

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

FRESHMAN ENGINEERING

TUTORIAL QUESTION BANK

Course Name	•	Computational Mathematics and Integral Calculus			
Course Code	• •	AHS003			
Class	• •	3. Tech II Semester			
Branch	••	Common for AE / ME / CE			
Year		2017 - 2018			
CourseCoordinator		Ms. P Rajani, Associate Professor			
Course Faculty	••	Dr. S Jagadha, Professor Mr. Ch Kumara Swamy, Associate Professor Ms. V Subbalaxmi, Associate Professor Mr. G Nagendrakumar, Assistant Professor			

COURSE OBJECTIVES (COs):

The course should enable the students to:

Ι	Enrich the knowledge of solving algebraic, transcendental and differential equation by numerical methods.
II	Apply multiple integration to evaluate mass, area and volume of the plane.
III	Analyze gradient, divergence and curl to evaluate the integration over a vector field.
IV	Understand the Bessels equation to solve them under special conditions with the help of series solutions

COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the asking to do the following:

CAUS002.01	Solve the algebraic and transcendental equations using bisection method, method of false position						
CAR5005.01	and Newton-Raphson method.						
CAHS003.02	Apply numerical methods to interpolate the functions of values for equal intervals using finite differences.						
CAHS003.03	Understand the Newton rapson method to the real-world problem for a finite barrier quantum well.						
CAHS003.04	Evaluate the functional value by using lagranges interpolation formula for unequal intervals.						
CAHS003.05	Understand the lagranges interpolation in real-world problem for neural network learning.						
CAHS003.06	Apply method of least squares to fit linear and non linear curves.						
CAHS003.07	Solve differential equation using single step method- Taylor's series.						
CAHS003.08	Solve differential equation using multi step methods- Euler's, Modified Euler's and Runge-Kutta methods.						
CAHS003.09	Understand the multistep methods in real-world problem for real time Aircraft dynamics.						
CAHS003.10	Understand the Runge-kutta method in real-world problem for embedding the sensor signals into the iterative computation						
CAHS003.11	Evaluate double integral and triple integrals.						
CAHS003.12	Utilize the concept of change order of integration to evaluate double integrals.						

CAHS003.13	Determine the area and volume of a given curve.				
CAHS003.14	Understand transformation of co-ordinate system from plane to plane.				
CAHS003.15	Analyze scalar and vector fields and compute the gradient, divergence and curl.				
CAHS003.16	Understand integration of vector function.				
CAHS003.17	Evaluate line, surface and volume integral of vectors.				
CAHS003.18	Use Vector integral theorems to facilitate vector integration.				
CAHS003.19	Analyze the concept of vector calculus in real-world problem for fluid dynamics.				
CAHS003.20	Solve the Differential Equations by series solutions				
CAHS003.21	Understand Gamma function to evaluate improper integrals.				
CAHS003.22	Analyze Bessel's function and study its properties.				
CAHS003.23	Analyze Bessel's function as a Solution to Schrödinger equation in a cylindrical function of the second kind.				
CAHS003.24	Understand gamma function to finds application in such diverse areas as quantum physics, astrophysics and fluid dynamics.				
CAHS003.25	Possess the knowledge and skills for employability and to succeed in national and international level competitive examinations.				

TUTORIAL QUESTION BANK

	UNIT - I								
	ROOT FINDING TECHNIQUES AND INTERPOLATION								
	Part - A (Short Answer Questions)								
S No	QUESTIONS	Blooms Taxonomy Level	Course Learning Outcomes (CLOs)						
1	Define the term Interpolation.	Remember	CAHS003.02						
2	State Newton's forward interpolation formula for equal length of intervals.	Remember	CAHS003.02						
3	State Newton's backward interpolation formula for equal length of intervals.	Remember	CAHS003.02						
4	State Gauss forward interpolation formula for equal length of intervals.	Remember	CAHS003.02						
5	Define average operator and shift operator.	Remember	CAHS003.02						
6	Prove the relationship between forward difference operator and shift operator.	Understand	CAHS003.02						
7	Prove the relationship between backward difference operator and shift operator.	Understand	CAHS003.02						
8	Prove that relationship between forward and backward difference operator.	Understand	CAHS003.02						
9	Construct a forward difference table for $f(x)=x^3+5x-7$ if $x=-1,0,1,2,3,4,5$.	Understand	CAHS003.02						
10	For what values of p the Gauss backward interpolation formula is used to interpolate?	Understand	CAHS003.02						
11	For what values of <i>p</i> the Gauss forward interpolation formula is used to interpolate?	Understand	CAHS003.02						
12	By using Regula-Falsi method, find an approximate root of the equation $x^4 - x - 10 = 0$ that lies between 1.8 and 2. Carry out two approximations.	Understand	CAHS003.01						
13	Evaluate the forward difference of cos x.	Understand	CAHS003.02						
14	Find the value of y at x = 3 in the following table. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Understand	CAHS003.02						
15	Apply Newton – Raphson method to find an approximate root of the equation	Understand	CAHS003.01						

