# IARE TO LIBERTY

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

# (Autonomous)

Dundigal, Hyderabad - 500 043

#### **AERONAUTICAL ENGINEERING**

### TUTORIAL QUESTION BANK

| Course Name        | : | ANALYSIS OF AIRCRAFT STRUCTURES  |
|--------------------|---|----------------------------------|
| Course Code        | : | AAE006                           |
| Regulation         | : | IARE - R16                       |
| Year               | : | 2018 – 2019                      |
| Class              | : | B. Tech IV Semester              |
| Branch             | : | Aeronautical Engineering         |
| Course coordinator | : | Dr. Y B Sudhir Sastry, Professor |

#### **COURSE OBJECTIVES (COs)**

The course should enable the students to:

| S. No | Description                                                                                                             |
|-------|-------------------------------------------------------------------------------------------------------------------------|
| I     | Understand the aircraft structural components and its behavior under different loading conditions                       |
| II    | Obtain knowledge in plate buckling and structural instability of stiffened panels for airframe structural analysis.     |
| III   | Explain the thin walled section and structural idealization of panels and differentiate from the type of loads carried. |
| IV    | Solve for stresses and deflection in aircraft structures like fuselage, wing and landing gear.                          |

#### COURSE LEARNING OUTCOMES (CLOs)

Students, who complete the course, will be able to demonstrate the ability to do the following:

| CAAE006.01 | Discuss the Aircraft Structural components, various functions of the components and airframe loads acting on it.                                                        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAAE006.02 | Discuss different types of structural joints and the effect of Aircraft inertia loads, Symmetric maneuver loads, gust loads on the joints.                              |
| CAAE006.03 | Differentiate Monocoque and semi monocoque structures and analyze stresses in thin and thick shells.                                                                    |
| CAAE006.04 | Explain energy principles and its application in the analysis of structural components of Aircraft.                                                                     |
| CAAE006.05 | Explain the Theory of thin plates and Analyze thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading. |
| CAAE006.06 | Describe Buckling phenomena of thin plates and derive Elastic, inelastic, experimental determination of critical load for a flat plate.                                 |
| CAAE006.07 | Calculate the local instability, instability of stiffened panels, failure stresses in plates and stiffened panels.                                                      |
| CAAE006.08 | Discuss critical buckling load for flat plate with various loading and end conditions                                                                                   |
| CAAE006.09 | Solve for bending and shear stresses of symmetric and un-symmetric beams under loading conditions                                                                       |
| CAAE006.10 | Solve for deflections of beams under loading with various approaches                                                                                                    |
| CAAE006.11 | Calculate the shear stresses and shear flow distribution of thin walled sections subjected to shear loads.                                                              |

| CAAE006.12 | Explain Torsion phenomenon, Displacements and Warping associated with Bredt-Batho shear flow theory of beams. |
|------------|---------------------------------------------------------------------------------------------------------------|
| CAAE006.13 | Explain the theory of Structural idealization                                                                 |
| CAAE006.14 | Principal assumptions in the analysis of thin walled beams under bending, shear, torsion.                     |
| CAAE006.15 | Solve for stress distribution of idealized thin walled sections subjected to bending.                         |
| CAAE006.16 | Solve for stress distribution of idealized thin walled sections subjected to, shear and torsion.              |
| CAAE006.17 | Calculate and analysis of idealized thin walled sections subjected to bending                                 |
| CAAE006.18 | Calculate and analysis of idealized thin walled sections subjected to shear and torsion.                      |
| CAAE006.19 | Analyze fuselage of variable stringer areas subjected to transverse and shear loads.                          |
| CAAE006.20 | Analyze Wing spar and box beams of variable stringer areas subjected to transverse and shear loads.           |

# TUTORIAL QUESTION BANK

|        | UNIT - I                                                                                                                         |                             |                                |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
|        | AIRCRAFT STRUCTURAL COMPONENTS                                                                                                   |                             |                                |  |
| PART - | A (SHORT ANSWER QUESTIONS)                                                                                                       |                             |                                |  |
| S No   | QUESTIONS                                                                                                                        | Blooms<br>Taxonomy<br>Level | Course<br>Learning<br>Outcomes |  |
| 1      | What is Structural load?                                                                                                         | Understand                  | CAAE006:01                     |  |
| 2      | What is basic function of structural components?                                                                                 | Understand                  | CAAE006:01                     |  |
| 3      | What are the types of structural joints?                                                                                         | Understand                  | CAAE006:02                     |  |
| 4      | What is Aircraft inertia loads?                                                                                                  | Understand                  | CAAE006:02                     |  |
| 5      | What is Monocoque structure?                                                                                                     | Understand                  | CAAE006:03                     |  |
| 6      | What is semi monocoque structures?                                                                                               | Understand                  | CAAE006:03                     |  |
| 7      | Define castiglianos theorem-I                                                                                                    | Understand                  | CAAE006:04                     |  |
| 8      | Define castiglianos theorem-II                                                                                                   | Remember                    | CAAE006:04                     |  |
| 9      | Define Maxiwells reciprocal theorem                                                                                              | Remember                    | CAAE006:04                     |  |
| 10     | Write the equation to find out Hoop stress in thin shells subjected to internal pressure                                         | Remember                    | CAAE006:04                     |  |
| PART - | B (LONG ANSWER QUESTIONS)                                                                                                        |                             |                                |  |
| 1      | Explain what are different loads acting on aircraft structural components with figures                                           | Remember                    | CAAE006:01                     |  |
| 2      | Explain the functions of aircraft structural components and draw the neat sketches of each component.                            | Remember                    | CAAE006:01                     |  |
| 3      | Design a simple lap joint by considering Rivet shear, Bearing pressure, Plate failure in tension and Shear failure in a plate    | Remember                    | CAAE006:02                     |  |
| 4      | Derive castiglianos theorem-I Prove the theorem with the help of neat sketches and assumptions.                                  | Understand                  | CAAE006:04                     |  |
| 5      | Derive castiglianos theorem-II, List out the applications, advantages and dis-advantages                                         | Understand                  | CAAE006:04                     |  |
| 6      | Derive the basic equation $\delta = \Sigma$ udl in Unit load method with the help of neat sketches and assumptions.              | Remember                    | CAAE006:04                     |  |
| 7      | Derive the equation to find out deflection and slope of cantilever beam with udl by using castiglianos theorem                   | Remember                    | CAAE006:04                     |  |
| 8      | What is Rayleigh Ritz method, Explain in detail with the help of examples and also list out the applications?                    | Remember                    | CAAE006:04                     |  |
| 9      | Find out the vertical displacement of simply supported beam with point load at mid-point by using total potential energy method. | Remember                    | CAAE006:04                     |  |

