INSTITUTE OF AERONAUTICAL
ENGINEERING
DUNDIGAL - 500 043, HYDERABAD
COMPUTER SCIENCE AND

ENGINEERING TUTORIAL QUESTION

BANK

Course Name	$:$	FORMAL LANGUAGES AND AUTOMATA THEORY
Course Code	$:$	A40509
Class	$:$	II B. Tech II Semester
Branch	$:$	Computer Science and Engineering
Year	$:$	$2016-2017$
Course Faculty	$:$	Dr K Rajendra Prasad, Professor Ms N Mamatha, Assistant Professor Ms M Sandhya Rani, Assistant Professor Ms T Ramya, Assistant Professor

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

Group - A (Short Answer Questions)

S. No.	Questions	$\begin{gathered} \hline \text { Blooms } \\ \text { Taxonomy } \\ \text { Level } \\ \hline \end{gathered}$	Course Outcomes
UNIT - I			
Part- A (Short Answer Questions)			
1.	Explain transition diagram, transition table with example.	Understand	1
2.	Define transition function of DFA.	Remember	2
3.	Define ε-transitions.	Remember	2
4.	Construct a DFA to accept even number of 0's.	Apply	2
5.	Define Kleene closure and positive closure.	Remember	1
6.	Construct a DFA to accept empty language.	Apply	2
7.	Explain power of an alphabet (Σ^{*})?	Understand	1
8.	Write transition diagram for DFA accepting string ending with 00 defined over an alphabet $\sum=\{0,1\}$	Apply	2
9.	Write transition diagram for DFA to accept exactly one a defined over an alphabet $\sum=\{\mathrm{a}, \mathrm{b}\}$	Apply	2
10.	Define NFA with an example.	Remember	2
11.	Explain the different Operations on the languages.	Understand	
12.	Construct a finite automaton accepting all strings over $\{0,1\}$ having even number of 0 's	Apply	2

13.	Define Moore Machines.	Remember	3
14.	Define Mealy Machines.	Remember	3
15.	Write DFA for odd number of 1's.	Apply	2
16.	Write NFA for $(0+1) * 101(0+1) *$.	Apply	2
17.	Write DFA for ($0+1$)*10(0+1)*.	Apply	2
18.	Define ε - closure.	Remember	2
19.	Write NFA for ($0+1$)*001(0+1)*.	Apply	2
20.	Write DFA for ($0+1$)*00(0+1)*.	Apply	2
21	Define FSM and its structure with an example.	Remember	2
22	Give any two comparisions between NFA and DFA	Remember	2
Part- B (Long Answer Questions)			
1.	Construct a DFA to accept set of all strings ending with 010 . Define language over an alphabet $\sum=\{0,1\}$ and write for the above DFA.	Apply	2
2.	Construct a Moore machine to accept the following language. $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w} \bmod 3=0\}$ on $\sum=\{0,1,2\}$	Apply	3
3.	Write any six differences between DFA and NFA	Apply	2
4.	Write NFA with ε to NFA conversion with an example.	Understand	2
5.	Construct NFA for $(0+1)^{*}(00+11)(0+1) *$ and Convert to DFA.	Apply	2
6.	$\begin{aligned} & \text { Design DFA for the following languages shown below } \\ & \sum=\{\mathrm{a}, \mathrm{~b}\} \\ & \text { a) } \quad \mathrm{L}=\{\mathrm{w} / \mathrm{w} \text { does not contain the substring ab }\} \\ & \text { b) } \quad \mathrm{L}=\{\mathrm{w} / \mathrm{w} \text { contains neither the substring ab nor ba }\} \\ & \text { c) } \quad \mathrm{L}=\{\mathrm{w} / \mathrm{w} \text { is any string that doesn't contain exactly two } \mathrm{a}\} \\ & \text { d) } \mathrm{L}=\{\mathrm{w} / \mathrm{w} \text { is any string except a and } \mathrm{b}\} \end{aligned}$	Apply	2
7.	Illustrate given 2 FA's are equivalent or not with an example.	Apply	6
8.	Construct Mealy machine for $(0+1) *(00+11)$ and convert to Moore machine.	Apply	3
9.	Convert NFA with ε - $\mathrm{a}^{*} \mathrm{~b}^{*}$ to NFA.	Understand	2
10.	Construct NFA for ($0+1$)*101 and Convert to DFA.	Apply	2
11.	Construct a mealy machine that takes binary number as input and produces 2's complement of that number as output.Assume the string is read LSB to MSB and end carry is discarded.	Understand	3
12.	Explain with the following example the Minimize the DFA.	Understand	2
13.	Construct a DFA, the language recognized by the Automaton being L $=\left\{a^{n} b / n \geq 0\right\}$. Draw the transition table.	Apply	2
14.	Construct the Minimized DFA	Apply	2
15.	Construct the DFA that accepts/recognizes the language $L(M)=\mid$ $w \in\{a, b, c\} *$ and w contains the pattern $a b a c\}$. Draw the	Apply	2

