply      | 7 |
| 1.    | <b>List</b> any two applications of regular expression.                                                                                               | Remember   | 7 |
| 5.    | <b>Define</b> Context Free Grammars.                                                                                                                  | Remember   |   |
|       |                                                                                                                                                       |            | 8 |
| ó.    | Define Left linear derivation.                                                                                                                        | Remember   | 7 |
| 7.    | Write regular expression for denoting language containing empty                                                                                       | Apply      | 7 |
| 8.    | string. Differentiate left linear and right linear derivations.                                                                                       | Understand |   |
|       |                                                                                                                                                       |            | 8 |
| 9.    | Write the Context free grammar for palindrome.                                                                                                        | Remember   | 8 |
| 10.   | Define right linear grammars.                                                                                                                         | Remember   | 7 |
| 11.   | Define Regular grammars.                                                                                                                              | Remember   | 7 |
| 12.   | Write regular expressions for the Set of strings over {0, 1} whose                                                                                    | Apply      | 7 |
|       | last two symbols are the same.                                                                                                                        |            | / |
| 13.   | Define right linear derivation.                                                                                                                       | Remember   | 7 |
| 14.   | Define left linear grammars.                                                                                                                          | Remember   | 7 |
| 15.   | Write the regular language generated by regular expression                                                                                            | Apply      |   |
|       | (0+1)*001(0+1)*.                                                                                                                                      |            | 7 |
| 16.   | Write the Regular Expression for the set of binary strings.                                                                                           | Apply      | 7 |
| 17.   | Write the derivation of the string aaaa from CFG –                                                                                                    | Apply      | 8 |
| · •   |                                                                                                                                                       |            | 0 |

|        | $S \rightarrow a S/A  A \rightarrow a$                                                                                                                                                                                                                                                                                                                          |                |   |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|--|
| 18.    | Write the derivation of the string 110 from CFG –<br>S $\rightarrow$ A0/B A $\rightarrow$ 0/12/B B $\rightarrow$ A/11                                                                                                                                                                                                                                           | Apply          | 8 |  |
| 9.     | Write the Regular Expression to generate atleast one b over $\Sigma = \{a, b\}$                                                                                                                                                                                                                                                                                 | Apply          | 8 |  |
| 0.     | Write the Context free grammar for equal number of a's and b's.                                                                                                                                                                                                                                                                                                 | Apply          | 8 |  |
| art- F | 3 (Long Answer Questions)                                                                                                                                                                                                                                                                                                                                       |                |   |  |
|        | <b>Convert</b> Regular Expression 01* + 1 to Finite Automata.                                                                                                                                                                                                                                                                                                   | Understand     | 7 |  |
|        | <b>Convert</b> given Finite Automata to Regular Expression using Arden's                                                                                                                                                                                                                                                                                        | Understand     |   |  |
|        | theorem with an example.                                                                                                                                                                                                                                                                                                                                        |                | 7 |  |
|        | <b>Construct</b> Right linear , Left linear Regular Grammars for 01*+1.                                                                                                                                                                                                                                                                                         | Apply          | 7 |  |
|        | <b>Explain</b> Identity rules . Simplify the Regular Expression - $C + 1*(011)*(1*(011)*)*$                                                                                                                                                                                                                                                                     | Understand     | 7 |  |
|        | <b>Construct</b> Regular grammar for the given Finite Automata.<br>(a+b)*ab*.                                                                                                                                                                                                                                                                                   | Apply          | 7 |  |