| 10   | What is maxiwells reciprocal theorem, Prove it and explain with the help of                                                                                                       | Remember     | CAAE006:04     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| PART | neat sketches C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)                                                                                                                 |              |                |
| 1    | Ajoint in a fuselage skin is constructed by riveting the abutting skins between                                                                                                   | Understand   | CAAE006:02     |
|      | two straps as shown in Fig. below. The fuselage skins are 2.5mm thick and                                                                                                         | Ciracistana  | C1 II 12000.02 |
|      | the straps are each1.2mmthick; the rivets have a diameter of 4 mm. If the                                                                                                         |              |                |
|      | tensile stress in the fuselage skinmust not exceed 125 N/mm <sup>2</sup> and the shear                                                                                            |              |                |
|      | stress in the rivets is limited to 120 N/mm <sup>2</sup> determine the maximum allowable                                                                                          |              |                |
|      | rivet spacing such that the joint is equally strong inshear and tension.                                                                                                          |              |                |
|      | 2.5 mm                                                                                                                                                                            |              |                |
|      |                                                                                                                                                                                   |              |                |
|      |                                                                                                                                                                                   |              |                |
|      | skin 4 mm diameter                                                                                                                                                                |              |                |
| 2    | The double riveted butt joint shown in Fig. below connects two plates                                                                                                             | Understand   | CAAE006:02     |
| -    | whichare each 2.5mm thick, the rivets have a diameter of 3 mm. If the failure                                                                                                     | Circorstance | C1 II 12000.02 |
|      | strength of therivets in shear is 370 N/mm <sup>2</sup> and the ultimate tensile strength of                                                                                      |              |                |
|      | the plate is 465 N/mm <sup>2</sup> determine the necessary rivet pitch if the joint is to be                                                                                      |              |                |
|      | designed so that failure due to shear in the rivets and failure due to tension in                                                                                                 |              |                |
|      | the plate occur simultaneously. Calculatealso the joint efficiency.                                                                                                               |              |                |
|      |                                                                                                                                                                                   |              |                |
|      |                                                                                                                                                                                   |              |                |
|      |                                                                                                                                                                                   |              |                |
|      |                                                                                                                                                                                   |              |                |
|      | - \(\frac{12.5 mm}{1}\)                                                                                                                                                           |              |                |
|      | 3 mm diameter                                                                                                                                                                     |              |                |
| 3    | An aircraft of all up weight 145 000N has wings of area $50\text{m}^2$ and meanchord 2.5 m. For the whole aircraft $C_D$ =0.021+0.041 $C^2$ L, for the wings $dC_L/d\alpha$ =4.8, | Understand   | CAAE006:02     |
|      | for the tailplane of area 9.0m2, $dC_L$ , $T/d\alpha$ =2.2 allowing for the effects of                                                                                            |              |                |
|      | downwash and the pitching moment coefficient about the aerodynamic                                                                                                                |              |                |
|      | centre (of complete aircraft less tailplane) based on wing area is                                                                                                                |              |                |
|      | $C_{\rm M}$ ,0=-0.032. Geometric data are given in below Fig. During a steady glide                                                                                               |              |                |
|      | with zero thrust at 250 m/s EAS in which $C_L$ =0.08, the aircraftmeets a downgust of equivalent 'sharp-edged' speed 6 m/s. Calculate the tail load,                              |              |                |
|      | the gust load factor and the forward inertia force, $\rho_0=1.223 \text{ kg/m}^3$ .                                                                                               |              |                |
|      | Datum for a parallel to no lift line of wings                                                                                                                                     |              |                |
|      | CG CP of T/P                                                                                                                                                                      |              |                |
|      | 0.4 m                                                                                                                                                                             |              |                |
|      |                                                                                                                                                                                   |              |                |
|      | AC 0.5 m 8.5 m                                                                                                                                                                    |              | G. 1700 : 55   |
| 4    | Find the magnitude and the direction of the movement of the joint C of                                                                                                            | Apply        | CAAE006:03     |
| 1    | theplane pin-jointed frame loaded as shown in Fig. below. The value of L/AE for each member is 1/20 mm/N.                                                                         |              |                |
|      | 7A                                                                                                                                                                                |              |                |
|      | E D                                                                                                                                                                               |              |                |
|      | E                                                                                                                                                                                 |              |                |
|      | 1440 mm                                                                                                                                                                           |              |                |
| 1    | В                                                                                                                                                                                 |              |                |
|      | 1920 mm ION                                                                                                                                                                       |              |                |
|      | B IOBO mm ION                                                                                                                                                                     |              |                |
| 5    | A rigid triangular plate is suspended from a horizontal plane by three                                                                                                            | Understand   | CAAE006:03     |
|      | verticalwires attached to its corners. The wires are each 1mm diameter,                                                                                                           |              |                |
|      | 1440mm long, with a modulus of elasticity of 196 000 N/mm <sup>2</sup> . The ratio of                                                                                             |              |                |