	$\mathrm{S} \rightarrow \mathrm{aS} / \mathrm{A} \quad \mathrm{A} \rightarrow \mathrm{a}$		
18.	Write the derivation of the string 110 from CFG $\mathrm{S} \rightarrow \mathrm{A} 0 / \mathrm{B} \quad \mathrm{A} \rightarrow 0 / 12 / \mathrm{B} \quad \mathrm{B} \rightarrow \mathrm{A} / 11$	Apply	8
19.	Write the Regular Expression to generate atleast one b over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$	Apply	8
20.	Write the Context free grammar for equal number of a's and b's.	Apply	8
Part- B (Long Answer Questions)			
1.	Convert Regular Expression 01* + 1 to Finite Automata.	Understand	7
2.	Convert given Finite Automata to Regular Expression using Arden's theorem with an example.	Understand	7
3.	Construct Right linear, Left linear Regular Grammars for $01^{*}+1$.	Apply	7
4.	Explain Identity rules . Simplify the Regular Expression $\epsilon+1^{*}(011)^{*}\left(1^{*}(011)^{*}\right)^{*}$	Understand	7
5.	Construct Regular grammar for the given Finite Automata. (a+b)*ab*.	Apply	7
6.	Construct Leftmost Derivation., Rightmost Derivation, Derivation Tree for the following grammar $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA} \\ & \mathrm{~A} \rightarrow \mathrm{a}\|\mathrm{aS}\| \mathrm{bAA} \\ & \mathrm{~B} \rightarrow \mathrm{~b}\|\mathrm{bS}\| \mathrm{aBB} \end{aligned}$ For the string aaabbabbba .	Apply	8
7.	Explain the properties, applications of Context Free Languages	Understand	8
8.	Construct right linear and left linear grammars for given Regular Expression.	Apply	7
9.	Construct a Transition System M accepting L(G) for a given Regular Grammar G.	Apply	7
10.	Discuss the properties of Context free Language. Explain the pumping lemma with an example.	Understand	7
11.	Write regular expressions for the given Finite Automata	Apply	7
12.	```Construct a NFA with € equivalent to the regular expression 10 + (0 + 11)0*1```	Apply	7
13.	Construct Leftmost Derivation., Rightmost Derivation, Derivation Tree for the following grammar $G=(V, T, P, S)$ with $N=\{E\}, S=E, T=\{i d,+,$ *(,) $\} \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$ $\mathrm{E} \rightarrow \mathrm{E} *$ E E \rightarrow (E) $\mathrm{E} \rightarrow$ id Obtain id+id*id in right most derivation, left most derivation	Apply	7
14.	Write a CFG that generates equal number of a's and b's.	Apply	8
15.	Convert G = (S$\},\{\mathrm{a}\},\{\mathrm{S} \rightarrow \mathrm{aS} / \mathrm{a}\},\{\mathrm{S}\}$) into FA	Understand	7
16.	Construct a Regular expression for the set all strings of 0's and 1's	Apply	7

