IARE NO.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

Course Name	:	Computer Methods in Power Systems
Course Code	:	A60222
Class	:	III B. Tech - II Semester
Branch	:	EEE
Year	:	2017 – 2018
Course Coordinator	:	Dr. P Sridhar, Professor
Course Faculty	:	Mr. S Srikanth, Assistant Professor

OBJECTIVE:

Computer methods in power systems introduce formation of Z bus of a transmission line, power flow studies by various methods. It also deals with short circuit analysis and analysis of power system for steady state and transient stability.

	UNIT - I						
	POWER SYSTEM NETWORK MATRICES						
	PART – A (SHORT ANSWER QUESTIONS)						
S. No	QUESTION	Blooms Taxonomy Level	Course Outcome				
1	List the advantages of Ybus matrix over ZBus Matrix	Remember	2				
2	Write the formula to find Ybus matrix using singular transformation method	Remember	2				
3	List the advantages of graph theory	Remember	1				
4	In a graph if there are 8 elements and 5 nodes, then calculate the number of branches.	Remember	1				
5	In a graph if there are 4 nodes and 7 elements, then calculate the number of links.	Remember	1				
6	Calculate dimension of the bus incidence matrix in terms of number of elements and number of nodes.	Remember	1				
7	Summarize different methods of forming Ybus matrix.	Remember	2				
8	Give the dimension bus incidence matrix?	Remember	2				

9	Define Z bus	Remember	3
10	State the Bus Incidence Matrix.	Remember	3
	PART – B (LONG ANSWER QUESTIONS)		
1	Define a tree and co-tree. For any example write the Bus - Branch incidence matrix and use it to obtain YBUS. Select arbitrary directions.	Remember	1
2	Define Terms a) Graphs b) Incident c) Tree d) co-tree e) loop f) cut set	Remember	1
3	Explain Incident Matrices?	Understand	2
4	Discuss about cut set incidence matrix?	Understand	2
5	Discuss about augmented loop incidence matrix	Understand	2
6	Discuss about formation of network matrices by singular transformation.	Understand	3
7	Describe formation of Z bus	Remember	3
8	Discuss Formation of Y bus by using direct inspection method	Understand	3
9	Derive branch matrices from bus matrices?	Understand	2
10	Discuss about bus admittance and bus impedance matrix.	Understand	3
	PART – C (ANALYTICAL QUESTIONS)		
1	Calculate the YBUS by direct inspection method for the network shown below: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Understand	3
2	For the power system network shown in figure use ground as a reference Bus. Define a tree and co-tree. Write the Bus - Branch incidence matrix and use it to obtain YBUS? Select arbitrary directions.	Understand	2
3	Form YBUS for the given power system shown in figure with reactance value in p.u.? Select arbitrary directions. 1 j0.2 2 j0.3 j0.4	Understand	2

4	For the syste	em shown below obtain	i) primitive	admittance matrix ii) bus	Understand	3
		trix Select ground as refer	ence.	,		
	Line num		ittance in pu			
	1	1-4	1.4			
	2 3	1-2 2-3	1.6 2.4			
	4	3-4	2.4			
	5	2-4	1.8			
5	(a) List the ac	dvantages of ZBUS building	ng algorithm	?	Understand	3
	` '	_	~ ~	Z22= 0.6, Z12=0 find the		
				0.4 p.u. is added from the		
				modified ZBUS if a branch		
			from existin	g bus (other than reference		
	bus) to new b		.1		TT 1 . 1	2
6	in the table b		the power s	system network, data given	Understand	2
	Bus Code	Self Impedance(p.u.)	Bus Code	Mutual Impedance		
	Bus code	Sen impedance(p.u.)	Bus Code	(p.u.)		
	1-2	0.15	3-4	0.15		
	2-3	0.65				
	3-4	0.35				
	4-1	0.75				
	2-4	0.25	(TZ) 1.1		TT 1 . 1	
7		e branch path incidence m		h an example. e network shown in figure.	Understand	2
	b) Find the 1			e network shown in figure.		
		1 - j 10 3 - j 20 (4 - j 10 2	<u> </u>		
	2 30°	-j10 -j4	j4 -j20	1.5 60°		
8	List the prope	arties of node to branch in	aidanaa matr		Understand	2
		erties of node to branch in				
9	Form Z_{BUS} by the table below		ne power sys	tem network, data given in	Understand	3
	Bus Code	Self Impedance(p.u.)	Bus Code	Mutual Impedance		
	Bus Code	Sen impedance(p.u.)	Dus Code	(p.u.)		
	1-2	0.1		(F1337)		
	2-3	0.6				
	3-4	0.3				
	4-1	0.7	3-4	0.1		
	2-4	0.2				
10	a) If the mutu	al coupling between the t	wo elements	of a power system network	Understand	3
	is zero, then	what are the off-diagonal		f the Z_{BUS} matrix? How do		
		te order of Z_{BUS} ?				
				values in p.u., obtain Z_{BUS}		
	by building a	lgorithm. Take bus-3 as re	eierence bus.	_		
	<u> </u>	j0.8		(2)		
		j0.2	j0.4	4		
			-			
		(3)				
	<u>l</u>				1	