	$x^{3} - 3x - 5 = 0$, which lies near $x=2$ carry out two approximations.		
16	Find a real root of the transcendental equation $xe^x = 2$ using method of False Position carry out three approximations.	Understand	CAHS003.01
17	Evaluate the forward difference of $\log f(x)$.	Understand	CAHS003.01
18	Find a real root of the transcendental equation $xe^x - cosx = 0$ using Newton –	Understand	CAHS003.01
10	Raphson method carry out three approximations.	Understand	CA115005.01
19	Find by using Bisection method the real root of the equation $xe^x - 3 = 0$	Understand	CAHS003.01
	carryout three approximations.		
20	If $f(x)$ and $g(x)$ are two functions then evaluate forward difference of product of $f(x)$ and $g(x)$	Understand	CAHS003.02
	Part - B (Long Answer Ouestions)	L	
1	Find the positive root of $x^3 - x - 1 = 0$ using Bisection method.	Remember	CAHS003.01
2	Find a real root of the transcendental equation $e^x \sin x = 1$ by using False	Demember	CAUS002.01
2	position method correct up to two decimals.	Remember	CAHS003.01
3	Solve transcendental equation $2x = \cos x + 3$ by Newton-Raphson method correct	Understand	CAHS003.01
	up to two decimals.		
4	Find a real root of transcendental equation $x = \cos x$ using method of False	Remember	CAHS003.01
	Find a real root of transcondental equation $3x \cos x = 1-0$ using		
5	Newton Raphson method correct up to three decimals.	Remember	CAHS003.01
	Find the real root of the equation $x^2 - logx - 1.0 = 0$ by newton rankson method		
6	up to three decimal places.	Remember	CAHS003.01
	Find the real root of the equation $x^2 - \log_{10} x - 1.2 = 0$ by false position method		
7	up to three decimal places.	Remember	CAHS003.01
0	Find a real root of the transcendental equation $x \tan x + 1 = 0$ by		CAUG002.01
8	Newton- Raphson method correct up to three decimals.	Remember	CAHS003.01
	Find y(2.8) for the following data using Newton's forward interpolation formula.		
9	x 2.4 3.2 4.0 4.8 5.6	Remember	CAHS003.02
	f(x) 22 17.8 14.2 38.3 51.7		
10	Using Newton's backward formula find the polynomial of degree 3 passing	Remember	CAHS003.02
10	through (3,6),(4,24),(5,20)and (6,120).	Remember	C/1115005.02
	Find f(42) from the following data using Newton's Backward interpolation		
11		Remember	CAHS003.02
11	x 20 25 30 35 40 45	Kememoer	CA115005.02
	y 354 332 291 260 231 204		
12	Find y(25) given that y(20)=24, y(24)=32, y(28)=35, y(32)=40 using Gauss	Domomhor	CAUS002.02
12	forward interpolation formula.	Kennennber	CAH5005.02
	Find by Gauss's backward interpolating formula the value of y at		
13	x = 1936 using the following table.	Remember	CAHS003.02
15	x 1901 1911 1921 1931 1941 1931	Remember	C/1115005.02
	y 12 15 20 27 39 52		
	Find by Gauss's backward interpolating formula the value of y at $x = 14$ using		
	the following table.		
14	x 0 5 10 15 20 25	Remember	CAHS003.02
	y 7 11 14 18 24 32		
	Find f (1.6) using Lagrange's formula from the following table.		
15	x 1.2 2.0 2.5 3.0	Remember	CAHS003.04
	f(x) 1.36 0.58 0.34 0.20		
16	Find y(5) given that $y(0)=1$, $y(1)=3$, $y(3)=13$ and $y(8)=123$ using Lagrange's	Domomhor	CAUS002 04
10	interpolation formula.	Kemember	CAR5005.04
17	Find y(10), given that y(5)=12, y(6)=13, y(9)=14, y(11)=16 using Lagrange's	Remember	CAHS003.04
	interpolation formula.		

18	Find the real root algebraic equation $x^3 - x - 4=0$ by Bisection method correct up to four decimals.									Remember	CAHS003.01
19	Find the Newton-2	square Raphsc	root of 2 on metho	26 up to 2 d.	2 decima	l places by u	sing			Remember	CAHS003.01
20	Obtain the $(0,1)(1,3)$	Obtain the interpolating polynomial passing through the points $(0, 1)$ $(1, 3)$ $(2, 7)$ and $(3, 13)$ and hence find $f(2, 5)$									CAHS003.02
	(0,1),(1,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Part	- C (Pr	oblem S	Solving and	d Critical	Thinking	7 Ques	tions)	
1	Derive a hence fir	formu d cube	la to fin root of	d a cube 15.	e root of	N using No	ewton-Rap	hson metho	od and	Understand	CAHS003.01
2	Find reci	procal	of real n	umber 1	8 using N	Newton-Rapl	nson metho	od.		Remember	CAHS003.01
3	Evaluate interpola	f(10) g tion for	given f(x rmula.	x)=168,1	92,336 a	t x=1,7,15 r	espectively	using Lag	ranges	Understand	CAHS003.04
4	Prove that	at ∆[x(:	x+1)(x+2	2)(x+3)]=	=4(x+1)(x+2)(x+3) b	y taking di	fference as	unity.	Understand	CAHS003.02
	Find y(1 formula.	6) fro	om the	followir	ig data	using New	ton's forw	ard interpo	olation		~
5	x	1	1.4	1.8	2.2					Understand	CAHS003.02
	у	3.49	4.82	5.96	6.5						
	Using Ga	uss ba	ck ward	differend	e formu	la find y(24)	from the f	ollowing ta	ble.		
6	х	(0	5	10	15	20	25		Understand	CAHS003.02
Ū	у	,	7	11	14	18	24	32		Chieffordia	
7	Find a ro decimals	oot of 1	the equa	tion 4sir	ix=e ^x usi	ing Bisection	n method c	correct up 1	to four	Understand	CAHS003.01
8	Find a ro up to fou	ot of tl r decin	he equat nals.	ion 2x -	$\log x = 7$	using the F	alse Positio	on method	correct	Understand	CAHS003.01
9	Find a ro stages.	ot of th	ne equati	on cosx	= 2x - 3	using Newto	on- Raphso	n method i	n four	Understand	CAHS003.01
10	Compute x y	e f(0.3)	for the d 0 1	lata using	g Lagran 1 3	ge's interpol 3 49	ation form	ula.		Understand	CAHS003.04
	1					UNI	IT-II				L.
	CURV	E FIT	TING	AND N	UMER	ICAL SOL EOUA	UTIONS TIONS	OF ORI	DINAR	Y DIFFERE	NTIAL
					Part –	A (Short A	nswer Q	uestions)			
1	State the	norma	l equatio	ns of the	straight	line $y = a +$	bx.			Understand	CAHS003.06
2	State the	norma	l equatio	ns of the	second	degree equat	tion $y = a +$	$bx + cx^2$.		Understand	CAHS003.06
3	State the	norma	l equatio	ons to fit	the expo	nential curve	e of the for	$m y = ae^{bx}$		Remember	CAHS003.06
4	State the	norma	l equatio	ns to fit	the powe	er curve of th	the form $y =$	ab ^x .		Remember	CAHS003.06
5	If $y = a + \frac{b}{x}$ is a curve then write normal equations to find the constants a and b									Remember	CAHS003.06
6	If $y = a_0 + a_1 x + a_2 x^2$ then what is the third normal equation of $\sum x_i^2 y_i$ by least squares method?									Remember	CAHS003.06
7	If $y = a_0 + a_1 x^2$, then what is the first normal equation of $\sum y_i$?								Remember	CAHS003.06	
8	If $y = ax$	x^b , then	n what is	the first	normal	equation of	$\sum \log y_i$?			Remember	CAHS003.06
9	Fit a curv data. x y	ve of th	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$y = ax^{b}$ 3 6 5.21	by the r	nethod of lea	ast squares	to the follo	owing	Remember	CAHS003.06