	with at least two consecutive 0's		
17.	Construct context free grammar which generates palindrome strings $\Sigma=\{\mathrm{a}, \mathrm{~b}\}$	Apply	8
18.	Construct equivalent NFA with ϵ for the given regular expression $0^{*}(1(0+1))^{*}$.	Apply	7
19.	Construct the right linear grammar for the following	Apply	7
20.	Write 12 identity rules for regular expressions	Apply	7
Part- C (Problem Solving and Critical Thinking)			
1	Convert Regular Expression $(11+0) *(00+1) *$ to NFA with \mathcal{E}.	Understand	7
2	Convert Regular Expression $(\mathrm{a}+\mathrm{b})^{*}(\mathrm{aa}+\mathrm{bb})(\mathrm{a}+\mathrm{b})^{*}$ to DFA.	Understand	7
3	Construct Regular Grammars for Finite Automata 0* $1(0+1))^{*}$.	Apply	7
4	Construct Finite Automata for $\mathrm{A} 0 \rightarrow \mathrm{a}$ A1 A1 \rightarrow	Apply	7
5	Construct left linear grammar for the following	Apply	7
UNIT - III			
Part- A (Short Answer Questions)			
1.	Define Greibach normal form.	Remember	9
2.	Define nullable Variable.	Remember	8
3.	Write the minimized CFG for the following grammar $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{ABCa} \mid \mathrm{bD} \\ & \mathrm{~A} \rightarrow \mathrm{BC} \mid \mathrm{b} \\ & \mathrm{~B} \rightarrow \mathrm{~b} \mid \varepsilon \mathrm{C} \rightarrow \mathrm{Đ} \\ & \mid \varepsilon \mathrm{D} \rightarrow \mathrm{~d} \end{aligned}$	Remember	9
4.	Convert the grammar to CNF - S $\rightarrow \mathrm{bA} / \mathrm{aB} \quad \mathrm{A} \rightarrow \mathrm{aS} / \mathrm{a} \mathrm{B} \rightarrow \mathrm{bS} / \mathrm{b}$.	Understand	8
5.	Explain the elimination of UNIT production.	Understand	8
6.	Explain the elimination of useless symbols in productions.	Understand	8
7.	Define CNF.	Remember	9
8.	Write the minimization of CFG-S a S/A $\quad \mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{B} \rightarrow$ aa	Understand	8
9.	Define the ambiguity in CFG.	Remember	8
10.	What is the use of CNF and GNF.		8
11.	Write the minimization of CFG - S \rightarrow aS1b S1 $\rightarrow \mathrm{aS} 1 \mathrm{~b} / \varepsilon$.	Understand	8
12.	Write the minimization of CFG - S \rightarrow A $\mathrm{A} \rightarrow \mathrm{aA} / \varepsilon$.	Understand	8
13.	Write the minimization of CFG - S \rightarrow AB /a $\mathrm{A} \rightarrow \mathrm{a}$.	Understand	8
14.	Write the minimization of CFG - S $\rightarrow \mathrm{aS} / \mathrm{A} / \mathrm{C} \mathrm{A} \rightarrow \mathrm{aB} \rightarrow \mathrm{aa} \mathrm{C}$ $\rightarrow \mathrm{aCb}$.	Understand	8
15.	Write the minimization of CFG - S $\rightarrow \mathrm{AbA} \quad \mathrm{A} \rightarrow \mathrm{Aa} / \varepsilon$.	Understand	8