UNIT - II **POWER FLOW STUDIES** PART – A (SHORT ANSWER QUESTIONS) 1 Define load bus 4 Remember 2 Define slack bus 4 Remember 3 Define bus impedance matrix Remember 4 4 Write short notes on PQ bus Remember 4 5 Write short notes on PV bus. Remember 4 6 Write impedance matrix if adding branch to the reference bus Remember 4 7 Remember 4 Write impedance matrix if adding link to the reference bus 8 If mutual coupled elements are removed then write the impedance matrix Remember 4 9 Define reactive power Remember 5 4 10 Define complex power and active power Remember PART – B (LONG ANSWER QUESTIONS) 1 Explain the load flow solution using gauss seidel method Understand 4 2 Write algorithm for formation of bus impedance matrix Remember 5 3 Remember 4 Derive the static load flow equations 4 5 Write the algorithm for load flow solution for simple power system Understand 5 5 How do you represent transformer in load flow studies Understand 6 Explain the load flow solution using Newton Raphson method Understand 6 Explain the Newton Raphson method in rectangular and polar co-ordinates 7 Understand 6 8 Understand 6 Explain the decoupled and fast decoupled methods in load flow studies 9 5 Compare the decoupled and fast decoupled methods in load flow studies Understand List the Merits and Demerits of using polar and rectangular coordinates in load 4 10 Remember flow studies PART – C (ANALYTICAL QUESTIONS) Define acceleration factor. What is its role in GS method for power flow 1 Remember 4 studies? 2 Understand 5 Give the initial conditions assumed for the power flow studies by GS method 5 Understand Line data: 3 Bus code Admittance(p.u.) 1-2 1+j6 1-3 2-j3 2-3 0.8 - j2.2

		2-4		1.2-j2.3		1 1	
		3-4		2.1-j4.2]	
	Load Data:	Dug D (n u)	(n y)	V (n u)	Domonto		
		Bus P (p.u.)	Q (p.u.)	V (p.u.)	Remarks		
		1 -	-	1.03	Slack		
		2 0.52	0.23	1.0	PQ		
	<u> </u>	3 0.42	0.32	1.0	PQ		
	Coloulata tha	4 0.4	0.12	1.0	PQ	20	
	method.	voitages at an the	buses at un	ie end of m	st iteration using	JS	
4		2-bus system is §	given below	v. S _{G1} =Unkı	nown; S _{D1} =Unkno	wn Understand	6
					$S_{D2}=1+j0.5$ p.u. 7		
					tance of 0.5 p.u. Fi		
		rm two iterations u			the tie line. Assu	ine	
5	_				ıs building algorith	m Understand	6
3	For the network	k shown in figure,	illia ule Zo	us using Zot	is building algorith	III Oliderstalid	O
		fig ®	T T				
		jo.;	3 6 jo.125				
		13	jo.4 2 j2.5	0			
		١٠ / ٢١	.25	1 ji 25			
			@ xcf				
6	List the advant	ages of load flow s	tudies?			Remember	5
7	Derive static lo	oad flow equations.				Understand	5
8	What is the dat	a for load flow stu	dies?			Understand	5
9					line and load data		5
					03 p.u. the maxim		
					Bus-2 are 0.35 and le load flow solution		
	using GS-meth		as stack of	as, ootam u	ie loud now soluti	.on	
	1			2			
				•			
		Ţ	(3)				
	Line Data:	D C1	-	T	[()	7	
		Bus Code	2	0.08+i	ance(p.u.)	1	
		1-3		0.02+		1	
		2-3		0.06+]	
	Load Data:		1-			_	
	Bus	Bus Voltage(p.u.)	P_{Gi}		P_{Di} Q_{Di}		
	No. 1	Voltage(p.u.)	(p.u.)	(p.u.)	(p.u.) (p.u.) 0 0	-	
	2	1.03	0.2		0.5 0.2	1	
	3	-	0	+ +	0.6 0.25	<u> </u>	
						-	
10		idea behind perfor	ming power	flow analys	is of any given pov	ver Understand	5
	system						