|        | Construct Leftmost Derivation. , Rightmost Derivation,<br>Derivation Tree for the following grammar $S \rightarrow aB   bA$ $A \rightarrow a   aS   bAA$ $B \rightarrow b   bS   aBB$                                                                                                                                                                           | Apply          | 8 |  |
|        | For the string aaabbabbba .<br>Explain the properties, applications of Context Free Languages                                                                                                                                                                                                                                                                   | Understand     | 8 |  |
|        |                                                                                                                                                                                                                                                                                                                                                                 |                |   |  |
|        | <b>Construct</b> right linear and left linear grammars for given Regular Expression.                                                                                                                                                                                                                                                                            | Apply          | 7 |  |
|        | <b>Construct</b> a Transition System M accepting L(G) for a given Regular Grammar G.                                                                                                                                                                                                                                                                            | Apply          | 7 |  |
| ).     | <b>Discuss</b> the properties of Context free Language. Explain the pumping lemma with an example.                                                                                                                                                                                                                                                              | Understand     | 7 |  |
| 1.     | Write regular expressions for the given Finite Automata                                                                                                                                                                                                                                                                                                         | Apply          | 7 |  |
|        | 2 a                                                                                                                                                                                                                                                                                                                                                             |                |   |  |
| 2.     | $2$ <b>Construct</b> a NFA with $\mathcal{E}$ equivalent to the regular expression $10 + (0 + 11)0*1$                                                                                                                                                                                                                                                           | Apply          | 7 |  |
| 2.     | +<br>11)0*1<br><b>Construct</b> Leftmost Derivation, , Rightmost Derivation,<br>Derivation Tree for the following grammar $G = (V, T, P, S)$ with<br>$N = \{E\}, S = E, T = \{id, +, $<br>*(,)} $E \rightarrow E + E$<br>$E \rightarrow E^*$<br>$E \in E \rightarrow$<br>(E)<br>$E \rightarrow id$                                                              | Apply<br>Apply | 7 |  |
| 3.     | +<br>11)0*1<br><b>Construct</b> Leftmost Derivation, , Rightmost Derivation,<br>Derivation Tree for the following grammar $G = (V, T, P, S)$ with<br>$N = \{E\}, S = E, T = \{id, +, $<br>*(,)} $E \rightarrow E + E$<br>$E \rightarrow E^*$<br>$E E \rightarrow (E)$<br>(E)                                                                                    |                |   |  |
|        | +<br>11)0*1<br><b>Construct</b> Leftmost Derivation., Rightmost Derivation,<br>Derivation Tree for the following grammar $G = (V, T, P, S)$ with<br>$N = \{E\}, S = E, T = \{id, +, $<br>*(,)} $E \rightarrow E + E$<br>$E \rightarrow E^*$<br>$E E \rightarrow$<br>(E)<br>$E \rightarrow$ id<br>Obtain id+id*id in right most derivation, left most derivation | Apply          | 7 |  |

|         | with at least two consecutive 0's                                                                                |            |   |
|---------|------------------------------------------------------------------------------------------------------------------|------------|---|
| 17.     | <b>Construct</b> context free grammar which generates palindrome                                                 | Apply      | 8 |
|         | strings                                                                                                          | 11.2       |   |
| 1.0     | $\sum_{a,b} = \{a,b\}$                                                                                           |            |   |
| 18.     | <b>Construct</b> equivalent NFA with $\epsilon$ for the given regular expression $0^*(1(0+1))^*$ .               | Apply      | 7 |
|         |                                                                                                                  |            |   |
| 19.     | <b>Construct</b> the right linear grammar for the following                                                      | Apply      | 7 |
|         |                                                                                                                  |            |   |
|         |                                                                                                                  |            |   |
|         | ( )                                                                                                              |            |   |
|         | 1 $1$ $1$ $C$                                                                                                    |            |   |
|         | B                                                                                                                |            |   |
|         | A TO O                                                                                                           |            |   |
| 20.     | Write 12 identity rules for regular expressions                                                                  | Apply      | 7 |
| Part- ( | C (Problem Solving and Critical Thinking)                                                                        |            |   |
| 1       | <b>Convert</b> Regular Expression $(11 + 0)*(00 + 1)*$ to NFA with <b>E</b> .                                    | Understand | 7 |
|         |                                                                                                                  |            |   |
| 2       | <b>Convert</b> Regular Expression $(a + b)^*(aa + bb)(a + b)^*$ to DFA.                                          | Understand | 7 |
| 3       | <b>Construct</b> Regular Grammars for Finite Automata $0^*(1(0+1))^*$ .                                          | Apply      | 7 |