|    | the lengths of the sides of the plate is 3:4:5. Calculate the deflection at the point of application due to a 100 N load placed at a point equidistant from the three sides of the plate.                                                                                                                                                                                                                                                                                                                        |            |            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 6  | The tubular steel post shown in Fig. below supports a load of 250N at the free end C. The outside diameter of the tube is 100mm and the wall thickness is 3 mm. Neglecting the weight of the tube find the horizontal deflection at C. The modulus of elasticity is $206\ 000\ \text{N/mm}^2$ .                                                                                                                                                                                                                  | Remember   | CAAE006:04 |
| 7  | The plane frame ABCD of Fig. consists of three straight members with rigid joints at B and C, freely hinged to rigid supports at A and D. The flexural rigidity of AB and CD is twice that of BC.A distributed load is applied to AB, varyinglinearly in intensity from zero at A to 'w'per unit length at B. Determine the distribution of bending moment in the frame, illustrating your results with a sketch showing the principal values.                                                                   | Apply      | CAAE006:04 |
| 8  | Figure below shows a plan view of two beams, AB 9150mm long and DE 6100mm long. The simply supported beam AB carries a vertical load of 100000Napplied at F, a distance one-third of the span from B. This beam is supported at C on the encastré beam DE. The beams are of uniform cross-section and have the same second moment of area 83.5×106 mm <sup>4</sup> . E =200 000 N/mm <sup>2</sup> . Calculate the deflection of C.                                                                               | Remember   | CAAE006:04 |
| 9  | Abeam 2400mmlong is supported at two points A and B which are 1440mmapart; point A is 360 mm from the left-hand end of the beam and point B is 600mmfrom the right-hand end; the value of EI for the beam is 240×108Nmm <sup>2</sup> . Find the slope at the supports due to a load of 2000N applied at the mid-point of AB. Use the reciprocal theorem in conjunction with the above result, to find the deflectionat the mid-point of AB due to loads of 3000N applied at each of the extreme ends ofthe beam. | Remember   | CAAE006:04 |
| 10 | The rectangular frame shown in Fig. consists of two horizontal members 123 and 456 rigidly joined to three vertical members 16, 25 and 34. All fivemembers have the same bending stiffness <i>El</i> . The frame is loaded in its own plane by a system of point loads <i>P</i> which are balancedby a constant shear flow <i>q</i> around the outside. Determine the                                                                                                                                            | Understand | CAAE006:04 |

distribution of the bendingmoment in the frame and sketch the bending moment diagram. In the analysis takebending deformations only into account. Shear flow q 3a UNIT – II THIN PLATE THEORY PART - A (SHORT ANSWER QUESTIONS) Differentiate between thin plate and thick plate. Remember CAAE006:05 What is  $\rho_x$  and  $\rho_y$  from below diagram? Understand CAAE006:05 3 Write the formula to find out Flexural rigidity of thin plate. Understand CAAE006:05 4 Give the formula for deflection of plate in the terms of infinite series. Understand CAAE006:06 5 Write the differential equation for strain energy. Remember CAAE006:06 6 Differentiate between Synclastic and Anticlastic. Remember CAAE006:06 7 Write the Built-in edge condition for a plate. Remember CAAE006:06  $\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{1}{D} \left( q + N_x \frac{\partial^2 w}{\partial x^2} + \frac{\partial^4 w}{\partial x^2} + \frac{\partial^4 w}{\partial y^4} \right)$ 8 Remember CAAE006:07 What is " $N_x$ " in this equation Ννθ2ωθν2+Νχνθ2ωθχθν The application of transverse and in-plane loads will cause the plate to Remember CAAE006:07 deflect a further amount w1 so that the total deflection is. What is the meaning of critical load in plates? 10 Remember CAAE006:08 PART - B (LONG ANSWER QUESTIONS) Explain the basic theory of thin plates? Writ the assumptions and boundary Remember CAAE006:05 conditions of the plate. Derive the expression for direct/bending stress of a pure bending of thin Remember CAAE006:05 plates? With the help of neat sketches. 3 What is the term flexural rigidity called in bending of thin plates and Remember CAAE006:06 explain? Write the equation. Clearly explain the difference between synclastic and anticlastic surface of 4 Remember CAAE006:05 thin plates? Clearly draw the figure for plate element subjected to bending, twisting and Remember CAAE006:06 transverse loads?

Write the conditions for a plate which simply supported all edges? And write

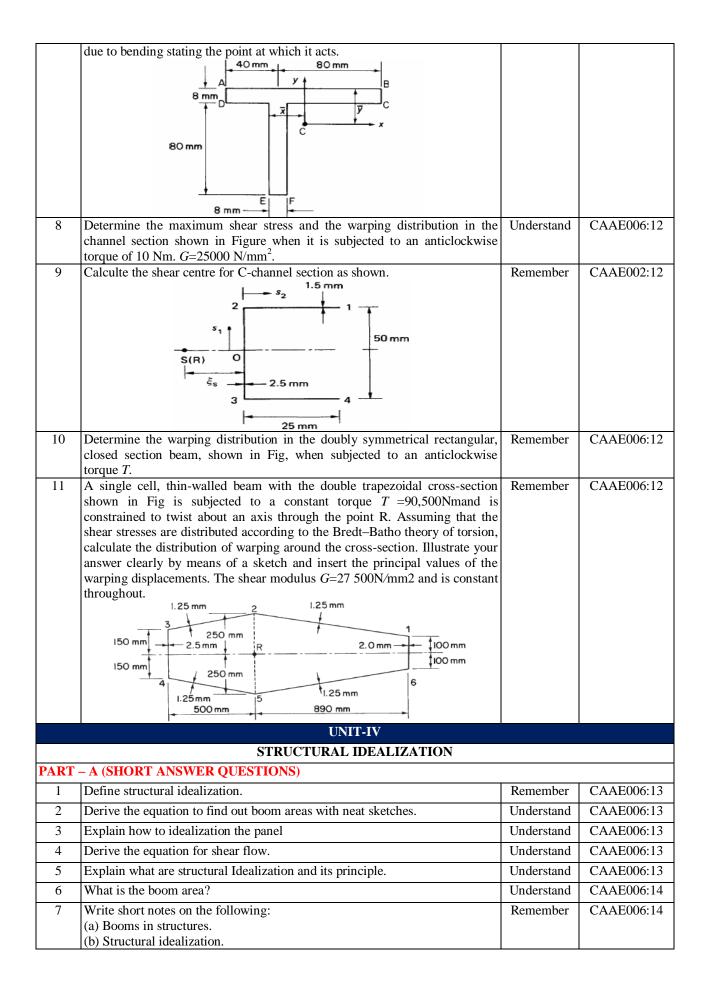
the assumed deflected form of the plate which satisfies the boundary

Write the conditions for a plate which clamped at all edges? And write the

conditions for this plate?