UNIT - III SHORT CIRCUIT ANALYSIS PART – A (SHORT ANSWER QUESTION) A 12 bus Power System has three voltage-controlled buses. Determine the 1 Understand 7 dimensions of the Jacobean matrix. In a load flow study, when PV bus is treated as PQ bus Understand 7 2 Outline the best method for accurate load Flow Calculations on a large power 3 7 Understand system 4 List out some advantages of FDLF method with DLF method Remember 8 5 8 Define Jacobean matrix Remember 7 6 Compare Newton Rap son method With DLF method. Remember 7 7 Write the assumption made in the Newton Raphson Method Remember 8 8 Write the assumptions made in the DLF method Remember 9 8 Write the assumptions made in the FDLF method Remember 8 10 Remember Write the advantages of Newton Raphson Method A 24 bus Power System has three voltage-controlled buses. Determine the 11 Understand 8 dimensions of the Jacobean matrix. 9 12 List the disadvantages of DLF method Remember 13 9 Write the applications of Newton Raphson Method Remember Define per unit quantities 14 Remember 9 15 8 List the advantages of per unit quantities Remember 8 16 Write the formulae for calculation of MVA Remember 17 List the faults in power systems Remember 8 9 18 Write the severities of faults Understand 19 8 Define symmetrical components Remember 9 20 Define unsymmetrical components Remember PART - B (LONG ANSWER QUESTIONS) Derive the algorithm for symmetrical short circuit analysis of a multi machine 1 Understand 8 power system using Z bus matrix. 2 8 Understand Define per unit quantities and list the advantages 7 3 Write application of series reactors Understand A Three phase fault(not involving ground) occurs at bus p. explain the method 4 of finding fault current & fault voltages(voltage at Evaluate faculty bus and at Understand 8 healthy buses) in terms of symmetrical component quantities.

5	Determine the interrupting current in a circuit breaker connected to a generator rated at 20MVA, 33KV. Take Xd=25% and Eg=1p.u.	Understand	8
6	Write the three phase representation of power system for short circuit studies and briefly explain	Remember	7
7	Explain about Per-Unit equivalent reactance network of a three phase Power System	Understand	8
8	Briefly explain fault level of bus justify infinite bus as a constant voltage source	Understand	8
9	Write the three phase representation of power system for short circuit studies and briefly explain	Remember	8
10	Explain the use of automatic reclosing circuit breakers in improving system stability.	Understand	9
11	Give a step by step procedure of analyzing a L-G fault on a power system by bus impedance matrix method and explain	Remember	8
12	With the usual notation derive the equation of computation of sequence currents for a line to ground fault on an n bus power system using Z bus algorithm.	Remember	8
13	With the usual notation derive the equation of computation of sequence currents for a line to ground fault on an n bus power system using Z bus algorithm.	Remember	8
14	Develop the expressions for analyzing single line to ground fault in a large power system using Z $_{\mbox{\scriptsize Bus}}$ matrix.	Understand	8
15	Explain about Line to ground fault.	Understand	9
1	PART – C (ANALYTICAL QUESTIONS)		
1	The equivalent impedance of a 10 kVA, 2200 V/220 V, 60 Hz Transformer is 10.4 + j31.3 S when referred to the high-voltage side. The transformer core losses are 120 W. Determine (a.) the per-unit equivalent circuit (b.) the voltage regulation when the transformer delivers 75% of full load at a power factor of 0.6 lagging, and (c.) the transformer efficiency given the transformer load of part (b	Understand	7
2	(a) A generator operating at 50Hz delivers 1 p.u. power to an infinite bus through a transmission circuit in which resistance is ignored. A fault takes place reducing the maximum power transferable to 0.5 p.u. whereas before the fault this power was 2.0 p.u. and after the clearance of the fault it is 1.5 p.u. By the use of equal area criterion determine the critical clearing angle. (b) Derive the formula used in the above problem.	Understand	8
3	A single phase 9.6 kVA, 500 V / 1.5 kV transformers has an impedance of 1.302 Ω with respect to primary side. Find its per-unit impedance with respect to primary and secondary sides.	Understand	8
4	A single phase 20 kVA, 480/120, 60 Hz single-phase transformer has an impedance of $Zeq2 = 0.0525p78.13o$ S referred to the LV winding. Determine the per-unit transformer impedance referred to the LV winding and the HV winding	Understand	8
5	A three phase 500 MVA, 22 KV generator has winding reactance of 1.065 ohms find its per unit reactance.	Understand	8