| 1       | Construct Finite                                                                                                 | Apply      | 7 |
|         | Automata for                                                                                                     |            |   |
|         | $A0 \rightarrow a A1$                                                                                            |            |   |
|         | $\begin{array}{c} A1 \\ \rightarrow \end{array}$                                                                 |            |   |
| 5       | Construct left linear grammar for the following                                                                  | Apply      | 7 |
| ,       |                                                                                                                  | rippij     | 1 |
|         |                                                                                                                  |            |   |
|         |                                                                                                                  |            |   |
|         | 0                                                                                                                |            |   |
|         | $\cap$                                                                                                           |            |   |
|         | $1 \qquad 1 \qquad c$                                                                                            |            |   |
|         | Nº JB                                                                                                            |            |   |
|         |                                                                                                                  |            |   |
|         | JAFO 10                                                                                                          |            |   |
|         |                                                                                                                  |            |   |
|         | UNIT – III                                                                                                       |            |   |
| Part    | - A (Short Answer Questions)                                                                                     |            |   |
|         | <b>Define</b> Greibach normal form.                                                                              | Remember   | 9 |
| 2.      | Define nullable Variable.                                                                                        | Remember   | 8 |
|         |                                                                                                                  | Remember   | 9 |
| 3.      | Write the minimized CFG for the following grammar<br>S→ABCa   bD                                                 | Kemember   | 9 |
|         | $A \rightarrow BC   b$                                                                                           |            |   |
|         | $B \rightarrow b   \epsilon C \rightarrow D$                                                                     |            |   |
|         | $ \varepsilon D \rightarrow d$                                                                                   |            |   |
| ł.      | <b>Convert</b> the grammar to CNF - S $\rightarrow$ bA/aB A $\rightarrow$ aS/a B $\rightarrow$ bS/b.             | Understand | 8 |
| 5.      | Explain the elimination of UNIT production.                                                                      | Understand | 8 |
| 5.      | Explain the elimination of useless symbols in productions.                                                       | Understand | 8 |
| 7.      | Define CNF.                                                                                                      | Remember   | 9 |
| 8.      | Write the minimization of CFG – S $\rightarrow$ a S/A A $\rightarrow$ a B $\rightarrow$ aa                       | Understand | 8 |
| ).      | <b>Define</b> the ambiguity in CFG.                                                                              | Remember   | 8 |
| 0.      | What is the use of CNF and GNF.                                                                                  |            | 8 |
| 1.      | <b>Write</b> the minimization of CFG - $S \rightarrow aS1b S1 \rightarrow aS1b/\epsilon$ .                       | Understand | 8 |
| 2.      | <b>Write</b> the minimization of CFG - S $\rightarrow$ A $\rightarrow$ aA/ $\epsilon$ .                          | Understand | 8 |
| 3.      | Write the minimization of CFG - $S \rightarrow AB/a \qquad A \rightarrow a$ .                                    | Understand | 8 |
|         |                                                                                                                  |            |   |
| 4.      | Write the minimization of CFG - $S \rightarrow aS/A/C$ A $\rightarrow a B \rightarrow aa C$<br>$\rightarrow aCb$ | Understand | 8 |
| 5       |                                                                                                                  | Understand | 8 |
| .4.     | $\Rightarrow aCb.$ Write the minimization of CFG - S $\Rightarrow$ AbA $A \Rightarrow$ Aa/ $\epsilon$ .          | Understand | 8 |
|         |                                                                                                                  |            |   |

| 17. | Write the minimization of CFG - $S \rightarrow aSa  S \rightarrow bSb  S \rightarrow a/b/\epsilon$ .                                                                                                                                                                        | Understand | 8  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
|     | Write the minimization of CFG - S $\rightarrow$ A0/B A $\rightarrow$ 0/12/B B $\rightarrow$ A/11.                                                                                                                                                                           | Understand | 8  |
| 18. | <b>Convert</b> the grammar to CNF $- S \rightarrow aSa/aa S \rightarrow bSb/bb S \rightarrow a/b$ .                                                                                                                                                                         | Understand | 8  |
| 19. | <b>Convert</b> the grammar to CNF - $S \rightarrow aAbB  A \rightarrow aA/a  B \rightarrow bB/a$ .                                                                                                                                                                          | Understand | 8  |
| 20. | Define PDA.                                                                                                                                                                                                                                                                 | Remember   | 10 |
| 21. | Define NPDA.                                                                                                                                                                                                                                                                | Remember   | 10 |