	Fit a second degree parabola to the following data by the method of least squares.		
10	x 0 1 2 y 1 1.8 1.3	Remember	CAHS003.06
11	Fit the curve of the form $y = ae^{bx}$ by the method of least squares to the following data. x 0 1 2 y 20 30 52	Remember	CAHS003.06
12	Fit a straight line to the form $y = a + bx$ by the method of least squares for the following data. x 0 5 10 y 12 15 17	Remember	CAHS003.06
13	Fit a curve $y = ae^{bx}$ to the data. x 024 y 5.11031.1	Remember	CAHS003.06
14	A chemical company wishing to study the effect of extraction time on the efficiency of an extraction operation obtained the data shown in the following table. Fit a straight line to the given data by the method of least squares.Extraction time in min(x)274541Efficiency (y)576480	Remember	CAHS003.06
15	Fit a parabola of the form $y = a + bx + cx^2$ to the following data. x 1 2 3 y 2.3 5.2 9.7	Remember	CAHS003.06
16	Fit the curve of the form $y=ab^x$ by the method of least squares to the following data. x 012y11.81.3	Remember	CAHS003.06
17	Using Taylor's series method find an approximate value of y at x = 0.1 given $y(0)=1$ for the differential equation $y' = 3x + y^2$.	Remember	CAHS003.07
18	Using Euler's method solve $y' = y^2 + x$, $y(0)=1$ find $y(0.1)$ and $y(0.2)$.	Remember	CAHS003.08
19	State the modified euler formula to find the numerical solution of ordinary differential equation.	Remember	CAHS003.08
20	State the fourth order Runge- Kutta method to find the numerical solution of ordinary differential equation.	Remember	CAHS003.08
	Part - B (Long Answer Questions)		
1	By the method of least squares find the straight line that best fits the following data: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	Understand	CAHS003.06
2	By the method of least squares find the straight line that best fits the following data:	Understand	CAHS003.06

	Х	1	2	3	4	5					
	y Fit o stroi	14 abt line v	27	40	55 owing do	68	athod	lof	loost squares.		
		gint inte y	-a + 0x = 0		owing ua	ta Uy II		101	least squares.		
3	х	0	1	2	3	4				Understand	CAHS003.06
	У	1									
	Obtain a	relation c	of the form	n y=ax ^b fo	or the fol	lowing	data ł	oy t	the method of least		
	squares.										
4	Х	5	10	15 2	20					Understand	CAHS003.06
	у	15	17 2	22 2	24						
	If $v = a$	+a r f	ind the v	alues of	a & a	from	the fo	110	wing table by the		
	method o	f least so	uares.	ulues of	$a_0 \propto a_1$	nom	the re	/110	wing tuble by the		
5	X	0 2	2 5	7						Understand	CAHS003.06
	У	-1 5	5 12	20							
	Fit a seco	and degree	e curve v	 −a⊥bx⊥cx	x^2 for the	follow	ing de	ata	by method of least		
	square.	nu uegre	e cuive y	-a+0x+c2	v ioi the	10110 W	ing u	na	by method of least	I In denote a d	CAUS002.0C
6	х	1	2	3	4					Understand	CAHS003.06
	y LL in the	6	11	18	27		1	1	by the state of bx C's		
	the follov	ing data:	of least sc	luares fin	a the con	stants	a and	D SI	uch that y=ae fits		
7	X	0 0	0.5 1	1.	5 2		2.5			Understand	CAHS003.06
	у	0.10 0	.45 2.1	15 9.1	5 40.	35 1	80.75				
	Obtain a	relation of	of the form	n y=ab ^x fo	or the fol	lowing	data ł	by t	the method of least		
	squares.										
8	X	2	3	4 5	5	6				Understand	CAHS003.06
	у	8.3	15.4 3	3.1 65	5.2 12	7.4					
	Using Ta	ylor's sei	ries metho	od find ar	n approxi	mate v	alue o	of y	x = 0.2 for the		
9	differenti	al equation	on $y'-2y$	$w = 3e^x$,	y(0)=0.					Understand	CAHS003.07
10	Solve by	Euler's n	nethod y'	y' + y = 0	given y(0) = 1	and fi	nd	y(0.02) taking step	Understand	CAHS003.08
10	size $h = 0$.01.									
11	Solve by	Euler's n h = 0.1	hethod y'	= x + y,	y(0) = 1	and fin	nd the	val	lue of $y(0.2)$ taking	Understand	CAHS003.08
	obtained	n = 0.1. by analyt	ical metho	ds.	sult obtained by this method with the result				Onderstand	C/1115005.00	
12	Using Ru	nge-Kutta	a method	of fourth	order, fin	d y(0.2)wher	e y	y' = y - x,	Understand	CAHS003.08
12	y(0)=2, h	n = 0.2.	<u> </u>	-	1					Onderstand	CAIIS005.00
13	Apply the $x=1,1$ in $x=1,1$	e 4 th orde	r Runge-K	Lutta meti	hod to fin	an a	pproxi	ma	ite value of y when	Understand	CAHS003.08
	X=1.1 III	nd dogra		$\int a_{x} y =$	$\frac{x + y}{2}$, y(1)	=1.3.		7 20		
14		nd degree	e curve y=	$\frac{a+bx+cx}{2}$	3		4	Juai	ies.	Understand	CAHS003.06
	у	6		11	18	2	27]			
	Obtain a	relation	of the for	m y=ab ^x	for the f	followi	ng dat	ta ł	by method of least		
15	squares.	2	3	1	5	<u> </u>	6	٦		Understand	CAHS003.06
	y y	8.3	15.4	33.1	65.2	2 1	27.4				