6 A 200 MVA 11 KV 50 Hz 4 pole turbo generator has an inertia constant of 6 MJ/MVA. (a) Find the stored energy in the rotor at synchronous speed. (b) The machine is operating at a load of 120 MW. When the load suddenly increases to 160 MW, find the rotor retardation. Neglect losses. (c) The retardation calculated above is maintained for 5 cycles; find the change in power angle and rotor speed in rpm at the end of this period. 7 A 120 MVA, 19.5 kV generator has Xs = 0.15 per unit and is connected to a transmission line by a transformer rated 150 MVA, 230 tV/8 kV with X = 0.1 per unit. If the base to be used in the calculation is 100 MVA, 230 kV for the transmission line, find the per unit values to be used for the transformer and the generator reactance's 8 A 300 MVA, 20 kV three-phase generators has a sub transient reactance of 20%. The generator supplies a number of synchronous motors over 64-km transmission line having transformers at both ends, as shown in Fig. 1.11. The motors, all rated 13.2 kV, are represented by just two equivalent motors. Rated inputs to the motors are 200 MVA and 100 MVA for M1 and M2, respectively. For both motors X = 20%. The three phase transformer T1 is rated 350 MVA, 230:20 kV with leakage reactance of 10%. Transformer T2 is composed of three single-phase transformers each rated 127/13.2 kV, 100 MVA with leakage reactance of 10%. Series reactance of the transmission line is 0.5 Ω/km. Draw the impedance diagram, with all impedances marked in perunit. Select the generator rating as base in the generator circuit 9 A transformer rated 200 MVA, 345Y / 20.5A kV connected at the receiving end of a transmission line is 100 MVA, 345 kV. 10 Explain the use of automatic reclosing circuit breakers in improving system stability. 11 a) Explain the analysis of a short circuit on a loaded three phase synchronous machine. 12 b) A synchronous generator and a synchronous motor each rated 25 MVA, 16kV. The motor is drawing 15 MW at 0.8 power factor leading and a terminal voltage of 10.6kV wh				
A 120 MVA, 19.5 kV generator has Xs = 0.15 per unit and is connected to a transmission line by a transformer rated 150 MVA, 230 Y/18A kV with X = 0.1 per unit. If the base to be used in the calculation is 100 MVA, 230 kV for the transmission line, find the per unit values to be used for the transformer and the generator reactance's 8 A 300 MVA, 20 kV three-phase generators has a sub transient reactance of 20%. The generator supplies a number of synchronous motors over 64-km transmission line having transformers at both ends, as shown in Fig. 1.11. The motors, all rated 13.2 kV, are represented by just two equivalent motors. Rated inputs to the motors are 200 MVA and 100 MVA for MI and M2, respectively. For both motors X" = 20%. The three phase transformer T1 is rated 350 MVA, 2030 kV with leakage reactance of 10%. Transformer T2 is composed of three single-phase transformers each rated 127/13.2 kV, 100 MVA with leakage reactance of 10%. Series reactance of the transmission line is 0.5 20km. Draw the impedance diagram, with all impedances marked in perunit. Select the generator rating as base in the generator circuit 9 A transformer rated 200 MVA, 345 V / 20.5 kV connected at the receiving end of a transmission line feeds a balanced load rated 180 MVA, 22.5 kV, 0.8 power factor. Determine (a) The rating of each of three single-phase transformers and (b) The complex impedance of the load in perunit, if the base in the transmission line is 100 MVA, 345 kV. 10 Explain the use of automatic reclosing circuit breakers in improving system stability. 10 Explain the analysis of a short circuit on a loaded three phase synchronous machine. 11 a) Explain the analysis of a short circuit on a loaded three phase synchronous machine. 12 Explain the analysis of a short circuit on a loaded three phase synchronous machine. 13 Explain the analysis of a short circuit on a loaded three phase synchronous machine. 14 Explain the analysis of a short circuit on a loaded three phase synchronous machine. 15 Explain the analysis of	6	MJ/ MVA. (a) Find the stored energy in the rotor at synchronous speed. (b) The machine is operating at a load of 120 MW. When the load suddenly increases to 160 MW, find the rotor retardation. Neglect losses. (c) The retardation calculated above is maintained for 5 cycles; find the change	Understand	9