| 22. | <b>Differentiate</b> between deterministic and nondeterministic PDA.                                                                                                                                                                                                        | Understand | 10 |
| 23. | <b>Define</b> the language of DPDA.                                                                                                                                                                                                                                         | Remember   | 10 |
| 24. | List the steps to convert CFG to PDA.                                                                                                                                                                                                                                       | Remember   | 11 |
| 25. | <b>Explain</b> – acceptance of PDF by final state.                                                                                                                                                                                                                          | Understand | 10 |
| 26. | <b>Explain</b> – acceptance of PDF by empty stack.                                                                                                                                                                                                                          | Understand | 10 |
| 27. | <b>Convert</b> the following PDA to CFG<br>$\delta(q0,b,z0) = \{q0,zz0\}$                                                                                                                                                                                                   | Apply      | 11 |
| 28. | <b>Convert</b> the following PDA to CFG $\delta(q0, b, z)=(q0, zz)$                                                                                                                                                                                                         | Apply      | 11 |
| 29. | <b>Convert</b> the following PDA to CFG $\delta(q0, \epsilon, z0) = (q0, \epsilon)$                                                                                                                                                                                         | Apply      | 11 |
| 30. | <b>Convert</b> the following PDA to CFG $\delta(q0,a,z) = (q1,z)$                                                                                                                                                                                                           | Apply      | 11 |
| 31. | <b>Convert</b> the following PDA to CFG $\delta(q1,b,z)=(q1,\epsilon)$                                                                                                                                                                                                      | Apply      | 11 |
| 32. | <b>Convert</b> the following PDA to CFG $\delta(q1,a,z0)=(q0,z0)$                                                                                                                                                                                                           | Apply      | 11 |
| 33. | <b>Convert</b> the following PDA to CFG $\delta(q0,0,z0) = \{q0,xz0\}$                                                                                                                                                                                                      | Apply      | 11 |
| 34. | <b>Convert</b> the following PDA to CFG $\delta(q0,0,x)=(q0,xx)$                                                                                                                                                                                                            | Apply      | 11 |
| 35. | <b>Convert</b> the following PDA to CFG $\delta(q0,1,x)=(q1,\epsilon)$                                                                                                                                                                                                      | Apply      | 11 |
| 36. | <b>Convert</b> the following PDA to CFG $\delta(q1,1,x) = (q1,\epsilon)$                                                                                                                                                                                                    | Apply      | 11 |
| 37. | <b>Convert</b> the following PDA to CFG $\delta(q1,\epsilon,x)=(q1,\epsilon)$                                                                                                                                                                                               | Apply      | 11 |
| 38. | <b>Convert</b> the following PDA to CFG $\delta(q1,\epsilon,z0)=(q1,\epsilon)$                                                                                                                                                                                              | Apply      | 11 |
| 39. | <b>Convert</b> the following PDA to CFG $\delta(q1,\epsilon,z)=(q0,\epsilon)$                                                                                                                                                                                               | Apply      | 11 |
| 40. | <b>Convert</b> the following CFG to PDA $S \square ABC   BbB$                                                                                                                                                                                                               | Apply      | 11 |
| 41. | <b>Convert</b> the following CFG to PDA<br>$A \square aA   BaC aaa$                                                                                                                                                                                                         | Apply      | 11 |
| 42. | <b>Convert</b> the following CFG to PDA<br>B $\Box$ bBb  a D                                                                                                                                                                                                                | Apply      | 11 |
| 43. | <b>Convert</b> the following CFG to PDA $C \Box CA   AC$                                                                                                                                                                                                                    | Apply      | 11 |
| 44. | <b>Convert</b> the following CFG to PDA $S \Box a S/A$                                                                                                                                                                                                                      | Apply      | 11 |
|     | B (Long Answer Questions)                                                                                                                                                                                                                                                   |            |    |
| 1.  | <b>Write</b> a short notes on Chomsky Normal Form and Griebach Normal Form.                                                                                                                                                                                                 | Apply      | 9  |
| 2.  | Show that the following grammar is ambiguous with respect to the string aaabbabbba.<br>$S \rightarrow aB \mid bA$<br>$A \rightarrow aS \mid bAA \mid a$                                                                                                                     | Understand | 8  |