16	Solve $y' = x^2 - y$, $y(0) = 1$, using Taylor's series method and compute $y(0.1)$, $y(0.2)$, $y(0.3)$ and $y(0.4)$.	Understand	CAHS003.07
17	Using Euler's method, solve the differential equation from $\frac{dy}{dx} = 3x^2 + 1$, for x = 2, y(1) = 2, taking step size h = 0.5.	Understand	CAHS003.08
18	Using modified euler's method, find the approximate value of x when x=0.1 given differential equation $\frac{dy}{dx} = x + y$ and y(0) = 1.	Understand	CAHS003.08
19	Using Runge-Kutta method of second order, find $y(2.5)$ given the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$, $y(2)=2$, $h = 0.25$.	Understand	CAHS003.08
20	Find y(0.1) by Runge-Kutta method of 4 th order for the differential equation $y' = xy + y^2$, y(0)=1.	Understand	CAHS003.08
	Part – C (Problem Solving and Critical Thinking)		
1	Using Runge-Kutta method find y(0.2) for the differential equation $\frac{dy}{dx} = y - x, y(0)=1, \text{ take h}=0.2.$	Understand	CAHS003.08
2	Given the differential equation $y' + y=0$, $y(0)=1$ using Runge-Kutta method take h=0.1 find $y(0.1)$.	Understand	CAHS003.08
3	Apply the 4 th order Runge-Kutta method to find an approximate value of y when $x = 1.1$ in steps of $h = 0.1$ given the differential equation $y' = x^2 + y^2$, $y(1) = 1.5$.	Understand	CAHS003.08
4	Solve the first order differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method.	Understand	CAHS003.08
5	Using modified Euler's method find y (0.2) given differential equation $y' = y + e^x$, y(0) = 0.	Understand	CAHS003.08
6	Given the differential equation $\frac{dy}{dx} = -xy^2$, $y(0) = 2$. Compute $y(0.1)$ in steps of 0.1, using modified Euler's method.	Remember	CAHS003.08
7	Solve: $\frac{dy}{dx} = \log_{10}(x+y)$; $y(0) = 2$ atx = 0.4 with h = 0.2, using modified Euler's method.	Understand	CAHS003.08
8	By the method of least squares, fit a second degree polynomial $y=a+bx+cx^2$ to the following data. x -3 -2 -1 0 1 2 3 y 4.63 2.11 0.67 0.09 0.63 2.15 4.58	Understand	CAHS003.06
9	Find the solution of differential equation $\frac{dy}{dx} = x - y$, y(0)=1at x = 0.1using modified euler's method.	Remember	CAHS003.08
10	Find y(0.1) using modified euler's formula given the differential equation $y' = x^2 - y$, y(0)=1.	Remember	CAHS003.08
	UNIT-III		
	MULTIPLE INTEGRALS		
	Part - A (Short Answer Questions)		
1	Evaluate the double integral $\int_0^\infty \int_0^\infty y dy dx$.	Understand	CAHS003.11

2	Evaluate the double integral $\int_0^{\pi} \int_0^{a \sin \theta} r dr d\theta$.	Understand	CAHS003.11
3	Evaluate the double integral $\int_0^3 \int_0^1 xy(x + y) dx dy$.	Understand	CAHS003.11
4	Find the value of double integral $\int_{1}^{2} \int_{1}^{3} xy^2 dx dy$.	Understand	CAHS003.11
5	Find the value of triple integral $\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx dy dz$.	Understand	CAHS003.11
6	Evaluate the double integral $\int_{0}^{2} \int_{0}^{x} y dy dx$.	Understand	CAHS003.11
7	Evaluate the double integral $\int_{0}^{\frac{\pi}{2}} \int_{-1}^{1} x^2 y^2 dx dy.$	Understand	CAHS003.11
8	Evaluate the double integral $\int_0^{\pi} \int_0^{a\sin\theta} r dr d\theta$.	Understand	CAHS003.11
9	Evaluate the double integral $\int_0^\infty \int_0^{\pi/2} e^{-r^2} r d\theta dr$.	Understand	CAHS003.11
10	Evaluate the double integral $\int_0^{\pi} \int_0^{a(1+\cos\theta)} r dr d\theta$.	Understand	CAHS003.11
11	State the formula to find area of the region using double integration in Cartesian form.	Remember	CAHS003.13
12	Find the volume of the tetrahedron bounded by the coordinate planes and the plane $x+y+z=1$.	Understand	CAHS003.13
13	State the formula to find volume of the region using triple integration in Cartesian form.	Remember	CAHS003.13
14	Find area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using double integration.	Understand	CAHS003.13
15	State the formula to find area of the region using double integration in polar form.	Remember	CAHS003.13
16	Find the area of the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.	Understand	CAHS003.13
17	Find the area of the curve $r=2a\cos\theta$ using double integration in polar coordinates.	Understand	CAHS003.13
18	Find the area enclosed between the parabola $y=x^2$ and the line $y=x$.	Understand	CAHS003.13
19	Find the area of the curve $r=2asin\theta$.	Understand	CAUS003.13
20	Find area of the circle $x + y = a$.	Understand	CAR5003.13
	$\mathbf{r} \mathbf{a} \mathbf{t} - \mathbf{D} \text{ (Long Answer Questions)}$		
1	Evaluate the triple integral $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-z-z} xyz dx dy dz$.	Understand	CAHS003.11
2	Evaluate the double integral $\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r^2 \cos\theta dr d\theta.$	Understand	CAHS003.11
3	Evaluate the double integral $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^{2} + y^{2}) dx dy.$	Understand	CAHS003.11