16.	Write the minimization of CFG - $\mathrm{S} \rightarrow \mathrm{aSa} \quad \mathrm{S} \rightarrow \mathrm{bSb} \quad \mathrm{S} \rightarrow \mathrm{a} / \mathrm{b} / \varepsilon$.	Understand	8
17.	Write the minimization of CFG $-\mathrm{S} \rightarrow \mathrm{A} 0 / \mathrm{B} \quad \mathrm{A} \rightarrow 0 / 12 / \mathrm{B}$ $\mathrm{B} \rightarrow \mathrm{A} / 11$.	Understand	8
18.	Convert the grammar to CNF - $\mathrm{S} \rightarrow \mathrm{aSa} / \mathrm{aa} \mathrm{S} \rightarrow \mathrm{bSb} / \mathrm{bb} \mathrm{S} \rightarrow \mathrm{a} / \mathrm{b}$.	Understand	8
19.	Convert the grammar to CNF - S a a AbB $\quad \mathrm{A} \rightarrow \mathrm{aA} / \mathrm{a} \mathrm{B} \rightarrow \mathrm{bB} / \mathrm{a}$.	Understand	8
20.	Define PDA.	Remember	10
21.	Define NPDA.	Remember	10
22.	Differentiate between deterministic and nondeterministic PDA.	Understand	10
23.	Define the language of DPDA.	Remember	10
24.	List the steps to convert CFG to PDA.	Remember	11
25.	Explain - acceptance of PDF by final state.	Understand	10
26.	Explain - acceptance of PDF by empty stack.	Understand	10
27.	Convert the following PDA to CFG $\delta(\mathrm{q} 0, \mathrm{~b}, \mathrm{z} 0)=\{\mathrm{q} 0, \mathrm{zz} 0)$	Apply	11
28.	Convert the following PDA to CFG $\delta(\mathrm{q} 0, \mathrm{~b}, \mathrm{z})=(\mathrm{q} 0, \mathrm{zz})$	Apply	11
29.	Convert the following PDA to CFG $\delta(q 0, \epsilon, \mathrm{z} 0)=(\mathrm{q} 0, \epsilon)$	Apply	11
30.	Convert the following PDA to CFG $\delta(\mathrm{q} 0, \mathrm{a}, \mathrm{z})=(\mathrm{q} 1, \mathrm{z})$	Apply	11
31.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \mathrm{~b}, \mathrm{z})=(\mathrm{q} 1, \mathrm{\epsilon})$	Apply	11
32.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \mathrm{a}, \mathrm{z} 0)=(\mathrm{q} 0, \mathrm{z} 0)$	Apply	11
33.	Convert the following PDA to CFG $\delta(q 0,0, z 0)=\{q 0, x z 0)$	Apply	11
34.	Convert the following PDA to CFG $\delta(\mathrm{q} 0,0, \mathrm{x})=(\mathrm{q} 0, \mathrm{xx})$	Apply	11
35.	Convert the following PDA to CFG $\delta(\mathrm{q} 0,1, \mathrm{x})=(\mathrm{q} 1, \mathrm{\epsilon})$	Apply	11
36.	Convert the following PDA to CFG $\delta(\mathrm{q} 1,1, \mathrm{x})=(\mathrm{q} 1, \mathrm{c})$	Apply	11
37.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \epsilon, \mathrm{x})=(\mathrm{q} 1, \mathrm{\epsilon})$	Apply	11
38.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \epsilon, \mathrm{z} 0)=(\mathrm{q} 1, \epsilon)$	Apply	11
39.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \epsilon, \mathrm{z})=(\mathrm{q} 0, \mathrm{\epsilon})$	Apply	11
40.	Convert the following CFG to PDA $\mathrm{S} \square \mathrm{ABC} \mid \mathrm{BbB}$	Apply	11
41.	Convert the following CFG to PDA $\mathrm{A} \square \mathrm{aA}\|\mathrm{BaC}\| \mathrm{aaa}$	Apply	11
42.	Convert the following CFG to PDA $\mathrm{B} \square \mathrm{bBb}\|\mathrm{a}\| \mathrm{D}$	Apply	11
43.	Convert the following CFG to PDA $\mathrm{C} \square \mathrm{CA} \mid \mathrm{AC}$	Apply	11
44.	Convert the following CFG to PDA S \square a S/A	Apply	11
Part- B (Long Answer Questions)			
1.	Write a short notes on Chomsky Normal Form and Griebach Normal Form.	Apply	9
2.	Show that the following grammar is ambiguous with respect to the string aaabbabbba. $\begin{aligned} & S \rightarrow a B \mid b A \\ & A \rightarrow a S\|b A A\| a \\ & B \rightarrow b S\|a B B\| b \end{aligned}$	Understand	8
3.	Use the following grammar : $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{ABC} \mid \mathrm{BbB} \\ & \mathrm{~A} \rightarrow \mathrm{aA}\|\mathrm{BaC}\| \text { aaa } \\ & \mathrm{B} \rightarrow \mathrm{bBb\|a\|D} \\ & \mathrm{C} \rightarrow \mathrm{CA} \mid \mathrm{AC} \\ & \mathrm{D} \rightarrow \varepsilon \end{aligned}$ Eliminate $\boldsymbol{\varepsilon}$-productions. Eliminate any unit productions in the resulting grammar. Eliminate any useless symbols in the resulting grammar. Convert the resulting grammar into Chomsky Normal Form	Apply	9
4.	Illustrate the construction of Griebach normal form with an example.	Apply	9