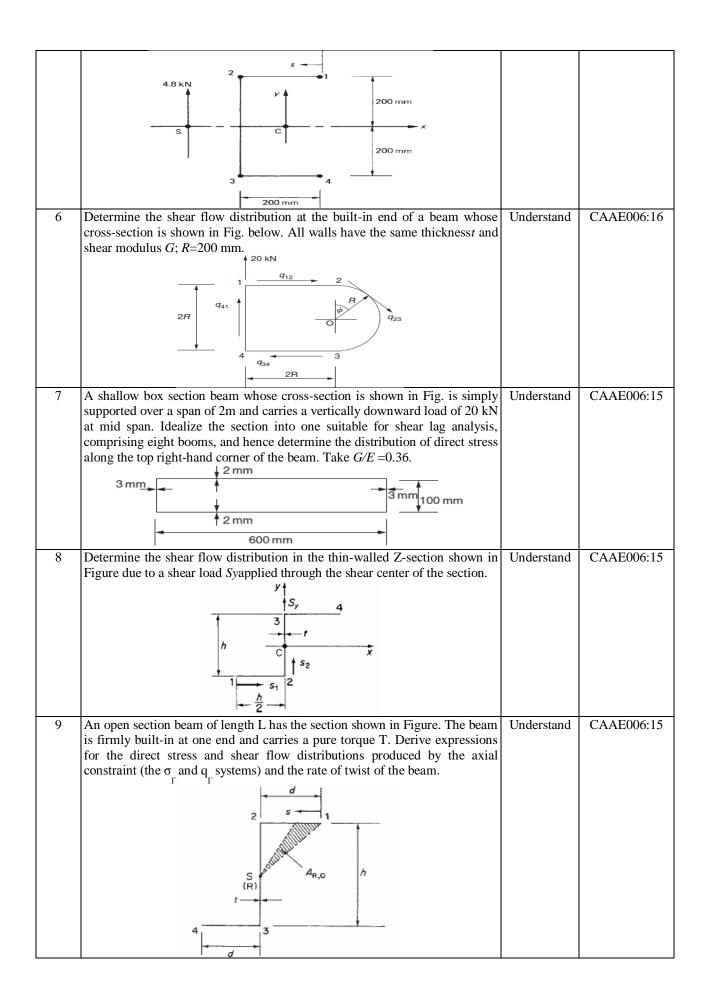
CAAE006:05

CAAE006:07


Remember

Remember

|        | assumed deflected form of the plate which satisfies the boundary conditions for this plate?                                                                                                                                                                                                                                                                                                                                                          |            |            |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 8      | Write the conditions for a plate which simply supported all two edges and the other two edges are free?                                                                                                                                                                                                                                                                                                                                              | Remember   | CAAE006:07 |
| 9      | Write the assumed deflected form of the plate which satisfies the boundary conditions for this plate?                                                                                                                                                                                                                                                                                                                                                | Remember   | CAAE006:08 |
| 10     | Explain the behavior of the thin plates subjected to bending and twisting.                                                                                                                                                                                                                                                                                                                                                                           | Understand | CAAE006:08 |
| рарт   | - C (PROBLEM SOLVING AND CRITICAL THINKING)                                                                                                                                                                                                                                                                                                                                                                                                          |            |            |
| 1      | Derive the equation $(1/\rho) = M / [D (1+ v)]$ of thin plate subjected to pure bending.                                                                                                                                                                                                                                                                                                                                                             | Remember   | CAAE006:06 |
| 2      | Derive the equation $M_{xy} = D (1-v) \frac{\partial^2 w}{\partial x \partial y}$ for a thin plate subjected to                                                                                                                                                                                                                                                                                                                                      | Understand | CAAE006:06 |
| 3      | bending and twisting  A plate 10mmthick is subjected to bending moments Mx equal to 10 Nm/mm and My equal to 5 Nm/mm. find the maximum twisting moment per unit length in the plate and the direction of the planes on which this occurs.                                                                                                                                                                                                            | Understand | CAAE006:06 |
| 4      | A thin rectangular plate a×b is simply supported along its edges and carries a uniformly distributed load of intensity q0. Determine the deflected form of the plate and the distribution of bending moment.                                                                                                                                                                                                                                         | Understand | CAAE006:06 |
| 5      | A rectangular plate $a \times b$ , is simply supported along each edge and carries a uniformly distributed load of intensity q0.Determine using the energy method, the value of the coefficient $A11$ and hence find the maximum value of deflection.                                                                                                                                                                                                | Remember   | CAAE006:06 |
| 6      | A thin rectangular plate $a \times b$ is simply supported along its edges and carries a uniformly distributed load of intensity $q0$ and supports an in-plane tensile force $Nx$ per unit length. Determine the deflected form of the plate.                                                                                                                                                                                                         | Understand | CAAE006:07 |
| 7      | A rectangular plate $a \times b$ , simply supported along each edge, possesses a small initial curvature Determine, using the energy method, its final deflected shape when it is subjected to acompressive load $Nx$ per unit length along the edges $x = 0$ , $x = a$ .                                                                                                                                                                            | Remember   | CAAE006:07 |
| 8      | Explain Instability of Stiffened panels, with the help of neat sketches.                                                                                                                                                                                                                                                                                                                                                                             | Understand | CAAE006:07 |
| 9      | The beam shown in is assumed to have a complete tension field web. If the cross-sectional areas of the flanges and stiffeners are, respectively, 350mm2 and 300mm2 and the elastic section modulus of each flange is 750mm3, determine the maximum stress in a flange and critical load. The thickness of the web is 2mm and the second moment of area of a stiffener about an axis in the plane of the web is 2000mm4; $E = 70~000~\text{N/mm}^2$ . | Understand | CAAE006:08 |
| 10     | Derive the equation for critical stress $(\sigma_{CR}) = [k\pi^2 E/12(1 - \upsilon 2)]$ (t/b)2 for plate subjected to the compressive load.                                                                                                                                                                                                                                                                                                          | Remember   | CAAE006:08 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |
|        | UNIT-III                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE ANG     |            |
| DA POT | BENDING SHEAR AND TORSION OF THIN WALLED I                                                                                                                                                                                                                                                                                                                                                                                                           | BEAMS      |            |
|        | - A (SHORT ANSWER QUESTIONS)  What in flavored gioridity?                                                                                                                                                                                                                                                                                                                                                                                            | Dam1       | CAAE006:00 |
| 1      | What is poutral plane?                                                                                                                                                                                                                                                                                                                                                                                                                               | Remember   | CAAE006:09 |
| 2      | What is neutral plane?                                                                                                                                                                                                                                                                                                                                                                                                                               | Remember   | CAAE006:09 |