4	Evaluate the double integral $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy.$	Understand	CAHS003.11
5	Evaluate the double integral $\int_{0}^{1} \int_{0}^{\frac{\pi}{2}} r \sin \theta d\theta dr$.	Understand	CAHS003.11
6	By changing the order of integration evaluate the double integral $\int_0^1 \int_{x^2}^{2-x} xy dx dy.$	Understand	CAHS003.11
7	Evaluate the double integral $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} (x^{2}+y^{2}) dy dx.$	Understand	CAHS003.11
8	Evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dx dy dz.$	Understand	CAHS003.11
9	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$.	Understand	CAHS003.11
10	Find the value of $\iint xydxdy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$	Understand	CAHS003.11
11	Evaluate the double integral using change of variables $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy.$	Understand	CAHS003.11
12	Find the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the	Understand	CAHS003.11
13	By transforming into polar coordinates Evaluate $\iint \frac{x^2y^2}{x^2 + y^2} dxdy$ over the annular region between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ with $b > a$	Understand	CAHS003.14
14	Find the area of the region bounded by the parabola $y^2 = 4ax$ and $x^2 = 4ay$.	Understand	CAHS003.13
15	Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2\sin\theta$ and $r = 4\sin\theta$.	Understand	CAHS003.13
16	Using triple integration find the volume of the sphere $x^2+y^2+z^2=a^2$.	Understand	CAHS003.13
17	Find the area of the cardioid $r = a(1+\cos\theta)$.	Understand	CAHS003.13
18	Find the area of the region bounded by the curves $y = x^3$ and $y = x$.	Understand	CAHS003.13
19	Evaluate $\iiint_{v} dxdydz$ where v is the finite region of space formed by the planes x=0, y=0, z=0 and 2x+3y+4z=12.	Understand	CAHS003.13
20	Find the area bounded by curves $xy=2,4y=x^2$ and the line $y=4$.	Understand	CAHS003.13
	Part - C (Problem Solving and Critical Thinking Ques	tions)	
1	Evaluate $\int_0^a \int_{\frac{x}{a}}^{\frac{x}{a}} (x^2 + y^2) dy dx$ by changing to polar coordinates.	Understand	CAHS003.12
2	Evaluate $\iiint_{R} (x + y + z) dz dy dx$ where R is the region bounded by the plane	Understand	CAHS003.11

	x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.		
	Evaluate $\iint x^2 dx dy$ over the region bounded by hyperbola		
3	y = 4 $y = 0$ $x = 1$ $x = 4$	Understand	CAHS003.11
1	Even the area bounded by curves $xy-2$ $4y-x^2$ and the line $y-4$	Understand	CAHS003 13
+	This the area bounded by curves $xy=2,4y=x$ and the line $y=4$.	Onderstand	CAIIS005.15
5	Evaluate the double integral $\iint e^{(x+y)} dy dx$.	Understand	CAHS003.11
6	Evaluate by converting $\int_{a}^{a} \int_{a}^{\sqrt{a^{2}-x^{2}}} (x^{2}+y^{2}) dy dx$ to polar co-ordinates.	Understand	CAHS003.12
	Find the volume of tetrahedron bounded by the co-ordinate planes and the plane	XX 1 1	G + 110000 40
7	$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$	Understand	CAHS003.13
8	Using double integral, find area of the cardioid $r = a(1-\cos\theta)$.	Remember	CAHS003.13
0	Evaluate the area of $\iint r^3 dr d\theta$ over the region included between the circles	Understand	CAUS002 12
9	$r = \sin\theta, r = 4\sin\theta$.	Understand	САП5005.15
	If R is the region bounded by the planes x=0,y=0,z=1 and the cylinder $x^2 + y^2 =$		
10	1,evaluate $\iiint xyzdxdydz$.	Remember	CAHS003.11
	VECTOR CALCULUS		
	Part – A (Short Answer Questions)		
1	Define gradient of scalar point function.	Remember	CAHS003.15
2	Define divergence of vector point function.	Remember	CAHS003.15
3	Define curl of vector point function.	Remember	CAHS003.15
4	State Laplacian operator?	Remember	CAHS003.15
5	Find curl \overline{f} where $\overline{f} = \text{grad} (x^3 + y^3 + z^3 - 3xyz)$.	Remember	CAHS003.15
6	Find the angle between the normal to the surface $xy=z^2$ at the points (4, 1, 2) and (3,3,-3).	Understand	CAHS003.15
7	Find a unit normal vector to the given surface $x^2y+2xz = 4$ at the point (2,-2,3).	Remember	CAHS003.15
8	If \bar{a} is a vector then prove that grad $(\bar{a}.\bar{r}) = \bar{a}$.	Understand	CAHS003.15
9	Define irrotational vector and solenoidal vector of vector point function.	Remember	CAHS003.15
10	Show that $\nabla(f(r)) = \frac{\overline{r}}{r} f'(r)$.	Remember	CAHS003.15
11	Prove that $f = yzi + zxj + xyk$ is irrotational vector.	Remember	CAHS003.15
12	Show that $(x+3y)i+(y-2z)j+(x-2z)k$ is solenoidal.	Understand	CAHS003.15
13	Show that curl (grad ϕ) =0 where ϕ is scalar point function.	Understand	CAHS003.15
14	State Stokes theorem of transformation between line integral and surface integral.	Understand	CAHS003.15
15	Prove that div curl $\overline{f}=0$ where $\overline{f}=f_1\overline{i}+f_2\overline{j}+f_3\overline{k}$.	Understand	CAHS003.15
16	Define line integral on vector point function.	Remember	CAHS003.15
17	Define surface integral of vector point function F .	Remember	CAHS003.15
18	Define volume integral on closed surface S of volume V.	Remember	CAHS003.15
19	State Green's theorem of transformation between line integral and double integral.	Understand	CAHS003.18
20	State Gauss divergence theorem of transformation between surface integral and volume integral.	Understand	CAHS003.18
Part – B (Long Answer Questions)			
1	Evaluate $\int_{C} \overline{f} \cdot d\overline{r}$ where $\overline{f} = 3xyi - y^2j$ and C is the parabola $y=2x^2$ from points	Understand	CAHS003.17