| 3.  | $B \rightarrow bS \mid aBB \mid b$<br>Use the following grammar :                                                                                                                                                                                                           | Apply      | 9  |
|     | $S \rightarrow ABC \mid BbB$<br>$A \rightarrow aA \mid BaC \mid aaa$<br>$B \rightarrow bBb \mid a \mid D$<br>$C \rightarrow CA \mid AC$<br>$D \rightarrow \varepsilon$<br>Eliminate $\varepsilon$ -productions.<br>Eliminate any unit productions in the resulting grammar. |            |    |
|     | Eliminate any useless symbols in the resulting grammar.<br>Convert the resulting grammar into Chomsky Normal Form                                                                                                                                                           |            |    |

| -      | Show that the following OEC such                                                          | A1                                            | 0  |
|--------|-------------------------------------------------------------------------------------------|-----------------------------------------------|----|
| 5.     | <b>Show</b> that the following CFG ambiguous.                                             | Apply                                         | 8  |
|        | $S \rightarrow iCtS \mid iCtSeS \mid a$<br>$C \rightarrow b$                              |                                               |    |
|        | <b>Discuss</b> the Pumping lemma for Context Free Languages concept with                  | Understand                                    | 9  |
| •      | example $\{a^n b^n c^n \text{ where } n \ge 0\}$                                          | Understand                                    | 7  |
|        | Write the simplified CFG productions in $S \rightarrow a S1b$                             | Apply                                         | 8  |
| •      | $S1 \rightarrow a S1b/C$                                                                  | II J                                          |    |
| •      | <b>Convert</b> the following CFG into GNF.                                                | Understand                                    | 8  |
|        | $S \rightarrow AA/a  A \rightarrow SS/b$                                                  |                                               |    |
|        | Explain unit production? Explain the procedure to eliminate unit                          | Understand                                    | 8  |
| 0.     | production. <b>Explain</b> the procedure to eliminate $\epsilon$ -productions in grammar. | Understand                                    | 8  |
|        |                                                                                           |                                               |    |
| 1.     | <b>Convert</b> the following grammar into GNF $C_{1}$ ((A1A2A2) (a b) $P_{2}$ (b)         | Understand                                    | 8  |
|        | $G=({A1,A2,A3},{a,b},P,A)$<br>A1->A2A3                                                    |                                               |    |
|        | A2->A3A1/b                                                                                |                                               |    |
|        | A3->A1A2/a                                                                                |                                               |    |
| 2.     | Write simplified CFG productions from the following grammar                               | Apply                                         | 8  |
|        | A->aBb/bBa                                                                                |                                               |    |
|        | B->aB/bB/e                                                                                |                                               |    |
| 3.     | <b>Convert</b> the following grammar into GNF                                             | Understand                                    | 8  |
|        | S->ABA/AB/BA/AA/B<br>A->aA/a B->bB/b                                                      |                                               |    |
| art. ( | C (Problem Solving and Critical Thinking)                                                 | <u>                                      </u> |    |
| art-C  | <b>Construct</b> PDA for equal number of x's and y's                                      | Apply                                         | 10 |
|        | consecution for equal number of x 5 and y 5                                               | , pp.y                                        | 10 |
|        | Convert the following grammar                                                             | Understand                                    | 9  |
|        | into GNF                                                                                  |                                               |    |
|        | $A1 \rightarrow A2 A3$                                                                    |                                               |    |
|        | $A2 \rightarrow A3 A1 /b$                                                                 |                                               |    |
|        | A3→ A1 A2 /a<br><b>Construct</b> DPDA for L = { W#W <sup>R</sup> /W $\epsilon$ (X + Y)*}  | Apply                                         | 10 |
|        | Construct DPDA for $L = \{ w \# w / w \in (X + I)^{*} \}$                                 | Apply                                         | 10 |
|        | Convert the following PDA to CFG                                                          | Understand                                    | 11 |
|        | $\delta(q0,0,z0) = \{q0,xz0\}$                                                            | and                                           |    |
|        | $\delta(q0,0,x)=(q0,xx)$                                                                  |                                               |    |
|        | $\delta(\mathbf{q}0,1,\mathbf{x}) = (\mathbf{q}1,\boldsymbol{\epsilon})$                  |                                               |    |
|        | $\delta(q1,1,x) = (q1,\epsilon)$                                                          |                                               |    |
|        | $\delta(q1,\epsilon,x) = (q1,\epsilon)$<br>$\delta(q1,\epsilon,z0) = (q1,\epsilon)$       |                                               |    |
|        | Write the PDA that accepts the language{a^m b^n/n>m}                                      | Apply                                         | 10 |
|        | while the i bit that accepts the tangaage(a in b init) inj                                | rippiy                                        | 10 |
|        | Design a PDA for the following grammar                                                    | Create                                        | 10 |
|        | S->0A                                                                                     |                                               |    |
|        | A->0AB/1                                                                                  |                                               |    |
|        | B->1                                                                                      | I In denote a d                               | 11 |