|        | The terms first A is to some so the                                                                                                                                                                                                                                                                                                                                     | Understand | CAAE006.00 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 3      | The term $\int y^2 dA$ is known as the                                                                                                                                                                                                                                                                                                                                  |            | CAAE006:09 |
| 4      | Write the expression for $\sigma_z$ in terms of $M_x$ , $M_y$ , & $I_{xx}$ , $I_{yy}$ , $I_{XY}$ is                                                                                                                                                                                                                                                                     | Remember   | CAAE006:09 |
| 5      | Write the relation between shear force and intensity of load                                                                                                                                                                                                                                                                                                            | Remember   | CAAE006:09 |
|        |                                                                                                                                                                                                                                                                                                                                                                         |            |            |
| 6      | What is the other name of the Singularity function?                                                                                                                                                                                                                                                                                                                     | Remember   | CAAE006:10 |
| 7      | What is the name of strain produced by a temperature change $\Delta T$ ?                                                                                                                                                                                                                                                                                                | Apply      | CAAE006:10 |
| 8      | What is shear flow distribution?                                                                                                                                                                                                                                                                                                                                        | Understand | CAAE006:11 |
| 9      | What is Warping distribution?                                                                                                                                                                                                                                                                                                                                           | Remember   | CAAE006:11 |
| 10     | Write the value of $I_{XY}$ for unsymmetrical section.                                                                                                                                                                                                                                                                                                                  | Remember   | CAAE006:11 |
| 11     | Give the definition for Warping.                                                                                                                                                                                                                                                                                                                                        | Remember   | CAAE006:11 |
|        | PART – B (LONG ANSWER QUESTIONS)                                                                                                                                                                                                                                                                                                                                        |            |            |
| 1      | Write short notes on the following:  i. Symmetrical bending  ii. Unsymmetrical bending                                                                                                                                                                                                                                                                                  | Understand | CAAE006:08 |
| 2      | Explain the following terms.  i. Shear center  ii. Shear flow  iii. Centre of twist                                                                                                                                                                                                                                                                                     | Understand | CAAE006:08 |
| 3      | Derive the equations to find out the primary and secondary warping of an open cross section subjected to torsion.                                                                                                                                                                                                                                                       | Understand | CAAE006:09 |
| 4      | Derive the Bredt-Batho formula for thin walled closed section beams with the help of neat sketch.                                                                                                                                                                                                                                                                       | Understand | CAAE006:09 |
| 5      | Explain the condition for Zero warping at a section, and derive the warping of cross section.                                                                                                                                                                                                                                                                           | Understand | CAAE006:10 |
|        |                                                                                                                                                                                                                                                                                                                                                                         |            |            |
| 6      | What do mean by shear centre? Explain with the help of figure for open sections.                                                                                                                                                                                                                                                                                        | Understand | CAAE006:10 |
| 7      | In order to understand open sections, one has to be clear about centroid, neutral point and shear centre. Explain them with mathematical expression.                                                                                                                                                                                                                    | Understand | CAAE006:10 |
| 8      | Derive the expression for the ripple factor of $\pi$ -Section filter when used with a Full-wave-rectifier. Make necessary approximations?                                                                                                                                                                                                                               | Remember   | CAAE006:11 |
| 9      | a) Explain about torsion bending phenomena. b) An open section beam of length $L$ has the section shown in Fig. The beam is firmly built-in at one end and carries a pure torque $T$ . Derive expressions for the direct stress and shear flow distributions produced by the axial constraint (the $\sigma_{-}$ and $q_{-}$ systems) and the rate of twist of the beam. | Remember   | CAAE006:12 |
| 10     | torsion                                                                                                                                                                                                                                                                                                                                                                 | Understand | CAAE006:12 |
| Part – | C (Problem Solving and Critical Thinking)                                                                                                                                                                                                                                                                                                                               |            |            |
| 1      | Derive $(\sigma) = [(M_{y xx} - M_{x xy}) / (I_{xx yy} - I_{xy}^2)] x + [(M_{x yy} - M_{y xy}) / (I_{xx yy} - I_{xx yy}^2)] y$                                                                                                                                                                                                                                          | Understand | CAAE006:9  |