5.	Show that the following CFG ambiguous. $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{iCtS}\|\mathrm{iCtSeS}\| \mathrm{a} \\ & \mathrm{C} \rightarrow \mathrm{~b} \end{aligned}$	Apply	8
6.	Discuss the Pumping lemma for Context Free Languages concept with example $\left\{a^{n} b^{n} c^{n}\right.$ where $\left.n>=0\right\}$	Understand	9
7.	Write the simplified CFG productions in $\mathrm{S} \rightarrow$ a S1b $\mathrm{S} 1 \rightarrow \mathrm{a} \mathrm{S} 1 \mathrm{~b} / €$	Apply	8
8.	Convert the following CFG into GNF. $\mathrm{S} \rightarrow \mathrm{AA} / \mathrm{a} \quad \mathrm{~A} \rightarrow \mathrm{SS} / \mathrm{b}$	Understand	8
9.	Explain unit production? Explain the procedure to eliminate unit production.	Understand	8
10.	Explain the procedure to eliminate ϵ-productions in grammar.	Understand	8
11.	Convert the following grammar into GNF $\begin{aligned} & \text { G=(\{A1,A2,A3\},\{a,b\},P,A) } \\ & \text { A1->A2A3 } \\ & \text { A2->A3A1/b } \\ & \text { A3->A1A2/a } \end{aligned}$	Understand	8
12.	Write simplified CFG productions from the following grammar $\mathrm{A}->\mathrm{aBb} / \mathrm{bBa}$ $\mathrm{B}->\mathrm{aB} / \mathrm{bB} / \epsilon$	Apply	8
13.	Convert the following grammar into GNF S->ABA/AB/BA/AA/B A->aA/a B->bB/b	Understand	8
Part- C (Problem Solving and Critical Thinking)			
1	Construct PDA for equal number of x's and y's	Apply	10
2	```Convert the following grammar into GNF \(\mathrm{A} 1 \rightarrow \mathrm{~A} 2 \mathrm{~A} 3\) \(\mathrm{A} 2 \rightarrow \mathrm{~A} 3 \mathrm{~A} 1 / \mathrm{b}\) \(\mathrm{A} 3 \rightarrow \mathrm{~A} 1 \mathrm{~A} 2 / \mathrm{a}\)```	Understand	9
3	Construct DPDA for $\mathrm{L}=\left\{\mathrm{W}^{\left(W^{\mathrm{R}} / \mathrm{W} \in(\mathrm{X}+\mathrm{Y})^{*}\right\}}\right.$	Apply	10
4	```Convert the following PDA to CFG \(\delta(\mathbf{q} 0,0, z 0)=\{\mathbf{q} 0, \mathbf{x z} 0)\) \(\delta(q 0,0, x)=(q 0, x x)\) \(\delta(\mathbf{q} 0,1, x)=(\mathbf{q} 1, \mathbf{c})\) \(\delta(\mathbf{q} 1,1, \mathbf{x})=(\mathbf{q} 1, \mathbf{c})\) \(\delta(\mathbf{q} 1, \mathbf{\epsilon}, \mathbf{x})=(\mathbf{q} 1, \mathbf{\epsilon})\) \(\delta(\mathbf{q} 1, \mathbf{\epsilon}, \mathbf{z})=(\mathbf{q} 1, \mathbf{c})\)```	Understand and	11
5	Write the PDA that accepts the language $\left\{\mathbf{a}^{\wedge} \mathrm{m} \mathrm{b}^{\wedge} \mathbf{n} / \mathbf{n}>\mathrm{m}\right\}$	Apply	10
6	Design a PDA for the following grammar $\begin{aligned} & \text { S->0A } \\ & \text { A->0AB/1 } \\ & \text { B->1 } \end{aligned}$	Create	10
7		Understand and	11
UNIT - IV			
Part- A (Short Answer Questions)			
1.	Define Turing Machine	Apply	12
2.	Explain the moves in Turing Machine.	Understand	12
3.	Define an Instantaneous Description of a Turing Machine.	Remember	12
4.	Define the Language of Turing Machine.	Remember	12
5.	List types of TM.	Remember	12
6.	Define Computable Functions by Turing Machines .	Remember	12
7.	Write the difference between Pushdown Automata and Turing	Apply	12