| ,      | Convert the following PDA to CFG<br>M=({q0,q1},{a,b},{z0,za},μ,q0,z0,Φ)                   | Understand<br>and                             | 11 |
|        | δ is given by, $δ(q0,a,z0)=(q0,zz)$                                                       | and                                           |    |
|        | $\delta(q0,a,z) = (q0,zz0)$                                                               |                                               |    |
|        | $\delta(\mathbf{q}0,\mathbf{b},\mathbf{z}) = (\mathbf{q}1,\epsilon)$                      |                                               |    |
|        | $\delta(q1,b,z) = (q1,\epsilon)$                                                          |                                               |    |
|        | $\delta(q1,\epsilon,z0)=(q1,\epsilon)$                                                    |                                               |    |
|        | UNIT - IV                                                                                 |                                               |    |
|        |                                                                                           |                                               |    |
|        |                                                                                           |                                               |    |
|        |                                                                                           |                                               |    |
|        | A (Short Answer Questions)                                                                | 1                                             |    |
|        | Define Turing Machine                                                                     | Apply                                         | 12 |
|        | Explain the moves in Turing Machine.                                                      | Understand                                    | 12 |
|        | <b>Define</b> an Instantaneous Description of a Turing Machine.                           | Remember                                      | 12 |
|        | <b>Define</b> the Language of Turing Machine.                                             | Remember                                      | 12 |
|        | List types of TM.                                                                         | Remember                                      | 12 |
| •      |                                                                                           |                                               |    |
|        | <b>Define</b> Computable Functions by Turing Machines.                                    | Remember                                      | 12 |
|        | Write the difference between Pushdown Automata and Turing                                 | Apply                                         | 12 |

|       | Machine.                                                                                                                                                                                                                                             |                                       |    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----|
| 8.    | Explain Church's Hypothesis.                                                                                                                                                                                                                         | Understand                            | 12 |
| 9.    | <b>Define</b> Context sensitive language.                                                                                                                                                                                                            | Remember                              | 12 |
| 10.   | Define multi head Turing Machine.                                                                                                                                                                                                                    | Remember                              | 12 |
| 11.   | <b>Define</b> multi dimensional Turing Machine.                                                                                                                                                                                                      | Remember                              | 12 |
| 12.   | <b>Define</b> multiple tapes Turing Machine.                                                                                                                                                                                                         | Remember                              | 12 |
| 13.   | Define Recursive languages.                                                                                                                                                                                                                          | Remember                              | 12 |
| 13.   | Define Recursively enumerable languages.                                                                                                                                                                                                             | Remember                              | 12 |
| 14.   | Define Two way infinite Turing Machine.                                                                                                                                                                                                              | Remember                              | 12 |
|       |                                                                                                                                                                                                                                                      |                                       |    |
| 16.   | Define Non deterministic Turing Machine.                                                                                                                                                                                                             | Remember                              | 12 |
| 17.   | Define Counter machine.                                                                                                                                                                                                                              | Remember                              | 12 |
| 18.   | Explain the model of Turing machine.                                                                                                                                                                                                                 | Remember                              | 12 |
| 19.   | <b>Construct</b> Turing Machine for 1's complement for binary numbers.                                                                                                                                                                               | Remember                              | 12 |
| 20.   | Differentiate Recursive languages and Recursively enumberable languages.                                                                                                                                                                             | Remember                              | 12 |