	(0, 0) to $(1, 2)$.		
2	Evaluate $\iint_{s} \overline{F}.d\overline{s}$ if $\overline{F} = yzi + 2y^2j + xz^2k$ and S is the Surface of the cylinder	Understand	CAHS003.17
	$x^2+y^2=9$ contained in the first octant between the planes $z = 0$ and $z = 2$.		
3	Find the work done in moving a particle in the force field $\overline{F} = (3x^2)i + (2zx - y)j + zk$ along the straight line from(0,0,0) to (2,1,3).	Understand	CAHS003.17
	Find the circulation of		
4	$\overline{F} = (2x - y + 2z)\overline{i} + (x + y - z)\overline{j} + (3x - 2y - 5z)\overline{k}$ along the circle	Remember	CAHS003.15
	x + y = 4 in the xy plane.		
5	Verify Gauss divergence theorem for the vector point function $F = (x^3-yz)i - 2yxj + 2zk$ over the cube bounded by $x = y = z = 0$ and x = y = z = a.	Remember	CAHS003.18
6	Verify Gauss divergence theorem for $2x^2yi - y^2j + 4xz^2k$ taken over the region of first actent of the cylinder $y^2 + z^2 = 0$ and $x = 2$	Remember	CAHS003.18
	This octant of the cylinder $y + z = 9$ and $x - 2$.		
7	Verify Green's theorem in the plane for $\int_{C} (x^2 - xy^3) dx + (y^2 - 2xy) dy$ where	Remember	CAHS003.18
	Applying Green's theorem evaluate $f_1(y_{-sip_X})d_{X+cos_X}d_{Y}$, where C is the plane		
8	$\prod_{i=1}^{n} (y - \sin i) \sin i = \sin i = 1$	Remember	CAHS003 18
0	triangle enclosed by $y = 0$, $y = \frac{2x}{\pi}$, and $x = \frac{\pi}{2}$.	Remember	CA115005.10
	Apply Green's Theorem in the plane for $\int (2^2 - 2^2) I + (2^2 - 2^2) I$, where C is		
	$\int_{c} (2x - y) dx + (x + y) dy$ where c is		
9	a is the boundary of the area enclosed by the x-axis and upper half of the circle	Remember	CAHS003.18
	$x^2 + y^2 = a^2.$		
	Verify Stokes theorem for $f = (2x - y)i - yz^2j - y^2zk$ where S is the upper		
10	half surface of the sphere $x^2 + y^2 + z^2 = 1$ bounded by the projection of the	Remember	CAHS003.18
	xy plane.		
11	Verify Stokes theorem for $\overline{f} = (x^2 - y^2)\overline{i} + 2xy\overline{j}$ over the box bounded by the	Remember	CAHS003.18
11	planes x=0, x=a, y=0,y=b.	Kennember	
12	Find the directional derivative of the function $\phi = xy^2 + yz^3$ at the point P(1,-2,-	Remember	CAHS003.16
	1) in the direction to the surface $x \log z - y^2 = -4 at (-1,2,1)$.		
13	If $\overline{F} = 4xz\overline{i} - y^2\overline{j} + yzk$ evaluate $\int \overline{F} \cdot \overline{n}ds$ where S is the surface of the cube x =	Understand	CAHS003 17
15	0, x = a, y = 0, y = a, z = 0, z = a.	Understand	CAI15005.17
14	If $\overline{f} = (5xy - 6x^2)\overline{i} + (2y - 4x)\overline{j}$ evaluate $[\overline{f}, d\overline{r}]$ along the curve C in xy-		
14	plane $v = x^3$ from (1.1) to (2.8).	Understand	CAHS003.17
	Evaluate the line integral $\int (x^2 + xy) dx + (x^2 + y^2) dy$ where C is the square		
15	$\int_{c} c^{c} (c^{c} + c^{c}) f(c^{c} + c^{c}) f(c^{c}) + c^{c} f(c^{c}) +$	Understand	CAHS003.17
	formed by lines $x = \pm 1$, $y = \pm 1$.		
16	If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ show that $\nabla r^n = nr^{n-2}\overline{r}$.	Understand	CAHS003.15
	Evaluate by Stokes theorem $\int (e^x dx + 2v dv - dz)$ where c is the curve $x^2 + v^2 = 9$		
17	c J	Understand	CAHS003.17
	and z=2.		
18	Verify Stokes theorem for the function $x^2i + xyj$ integrated round the square in	Understand	CAHS003.18
	the plane $z=0$ whose sides are along the line $x=0,y=0,x=a, y=a$.		