	Machine.		
8.	Explain Church's Hypothesis.	Understand	12
9.	Define Context sensitive language.	Remember	12
10.	Define multi head Turing Machine.	Remember	12
11.	Define multi dimensional Turing Machine.	Remember	12
12.	Define multiple tapes Turing Machine.	Remember	12
13.	Define Recursive languages.	Remember	12
14.	Define Recursively enumerable languages.	Remember	12
15.	Define Two way infinite Turing Machine.	Remember	12
16.	Define Non deterministic Turing Machine.	Remember	12
17.	Define Counter machine.	Remember	12
18.	Explain the model of Turing machine.	Remember	12
19.	Construct Turing Machine for 1's complement for binary numbers.	Remember	12
20.	Differentiate Recursive languages and Recursively enumberable languages.	Remember	12
	(Long Answer Questions)		
1.	Define a Turing Machine. With a neat diagram explain the working of a Turing Machine.	Remember	12
2.	Differentiate Turing Machine with other automata.	Apply	12
3.	Construct a Transition diagram for Turing Machine to accept the following language. $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$	Apply	12
4.	Construct Transition diagram for Turing Machine that accepts the language $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$. Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 000111.	Apply	12
5.	Construct a Transition diagram for Turing Machine to accept the language $\mathrm{L}=\left\{\mathrm{w} \mathrm{ww}^{\mathrm{R}} \mid \mathrm{w} \in(\mathrm{a}+\mathrm{b}) *\right\}$	Apply	12
6.	Write short notes on Recursive and Recursively Enumerable languages.	Apply	12
7.	Write the properties of recursive and recursively enumerable languages.	Apply	12
8.	Construct a Turing Machine to accept strings formed with 0 and 1 and having substring 000 .	Apply	12
9.	Construct a Turing Machine that accepts the language $\mathrm{L}=\left\{1^{\mathrm{n}} 2^{\mathrm{n}} 3^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$. Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 111222333.	Apply	12
10.	Define Linear bounded automata and explain its model?	Apply	12
11.	Explain the power and limitations of Turing machine.	Create	12
12.	Construct Transition diagram for Turing Machine - $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} / \mathrm{n}>=1\right\}$	Apply	12
13.	Construct a Transition diagram for Turing Machine to implement addition of two unary numbers(X+Y).	Apply	12
14.	Construct a Linear Bounded automata for a language where $L=\left\{a^{n} b^{n} / n>=1\right\}$	Apply	12
15.	Explain the types of Turing machines.	Apply	12
16.	Write briefly about the following a)Church's Hypothesis b)Counter machine	Apply	12
17.	Construct a Transition table for Turing Machine to accept the following language. $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$	Apply	12
18.	Construct a Transition diagram for Turing Machine to accept the language $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w} \in(\mathrm{a}+\mathrm{b})^{*}\right\}$	Apply	12
19.	Construct Transition table for TM - L=\{ $\left.\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} / \mathrm{n}>=1\right\}$	Apply	12
20.	Construct a Linear Bounded automata for a language where $\mathrm{L}=\left\{\mathrm{a}^{n} \mathrm{~b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} / \mathrm{n}>=1\right\}$	Apply	12
Part- C (Problem Solving and Critical Thinking)			
1	Construct a Turing Machine that accepts the language $\mathrm{L}=\left\{\mathrm{a}^{2 \mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$. Give the transition diagram for the Turing Machine obtained.	Apply	12