| Part- |                                                                                                                                                                                                                                                      |                                       |    |
| 1.    | <b>Define</b> a Turing Machine. With a neat diagram explain the working of a Turing Machine.                                                                                                                                                         | Remember                              | 12 |
| 2.    | Differentiate Turing Machine with other automata.                                                                                                                                                                                                    | Apply                                 | 12 |
| 3.    | <b>Construct</b> a Transition diagram for Turing Machine to accept<br>the following language. $L = \{ 0^n 1^n 0^n   n \ge 1 \}$                                                                                                                      | Apply                                 | 12 |
| 4.    | <b>Construct</b> Transition diagram for Turing Machine that accepts the language $L = \{0^n 1^n   n \ge 1\}$ . Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 000111. | Apply                                 | 12 |
| 5.    | <b>Construct</b> a Transition diagram for Turing Machine to accept the language L= { $w#w^R   w \in (a + b)^*$ }                                                                                                                                     | Apply                                 | 12 |
| 6.    | Write short notes on Recursive and Recursively Enumerable languages.                                                                                                                                                                                 | Apply                                 | 12 |
| 7.    | Write the properties of recursive and recursively enumerable languages.                                                                                                                                                                              | Apply                                 | 12 |
| 8.    | <b>Construct</b> a Turing Machine to accept strings formed with 0 and 1 and having substring 000.                                                                                                                                                    | Apply                                 | 12 |
| 9.    | <b>Construct</b> a Turing Machine that accepts the language $L = \{1^n 2^n 3^n   n \ge 1\}$ . Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 111222333.               | Apply                                 | 12 |
| 10.   | Define Linear bounded automata and explain its model?                                                                                                                                                                                                | Apply                                 | 12 |
| 11.   | Explain the power and limitations of Turing machine.                                                                                                                                                                                                 | Create                                | 12 |
| 12.   | Construct Transition diagram for Turing Machine - $L=\{a^nb^nc^n/n>=1\}$                                                                                                                                                                             | Apply                                 | 12 |
| 13.   | Construct a Transition diagram for Turing Machine to implement<br>addition of two unary numbers(X+Y).                                                                                                                                                | Apply                                 | 12 |
| 14.   | Construct a Linear Bounded automata for a language where $L=\{a^nb^n/n>=1\}$                                                                                                                                                                         | Apply                                 | 12 |
| 15.   | Explain the types of Turing machines.                                                                                                                                                                                                                | Apply                                 | 12 |
| 16.   | Write briefly about the following<br>a)Church's Hypothesis<br>b)Counter machine                                                                                                                                                                      | Apply                                 | 12 |
| 17.   | Construct a Transition table for Turing Machine to accept the following language. $L = \{ 0^n 1^n 0^n   n \ge 1 \}$                                                                                                                                  | Apply                                 | 12 |
| 18.   | Construct a Transition diagram for Turing Machine to accept the language $L = \{ ww^R   w \in (a + b) \}$                                                                                                                                            | Apply                                 | 12 |
| 19.   | Construct Transition table for TM - L={ $a^nb^nc^n/n>=1$ }                                                                                                                                                                                           | Apply                                 | 12 |
| 20.   | Construct a Linear Bounded automata for a language where                                                                                                                                                                                             | Apply                                 | 12 |
|       | $L=\{a^nb^nc^n/n>=1\}$                                                                                                                                                                                                                               | , , , , , , , , , , , , , , , , , , , | 12 |
|       | C (Problem Solving and Critical Thinking)                                                                                                                                                                                                            |                                       |    |
| 1     | Construct a Turing Machine that accepts the language<br>$L = \{a^{2n}b^n   n \ge 0\}$ . Give the transition diagram for the<br>Turing Machine obtained.                                                                                              | Apply                                 | 12 |
|       | •                                                                                                                                                                                                                                                    |                                       |    |

| 2     |                      |                 | g Machine that gives two's compliment for the      | Apply           | 12 |
|-------|----------------------|-----------------|----------------------------------------------------|-----------------|----|
| 3     | given bina           | a Turing        | Machine to accept the following                    | Apply           | 12 |