19	Evaluate by Stokes theorem $\int_{c} (x+y)dx + (2x-z)dy + (y+z)dz$ where C is the boundary of the triangle with vertices $(0,0,0)$ $(1,0,0)$ $(1,1,0)$	Understand	CAHS003.18
	Varify Green's theorem in the plane for $\int (3x^2 - 8y^2) dy + (4y - 6xy) dy$		
20	Verify Green's theorem in the plane for $\int_C (3x - 8y) dx + (4y - 0xy) dy$	Understand	CAHS003 18
20	where C is a region bounded by $y = \sqrt{r}$ and $y = x^2$	onderstand	e/iiib005.10
	$\mathbf{Part} - \mathbf{C} \left(\mathbf{Problem Solving and Critical Thinking} \right)$		
	Verify Gauss divergence theorem for $\bar{f} = x^2 \bar{i} + y^2 \bar{i} + z^2 \bar{k}$ taken over the cube		~
1	bounded by $x=0,x=a, y=0,y=b, z=0,z=c$.	Understand	CAHS003.18
	Find the work done in moving a particle in the force field		
2	$\overline{F} = (3x^2)i + (2zx - y)j + zk$ along the curve defined by	Understand	CAHS003.17
2	$x^2 = 4y$, $3x^3 = 8z$ from x=0 and x=2.		
	Show that the force field given by $\overline{E} = 2ryz^3i + r^2z^3i + 3r^2yz^2k$ is		
3	conservative. Find the work done in moving a particle from $(1 - 1 2)$ to $(3 2 - 1)$ in	Understand	CAHS003.17
	this force field.		
4	Show that the vector $(x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is irrotational and	Understand	CAHS003 15
-	find its scalar potential function.	Understand	CA115005.15
~	Using Gauss divergence theorem evaluate $\iint \overline{F} d\overline{s}$, for the $\overline{F} = y\overline{i} + x\overline{j} + z^2\overline{k}$	TT 1 / 1	GAUG002.10
5	for the cylinder ration S given by $x^2 + y^2 = x^2 - z = 0$ and $z = b$	Understand	CAHS003.18
	Find the directional derivative of $\phi(x, y, z) = x^2 yz + 4 xz^2$ at the point		
6	Find the direction of the normal to the surface $f(x, y, z) = x yz + 4xz$ at the point (1-2-1) in the direction of the normal to the surface $f(x, y, z) = x \log z - y^2$ at	Understand	CAHS003.16
	$(1, 2, 1)$ in the diffection of the normal to the surface $I(x, y, z) = x \log z$ y at $(-1, 2, 1)$.		
	Using Green's theorem in the plane evaluate $\int (2xy - x^2)dx + (x^2 + y^2)dy$ where		
7	c c	Understand	CAHS003.18
	C is the region bounded by $y = x^2$ and $y^2 = x$.		
	Applying Green's theorem evaluate $\int (xy + y^2) dx + x^2 dy$ where C is the region		
8	c	Understand	CAHS003.18
	bounded by $y = \sqrt{x}$ and $y = x^2$.		
0	Verify Green's Theorem in the plane for $\int (3x^2 - 8y^2) dx + (4y - 6xy) dy$	TT 1 / 1	GAUG002.10
9		Understand	CAHS003.18
	where C is the region bounded by x=0, y=0 and x + y=1. Varify Stokes theorem for $\overline{E} = (y_1, z_1 + 2)i + (y_2 + 4)i$, $y_2 + y_3 + y_4 + y_5 $		
10	surface of the cube x=0, y=0, z=0 and x=2, y=2, z=2 above the xy-plane.	Understand	CAHS003.18
	UNIT-V		
	SPECIAL FUNCTIONS		
	Part - A (Short Answer Questions)		Γ
1	Show that the value of $\gamma(1/2) = \sqrt{\pi}$.	Understand	CAHS003.21
2	State the value of $\gamma(-7/2)$.	Remember	CAHS003.21
3	Compute the value of $\gamma(11/2)$.	Remember	CAHS003.21
4	Define ordinary point of a differential equation.	Remember	CAHS003.20
5 6	Explain Erobenius method about zero	Understand	CAHS003.20 CAHS003.20
7	Find the singular points and classify them (regular or irregular)	Understand	CAUG002.00
/	$x^2 y'' - 5y' + 3x^2 y = 0.$	Understand	CAHS003.20
8	Prove that $\frac{d}{dx}(J_0(x)) = -J_1(x)$ where $J_1(x)$ is the Bessel's function.	Understand	CAHS003.22