| Figure below shows the section of an angle purlin. A bending mome of 3000Nm is applied to the purlin in a plane at an angle of 30 to the vertical y axis. If the sense of the bending moment is such that is components Mx and My both producetension in the positive xy quadrant calculate the maximum direct stress in the purlinstating clearly the point at which it acts. | he<br>its<br>nt, | CAAE006:09 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
| B E IOmm  C D IOmm                                                                                                                                                                                                                                                                                                                                                             |                  |            |
| 3 Define and explain the terms i) shear flow, ii) shear centre, iii) centre                                                                                                                                                                                                                                                                                                    | of Remember      | CAAE006:09 |
| twist.                                                                                                                                                                                                                                                                                                                                                                         |                  |            |
| The cross-section of a beam has the dimensions shown in figure. If the bear is subjected to a negative bending moment of 100 kNm applied in a vertice plane, determine the distribution of direct stress through the depth of the section.                                                                                                                                     | cal<br>he        | CAAE006:09 |
| Derive the equation to find out the shear center of figure shown. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                        | Remember         | CAAE006:10 |
| The beam section of problem 1 above, is subjected to a bending moment 100 kNm applied in a plane parallel to the longitudinal axis of the beam be inclined at 30° to the left of vertical. The sense of the bending moment clockwise when viewed from the left-hand edge of the beam section. Determine the distribution of direct stress.                                     | ut<br>is         | CAAE006:10 |
| 7 A beam having the cross section shown in Figure is subjected to a bending moment of 1500 Nm in a vertical plane. Calculate the maximum direct street.                                                                                                                                                                                                                        |                  | CAAE006:11 |



| 8  | Explain about air loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remember   | CAAE006:15 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 9  | Draw the Actual and Idealized panels.                                                                                                                                                                                                                                                                                                                                                                                                                                            | Understand | CAAE006:16 |
| 10 | Write the equation to find out the bending stress of idealized panel.                                                                                                                                                                                                                                                                                                                                                                                                            | Understand | CAAE006:16 |
|    | - B (LONG ANSWER QUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |
| 1  | Part of a wing section is in the form of the two-cell box shown in Figure in which the vertical spars are connected to the wing skin through angle sections, all having a cross-sectional area of 300 mm <sup>2</sup> . Idealize the section into an arrangement of direct stress-carrying booms and shear-stress-only-carrying panels suitable for resisting bending moments in a vertical plane. Position the booms at the spar/skin junctions.                                | Understand | CAAE006:15 |
| 2  | The thin-walled single cell beam shown in Figure has been idealized into a combination of direct stress-carrying booms and shear-stress-only-carrying walls. If the section supports a vertical shear load of 10 kN acting in a vertical plane through booms 3 and 6, calculate the distribution of shear flow around the section. Boom areas: $B_1 = B_8 = 200 \text{ mm}^2$ , $B_2 = B_7 = 250 \text{ mm}^2$ $B_3 = B_6 = 400 \text{ mm}^2$ , $B_4 = B_5 = 100 \text{ mm}^2$ . | Apply      | CAAE006:16 |
| 3  | The fuselage section shown in Fig. is subjected to a bending moment of 100 kNm applied in the vertical plane of symmetry. If the section has been completely idealized into a combination of direct stress carrying booms and shear stress only carrying panels, <b>determine</b> the direct stress in each boom.                                                                                                                                                                | Understand | CAAE006:16 |
| 4  | Calculate the shear flow distribution in the c-channel section, produced by a vertical shear load of 4.8 kN acting through its shear centre. Assume that the walls of the section are only effective in resisting shear stresses while the booms, each of area 300mm2, carry all the direct stresses. Web length is 200m and flange length is 100mm.                                                                                                                             | Understand | CAAE006:15 |
| 5  | Derive the equation to find out the bending stress of idealized panel.                                                                                                                                                                                                                                                                                                                                                                                                           | Remember   | CAAE006:15 |
| 6  | Derive the equation to find out the bending stress of idealized panel, if M <sub>x</sub>                                                                                                                                                                                                                                                                                                                                                                                         | Remember   | CAAE006:15 |
| 7  | equal to zero. Derive the equation to find out the bending stress of idealized panelif $M_{\nu}$                                                                                                                                                                                                                                                                                                                                                                                 | Remember   | CAAE006:15 |
| ,  | equal to zero with neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kemember   | CAALUUU.13 |
| 8  | Calculate the bending stress developed in the boom of fuselage subjected to a bending moment of 100 Knm applied in the vertical plane of symmetry, the distance between boom and axis is660mm and moment of Inertia 278 x 10 <sup>6</sup>                                                                                                                                                                                                                                        | Remember   | CAAE006:16 |

| stress and shear flow distribution.  Draw the neat sketches of idealized simple fuselage section. Derive bending stress and shear flow distribution.  PART – C (PROBLEM SOLVING AND CRITICAL THIN Calculate the bending stress developed in the boom of fuselage subjected to a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAAE006:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| stress and shear flow distribution.  PART – C (PROBLEM SOLVING AND CRITICAL THIN                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAAE006:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PART – C (PROBLEM SOLVING AND CRITICAL THIN                                                                                                                                                                                                                                     | KING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •                                                                                                                                                                                                                                                                               | 12221 (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calculate the bending stress developed in the boom of fuserage subjected to a                                                                                                                                                                                                   | Annly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAAE006:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| bending moment of 50 kNm applied in the horizontal plane of symmetry, the                                                                                                                                                                                                       | Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAAL000.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| distance between boom and axis is 204mm and moment of Inertia 27 x                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $10^6 \text{mm}^4$ .                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Part of a wing section is in the form of the two-cell box shown in Figure in                                                                                                                                                                                                    | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAAE006:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| which the vertical spars are connected to the wing skin through angle                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 600 mm                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 5 3                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 2mm 2mm 2.5mm                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 mm = 200 mm                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6 5                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAAE006:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TO NIV                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 2                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 120 6 240 mm 7 240 mm                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mm                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The fuselage section shown in Fig. 20.5 is subjected to a bending moment of                                                                                                                                                                                                     | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAAE006:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100 kNm applied in the vertical plane of symmetry. If the section has been                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| completely idealized into a combination of direct stress carrying booms and                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| shear stress only carrying panels, determine the direct stress in each boom.                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 600                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 600                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6004                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 620 960 1140 1200 mm                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 640 C 6 768 x                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\sqrt{7}$ $\sqrt{336}$ $\sqrt{565}$ $\sqrt{y}$                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 850                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                 | TTo do. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAAFOC 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Calculate the shear flow distribution in the channel section shown in Fig.                                                                                                                                                                                                      | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAAE006:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| produced by a vertical shear load of 4.8 kN acting through its shear centre. Assume that the walls of the section are only effective in resisting shear                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01112000110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                 | sections, all having a cross-sectional area of 300 mm <sup>2</sup> . Idealize the section into an arrangement of direct stress-carrying booms and shear-stress-only-carrying panels suitable for resisting bending moments in a vertical plane. Position the booms at the spar/skin junctions.  Footion the booms and shear-stress-only-carrying and shear-stress-on | Rections, all having a cross-sectional area of 300 mm². Idealize the section ato an arrangement of direct stress-carrying booms and shear-stress-only-carrying panels suitable for resisting bending moments in a vertical plane. Position the booms at the spar/skin junctions.  The thin-walled single cell beam shown in Figure has been idealized into a combination of direct stress-carrying booms and shear-stress-only-carrying walls. If the section supports a vertical shear load of 25 kN acting in a vertical plane through booms 3 and 6, calculate the distribution of shear flow around the section. Boom areas: $B_1 = B_8 = 300 \text{ mm}^2$ , $B_2 = B_7 = 450 \text{ mm}^2$ , $B_3 = B_6 = 400 \text{ mm}^2$ , $B_4 = B_5 = 100 \text{ mm}^2$ .  The fuselage section shown in Fig. 20.5 is subjected to a bending moment of 100 kNm applied in the vertical plane of symmetry. If the section has been completely idealized into a combination of direct stress carrying booms and shear stress only carrying panels, determine the direct stress in each boom. |