2	Construct a Turing Machine that gives two's compliment for the given binary representation.		Apply	12
3	Construct a Turing Machine to accept the following language. $\mathrm{L}=\left\{\mathrm{w}^{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \mathrm{y}^{\mathrm{n}} \mathrm{z}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$		Apply	12
UNIT - V				
Part- A (Short Answer Questions)				
1.	Define Chomsky hierarchy of languages.		Knowledge	4
2.	Define Universal Turing Machine		Knowledge	12
3.	Define Context sensitive language.		Knowledge	5
4.	Define decidability.		Knowledge	13
5.	Define P problems.		Knowledge	13
6.	Define Universal Turing Machines		Knowledge	13
7.	Give examples for Undecidable Problems		Understand	13
8.	Define Turing Machine halting problem.		Knowledge	13
9.	Define Turing Reducibility		Knowledge	13
10.	Define Post's Correspondence Problem.		Knowledge	13
11.	Define Type 0 grammars .		Knowledge	4
12.	Define Type 1 grammars .		Knowledge	4
13.	Define Type 2 grammars .		Knowledge	4
14.	Define Type 3 grammars .		Knowledge	4
15.	Define NP problems.		Knowledge	13
16.	Define NP complete problems		Knowledge	13
17.	Define NP Hard problems		Knowledge	13
18.	Define undecidability problem.		Knowledge	13
19.	Define turing Reducibility.		Knowledge	13
20.	List the types of grammars.		Knowledge	13
Part- B (Long Answer Questions)				
1.	Explain the concept of decidable and undecidability problems about Turing Machines.		Understand	12
2.	Write briefly about Chomsky hierarchy of languages..		Apply	13
3.	Explain individually classes P and NP		Understand	13
4.	Write a shot notes on post's correspondence problem and check the following is PCP or not.		Apply	13
	I A	B		
	1 11	111		
	2 100	001		
	$3 \mathrm{l\mid l}$	11		
5.	Explain the Halting problem and Turing Reducibility.		Understand	13
6.	Write a short notes on universal Turing machine.		Apply	12
7.	Write a short notes on Chomsky hierarchy.		Apply	4
8.	Write a short notes on Context sensitive language and linear bounded automata.		Apply	4
9.	Write a short note on NP complete		Apply	13
10.	Write a short note on NP hard problems.		Apply	13
11.	Write a shot notes on post's correspondence problem and check the following is PCP or not.		Apply	13
	I A	B		
	1 100	1		
	2 0	100		
	3 1	0		
12.	Write a shot notes on post's correspondence problem and check the following is PCP or not.		Apply	13
	I A	B		
	1 00	0		
	2 001	11		

	3	1000	011		
UNIT - V					
1	Explain PCP and MPCP with examples.	Understand	13		
2	Explain Turing theorem ,Halting problems, Turing Reducibility.	Understand	13		
3	Explain Type 3 and Type 2 grammars with example.	Apply	4		
4	Explain Type 1 and Type 0 grammars with example.	Apply	4		