9	Find the singular points and classify them (regular or irregular)	Understand	CAHS003.20
10	$\frac{x^2 y + ax y + by = 0}{\text{State the surgeries of i}}$	Understand	CAUS002 22
10	State the expansion of $J_n(x)$. Prove the Bessel's recurrence relation $xL'(x) = nL(x) + xL(x)$	Remember	CAHS003.22
12	Prove the Bessel's recurrence relation $xJ_n(x) = nJ_n(x) + xJ_{n+1}(x)$.	Remember	CAHS003.22
13	State the expansion of i.(-x) State the expansion of i.	Kemember	CAHS003.22
14	Prove the Bessel's recurrence relation $J'_n(x) = \frac{1}{2}[J_{n-1}(x) - J_{n+1}(x)].$	Remember	CAHS003.22
15	Express $I_2(x)$ in terms of $I_0(x)$ and $I_1(x)$.	Remember	CAHS003.22
16	Prove that $J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 + \cdots) = 1.$	Remember	CAHS003.22
17	Prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x.$	Remember	CAHS003.22
18	Prove that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x.$	Remember	CAHS003.22
19	Prove that $\begin{bmatrix} J_{\frac{1}{2}} \end{bmatrix}^2 + \begin{bmatrix} J_{-\frac{1}{2}} \end{bmatrix}^2 = \frac{2}{\pi x}.$	Remember	CAHS003.22
20	Prove that $J_n(x)=0$ has no repeated roots except at x=0.	Remember	CAHS003.22
	Part - B (Long Answer Questions)		1
1	If m and n are real constants greater than -1, prove that $\int_0^1 x^m (\log x)^n dx = \frac{(-1)^n}{(m+1)^{n+1}} \Gamma(n+1)$ and evaluate $\int_0^1 x^4 (\log \frac{1}{x})^3 dx$.	Understand	CAHS003.21
2	Show that $\int_0^x x^n J_{n-1}(x) dx = x^n J_n(x)$ where $J_n(x)$ is Bessel's function.	Understand	CAHS003.22
3	Prove that $[J_n^2 + J_{n+1}^2] = \frac{2}{x} [nJ_n^2 - (n+1)J_{n+1}^2]$ where $J_n(x)$ is Bessel's function.	Understand	CAHS003.22
4	Show that $\frac{d}{dx}[xJ_n(x)J_{n+1}(x)] = x[J_n^2(x) - J_{n+1}^2(x)]$ where $J_n(x)$ is Bessel's function.	Remember	CAHS003.22
5	Show that $\int_0^x x^{n+1} J_n(x) dx = x^{n+1} J_{n+1}(x)$ where $J_n(x)$ is Bessel's function.	Remember	CAHS003.22
6	Show that $J_n(x)$ is an even function when n is even and odd function when n is odd function.	Remember	CAHS003.22
7	Prove that $\int J_3(x)dx = -J_2(x) - \frac{2}{J_1}(x)$ using Bessel's Recurrence relation.	Understand	CAHS003.22
8	State and prove orthogonality of Bessel's function	Remember	CAHS003.22
9	Using generating function show that $\cos(x\sin\theta) = J_0 + 2(J_2\cos 2\theta + J_4\cos 4\theta + \dots).$	Understand	CAHS003.22
10	Using generating function show that $sin(x sin \theta) = 2(J_1 sin \theta + J_3 sin 3\theta + J_5 sin 5\theta).$	Understand	CAHS003.22
11	Prove that $J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right).$	Understand	CAHS003.22
12	Use frobenius method to solve $2x(1-x)y''+(1-x)y'+3y=0$.	Understand	CAHS003.20
13	Solve in series the differential equation $\frac{d^2y}{dx^2} + xy = 0$ when x=0 is ordinary point of the equation.	Understand	CAHS003.20
14	Solve in series the differential equation $y'' + y = 0$ when x=0 is ordinary point of the equation.	Understand	CAHS003.20
15	Solve in series the differential equation $2x^2 y'' + (x^2 - x) y' + y = 0$ using Frobenius method when x=0 is regular singular point of the equation.	Understand	CAHS003.20
16	Find the power series solution of the differential equation $x(1-x)y'' - (1+3x)y' - y = 0$ using Frobenius method when x=0 is regular singular point of the equation.	Understand	CAHS003.20

17	Find the power series solution of the differential equation $(x - x^2)y'' + (1 - 5x)y' - 4y = 0$ Using Frobenius method when x=0 is regular singular point of the equation.	Understand	CAHS003.20
18	Solve in series the differential equation $2x^2 y'' + x y' - (x + 1)y = 0$ using Frobenius method when x=0 is regular singular point of the equation.	Understand	CAHS003.20
19	Solve in series the equation $x(1-x)y'' - 3x y' - y = 0$ using Frobenius method when x=0 is regular singular point of the equation.	Understand	CAHS003.20
20	Solve in series the equation $9x(1-x)\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 4y = 0$ using Frobenius method when x=0 is regular singular point of the equation.	Understand	CAHS003.20
	Part – C (Problem Solving and Critical Thinking)		
1	Solve in series the differential equation $y'' + x y' + y = 0$ about the ordinary point x=0.	Remember	CAHS003.20
2	Solve in series the equation $x \frac{d^2y}{dx^2} + \frac{dy}{dx} + xy = 0$ using Frobenius method when x=0 is regular singular point of the equation.	Remember	CAHS003.20
3	Solve in series the differential equation $\frac{d^2y}{dx^2} - y = 0$ when x=0 is ordinary point of the equation.	Remember	CAHS003.20
4	Solve in series the differential equation $\frac{d^2y}{dx^2} - xy = 0$ when x=0 is ordinary point of the equation.	Remember	CAHS003.20
5	Solve in series the equation $4x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$ using Frobenius method when x=0 is regular singular point of the equation.	Understand	CAHS003.20
6	Prove that $J_n(-x) = (-1)^n J_n(x)$ where n is a positive or negative integer.	Understand	CAHS003.22
7	Solve in series $3xy'' + (1 - x)y' - y = 0$ using Frobenius method when x=0 is regular singular point of the equation.	Understand	CAHS003.20
8	Solve in series $xy'' + (1 + x)^2 y' + 2y = 0$ using Frobenius method when x=0 is regular singular point of the equation.	Understand	CAHS003.20
9	If α and β are the distinct roots of $J_n(x)=0$, then show that $\int_{0}^{\frac{\pi}{2}} x J_n(\alpha x) J_n(\beta x) dx = 0.$	Understand	CAHS003.22
10	Prove that $J_{\frac{3}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{1}{x} \sin x - \cos x\right).$	Remember	CAHS003.22

Prepared By: Ms. P Rajani, Associate Professor

HOD, FRESHMAN ENGINEERING