| 10 | Write the equation to find out the bending stress of idealized panel, if $M_x$ equal to zero.                                                                                                                                                                                                                                                                                                                                         | Apply             | CAAE006:16  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
|    | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELICEL A CE       |             |
|    | STRESS ANALYSIS OF AIRCRAFT COMPONENTS- WING,                                                                                                                                                                                                                                                                                                                                                                                         | FUSELAGE          |             |
| 1  | PART - A (SHORT ANSWER QUESTIONS)  The fuselage shell section has been idealized such that the fuselage skin is effective in which stress?                                                                                                                                                                                                                                                                                            | Evaluate          | CAAE006:17  |
| 2  | Why wings and fuselages are usually tapered along their lengths?                                                                                                                                                                                                                                                                                                                                                                      | Remember          | CAAE006:1'  |
| 3  | Wing ribs perform functions similar to those performed by which part of the                                                                                                                                                                                                                                                                                                                                                           | Remember          | CAAE006:1'  |
| 4  | wing? A thin rectangular strip suffers warping across its thickness when subjected                                                                                                                                                                                                                                                                                                                                                    | Remember          | CAAE006:1   |
|    | to what type of loads?                                                                                                                                                                                                                                                                                                                                                                                                                | D 1               | GA A FOOC 1 |
| 5  | What is the name of the theory of the torsion of closed section beams?                                                                                                                                                                                                                                                                                                                                                                | Remember          | CAAE006:1   |
| 6  | A section does not remain rectangular but distorts; what that effect is called?                                                                                                                                                                                                                                                                                                                                                       | Understand        | CAAE006:17  |
| 7  | If the shear force is 400 N over the length of the 200 mm stiffener, What is the shear flow?  A bending moment M applied in any longitudinal plane parallel to the z-axis                                                                                                                                                                                                                                                             | Remember Remember | CAAE006:18  |
| 0  | may be resolved into which components?                                                                                                                                                                                                                                                                                                                                                                                                | Remember          | CAAE000:1   |
| 9  | Explain about the shear centre for any symmetric section about both axes.                                                                                                                                                                                                                                                                                                                                                             | Understand        | CAAE006:19  |
| 10 | In many aircrafts, structural beams, such as wings, have stringers whose cross-sectional areas vary in which direction?                                                                                                                                                                                                                                                                                                               | Remember          | CAAE006:2   |
|    | PART - B (LONG ANSWER QUESTIONS)                                                                                                                                                                                                                                                                                                                                                                                                      |                   |             |
| 1  | Explain the direct stress distribution on wing section with neat sketch.                                                                                                                                                                                                                                                                                                                                                              | Remember          | CAAE006:1   |
| 2  | Explain how the shear flow distribution on wing section with neat sketch.                                                                                                                                                                                                                                                                                                                                                             | Understand        | CAAE006:1   |
| 3  | Derive equations to find out the shear flow distribution on fuselage section.                                                                                                                                                                                                                                                                                                                                                         | Remember          | CAAE006:1   |
| 4  | Draw neat sketches and explain the functions of fuselage frames and wing ribs.                                                                                                                                                                                                                                                                                                                                                        | Remember          | CAAE006:1   |
| 5  | Explain how the torsion effect will be there on three boom shell with neat sketch.                                                                                                                                                                                                                                                                                                                                                    | Understand        | CAAE006:1   |
| 6  | Write a detailed note on the following i) Fuselage frames ii) Wing ribs                                                                                                                                                                                                                                                                                                                                                               | Understand        | CAAE006:1   |
| 7  | The beam shown in Figure is simply supported at each end and carries a load of 6000N. if all direct stresses are resisted by the flanges and stiffeners and the web panels are effective only in shear, calculate the distribution of axial load in the flanges ABC and the stiffeners BE and the Shear flows in the panels.                                                                                                          | Understand        | CAAE006:18  |
| 8  | Explain about tapered wing and derive the equation to find out shear flow.                                                                                                                                                                                                                                                                                                                                                            | Apply             | CAAE006:19  |
| 9  | A wing spar has the dimensions shown in Fig. and carries a uniformly distributed load of 15 kN/m along its complete length. Each flange has a cross-sectional area of 500mm <sup>2</sup> with the top flange being horizontal. If the flanges are assumed to resist all direct loads while the spar web is effective only in shear, determine the flange loads and the shear flows in the web at sections 1 and 2m from the free end. | Remember          | CAAE006:20  |
|    | 2<br>15 kN/m<br>200 mm                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |

| PART - C (PROBLEM SOLVING AND CRITICAL THINKING)  1 Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  15000 mm  15000 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 006:16                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING)  1 Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  15000 mm  15000 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 006:16                                  |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING)  Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to be a state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 006:16                                  |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING)  Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  The state of the wing to be a state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 006:16                                  |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING)  1 Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  15000 mm <sup>2</sup> 95000 mm <sup>2</sup> 9 | 006:16                                  |
| PART – C (PROBLEM SOLVING AND CRITICAL THINKING)  1 Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  15000 mm  15000 mm  15000 mm  15000 mm  2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 006:16                                  |
| PART – C (PROBLEM SOLVING AND CRITICAL THINKING)  Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  15000 mm  95000 mm  95000 mm  15000 m  15000 m  2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 006:16                                  |
| PART – C (PROBLEM SOLVING AND CRITICAL THINKING)  Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  15000 mm  95000 mm  95000 mm  15000 m  15000 m  2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 006:16                                  |
| Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  15000 mm <sup>2</sup> 95000 mm <sup>2</sup> 15000 N  2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 006:16                                  |
| of the wing rib shown in Figure. Assume that the web of the rib is effective only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.  15000 mm² 95000 mm² 95000 mm² 12000 mm² 1300 mm 12000 mm² 120000 mm² 12000 mm² 12000 mm² 12000 mm² 12000 mm² 12000 mm² 12000 mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 006:16                                  |
| only in shear while the resistance of the wing to bending moments is provided entirely by the three flanges 1, 2 and 3.    15000 mm²   95000 mm²   95000 mm²   12000 N   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| provided entirely by the three flanges 1, 2 and 3.    300 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| 300 mm $\frac{15^{\circ}}{2}$ $\frac{q_{12}}{95000 \text{ mm}^2}$ $\frac{1}{95000 \text{ mm}^2}$ $\frac{1}{3}$ $\frac{1}{12000 \text{ N}}$ $\frac{1}{3}$ $\frac{1}{12000 \text{ N}}$ $\frac{1}{3}$ $\frac$                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| 2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| 2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| 2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| 2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| 2 A cantilever beam shown in Figure carries concentrated loads as shown. Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 006:16                                  |
| Calculate the distribution of stiffener loads and the shear flow distribution in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00.10                                   |
| the web panels assuming that the latter are effective only in shear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| A Flange B C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 200 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| 4000 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| q <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| F G Stiffener H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| 3 The beam shown in Figure is simply supported at each end and carries a load CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 006:17                                  |
| of 6000 N. If all direct stresses are resisted by the flanges and stiffeners and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| the web panels are effective only in shear, calculate the distribution of axial Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| load in the flange ABC and the stiffener BE and the shear flows in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| panels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| A B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| 1000 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| F IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 6kN m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| 4 The fuselage shown in Fig. a) below is subjected to a vertical shear load of Understand CAAEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 006:17                                  |
| 100 kN applied at a distance of 150mm from the vertical axis of symmetry as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| shown, for the idealized section, in Fig. b). Calculate the distribution of shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| flow in the section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |

|   | 1 V 100kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | 1          |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
|   | WW 0 78 8 8 8 9 1 13 C 15 15 15 16 12 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |
| 5 | The cantilever beam shown in Fig. is uniformly tapered along its length in both x and y directions and carries a load of 100kN at its free end. Calculate the forces in the booms and the shear flow distribution in the walls at a section 2m from the built-in end if the booms resist all the direct stresses while the walls are effective only in shear. Each corner boom has a cross-sectional area of $900 \text{mm}^2$ while both central booms have cross-sectional areas of $1200 \text{mm}^2$ . The internal force system at a section 2m from the built-in end of the beam is $\text{Sy} = 100 \text{kN}  \text{Sx} = 0  \text{Mx} = -100 \times 2 = -200 \text{kNm}  \text{My} = 0$ | Apply      | CAAE006:18 |
| 6 | A wing spar has the dimensions shown in Fig and carries a uniformly distributedloadof15kN/malongitscompletelength. Eachflangehasacross-sectionalareaof500mm² with the top flange being horizontal. If the flanges are assumed to resist all direct loads while the spar web is effective only in shear, determine the flange loads and the shear flows in the web at sections 1 and 2m from the free end.                                                                                                                                                                                                                                                                                        | Understand | CAAE006:18 |
| 7 | Awing spar has the dimensions shown in Fig and carries a uniformly distributed load of 15kN/m along its complete length. Each flange has a cross-sectional area of 500mm² with the top flange being horizontal. If the flanges are assumed to resist all direct loads while the spar web is effective only in shear.  If the web in the wing spar of fig. has a thickness of 2mm and is fully effective in resisting direct stresses, calculate the maximum value of shear flow in the web at a section 1m from the free end of the beam.                                                                                                                                                        | Understand | CAAE006:19 |

| 8  | The doubly symmetrical fuselage section shown in Fig. has been idealized into an arrangement of direct stress carrying booms and shear stress carrying skin panels; the boom are all150mm². Calculate the direct stresses in the booms and the shear flows in the panels when the section is subjected to a shear load of 50kN and a bending moment of 100kNm. | Understand | CAAE006:20 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 9  | Determine the shear flow distribution in the fuselage section of fig. by replacing the applied load by as hear load through the shear centre together with a pure torque.                                                                                                                                                                                      | Understand | CAAE006:20 |
| 10 | The wing section shown in Fig. has been idealized such that the booms carry all the direct stresses. If the wing section is subjected to a bending moment of 300kNm applied in a vertical plane, calculate the direct stresses in the booms. Boom areas: $B_1 = B_6 = 2580 \text{mm}^2$ $B_2 = B_5 = 3880 \text{mm}^2$ $B_3 = B_4 = 3230 \text{mm}^2$          | Apply      | CAAE006:20 |