| ,     | language.            | $L = \{ w^n \}$ | $x^n y^n z^n \mid n \ge 1$                         | rippiy          | 12 |
|       |                      |                 | UNIT - V                                           |                 |    |
| Part- | A (Short A           | Inswer Q        | uestions)                                          |                 |    |
|       | Define Ch            | omsky hi        | erarchy of languages.                              | Knowledge       | 4  |
| 2.    | Define Un            | iversal T       | uring Machine                                      | Knowledge       | 12 |
| 3.    | Define Co            | ntext sen       | sitive language.                                   | Knowledge       | 5  |
| ŀ.    | Define de            | cidability      |                                                    | Knowledge       | 13 |
| i.    | Define P p           | problems.       |                                                    | Knowledge       | 13 |
| i.    | Define Un            | iversal T       | uring Machines                                     | Knowledge       | 13 |
|       | Give exan            | nples for       | Undecidable Problems                               | Understand      | 13 |
|       | Define Tu            | ring Mac        | Knowledge                                          | 13              |    |
|       | Define Tu            | ring Redu       | acibility                                          | Knowledge       | 13 |
| 0.    | Define Po            | st's Corre      | espondence Problem.                                | Knowledge       | 13 |
| 1.    | Define Ty            |                 | -                                                  | Knowledge       | 4  |
| 2.    | Define Ty            | pe 1 gran       | nmars .                                            | Knowledge       | 4  |
| 3.    | Define Ty            | pe 2 gran       | nmars .                                            | Knowledge       | 4  |
| 4.    | Define Ty            | pe 3 gran       | nmars .                                            | Knowledge       | 4  |
| 5.    | Define NF            |                 |                                                    | Knowledge       | 13 |
| 6.    |                      | -               | e problems                                         | Knowledge       | 13 |
| 7.    | Define NF            | -               | -                                                  | Knowledge       | 13 |
| 8.    |                      | -               | ity problem.                                       | Knowledge       | 13 |
| 9.    | Define tur           |                 | • •                                                | Knowledge       | 13 |
| 0.    | List the ty          | -               | -                                                  | Knowledge       | 13 |
|       | B (Long A            |                 |                                                    | inio wieage     | 10 |
|       |                      |                 | bt of decidable and undecidability problems        | Understand      | 12 |
|       | about Tur            | ing Mach        | ines.                                              | Chaerstand      | 12 |
| •     |                      |                 | t Chomsky hierarchy of languages                   | Apply           | 13 |
|       | Explain i            | ndividual       | ly classes P and NP                                | Understand      | 13 |
|       |                      |                 | on post's correspondence problem                   | Apply           | 13 |
|       | and check            |                 | wing is PCP or not.                                |                 |    |
|       | 1 A<br>1 11          |                 | 111                                                |                 |    |
|       |                      |                 | 001                                                |                 |    |
|       |                      |                 | 11                                                 |                 |    |
|       |                      |                 |                                                    | TTo 1 mode of 1 | 12 |
| •     | _                    |                 | g problem and Turing Reducibility.                 | Understand      | 13 |
|       |                      |                 | s on universal Turing machine.                     | Apply           | 12 |
|       |                      |                 | s on Chomsky hierarchy.                            | Apply           | 4  |
| •     | Write a sa automata. |                 | s on Context sensitive language and linear bounded | Apply           | 4  |
|       |                      |                 | on NP complete                                     | Apply           | 13 |
| 0.    |                      |                 | on NP hard problems.                               | Apply           | 13 |
| 1.    |                      |                 | on post's correspondence problem                   | Apply           | 13 |
|       |                      |                 | wing is PCP or not.                                | rr J            | -  |
|       | I A                  |                 | В                                                  |                 |    |
|       |                      | 00              | 1                                                  |                 |    |
|       | 2 0                  |                 | 100                                                |                 |    |
|       | 3 1                  |                 | 0                                                  |                 |    |
| 2.    |                      |                 | on post's correspondence problem                   | Apply           | 13 |
|       |                      |                 | wing is PCP or not.                                |                 |    |
|       | I A                  |                 | B                                                  |                 |    |
|       | 1 00                 |                 | 0                                                  |                 |    |
|       | 2 00                 | )]              | 11                                                 |                 |    |

|   | 3                                                                       | 1000               | 011         |                       |       |    |  |
|---|-------------------------------------------------------------------------|--------------------|-------------|-----------------------|-------|----|--|
|   | UNIT - V                                                                |                    |             |                       |       |    |  |
| 1 | 1 <b>Explain</b> PCP and MPCP with examples.                            |                    |             |                       |       | 13 |  |
| 2 | 2 <b>Explain</b> Turing theorem ,Halting problems, Turing Reducibility. |                    |             |                       |       | 13 |  |
| 3 | 3 <b>Explain</b> Type 3 and Type 2 grammars with example.               |                    |             |                       | Apply | 4  |  |
| 4 | Expla                                                                   | <b>in</b> Type 1 a | nd Type 0 g | rammars with example. | Apply | 4  |  |