20%. The generator supplies a number of synchronous motors over 64-km transmission line having transformers at both ends, as shown in Fig. 1.11. The motors, all rated 13.2 kV, are represented by just two equivalent motors. Rated inputs to the motors are 200 MVA and 100 MVA for M1 and M2, respectively. For both motors X** = 20%. The three phase transformer T1 is rated 350 MVA, 230/20 kV with leakage reactance of 10%. Transformer T2 is composed of three single-phase transformers each rated 127/13.2 kV, 100 MVA with leakage reactance of 10%. Series reactance of the transmission line is 0.5 Ω/km. Draw the impedance diagram, with all impedances marked in perunit. Select the generator rating as base in the generator circuit and of a transmission line feeds a balanced load rated 180 MVA, 22.5 kV, 0.8 power factor. Determine (a) The rating of each of three single-phase transformers which when properly connected will be equivalent to the above three-phase transformer and (b) The complex impedance of the load in perunit, if the base in the transmission line is 100 MVA, 345 kV. 10 Explain the use of automatic reclosing circuit breakers in improving system stability. 11 a) Explain the analysis of a short circuit on a loaded three phase synchronous machine. 12 b) A synchronous generator and a synchronous motor each rated 25 MVA, 11 KV having 15% sub transient reactance are connected through transformers and a transmission line. The transformers are rated 25 MVA, 11/66 kV and and 66/11 kV with leakage reactance of 10% on a base of 25 MVA, 66kV. The motor is drawing 15 MW at 0.8 power factor leading and a terminal voltage of 10.6kV when a symmetrical three fault occurs at the motor terminals. Find the sub transient current in the generator, motor and the fault. 12 A Three phase fault(not involving ground) occurs at bus p. explain the method of finding fault current & fault voltages(voltage at faculty bus and at healthy buses) in terms of symmetrical component quantities. 13 VINT- IV 14 POWER SYSTEM STEADY STATE STABILI	7	transmission line by a transformer rated 150 MVA, 230 Y/18 Δ kV with X = 0.1 per unit. If the base to be used in the calculation is 100 MVA, 230 kV for the transmission line, find the per unit values to be used for the transformer	Understand	8
end of a transmission line feeds a balanced load rated 180 MVA, 22.5 kV, 0.8 power factor. Determine (a) The rating of each of three single-phase transformers which when properly connected will be equivalent to the above three-phase transformer and (b) The complex impedance of the load in perunit, if the base in the transmission line is 100 MVA, 345 kV. 10 Explain the use of automatic reclosing circuit breakers in improving system stability. 11 a) Explain the analysis of a short circuit on a loaded three phase synchronous machine. b) A synchronous generator and a synchronous motor each rated 25 MVA, 11 KV having 15% sub transient reactance are connected through transformers and a transmission line. The transformers are rated 25 MVA, 11/66 kV and and 66/11 kV with leakage reactance of 10% on a base of 25 MVA, 66kV. The motor is drawing 15 MW at 0.8 power factor leading and a terminal voltage of 10.6kV when a symmetrical three fault occurs at the motor terminals. Find the sub transient current in the generator, motor and the fault. 12 A Three phase fault(not involving ground) occurs at bus p. explain the method of finding fault current & fault voltages(voltage at faculty bus and at healthy buses) in terms of symmetrical component quantities. UNIT - IV POWER SYSTEM STEADY STATE STABILITY ANALYSIS PART - A SHORT ANSWER QUESTIONS	8	20%. The generator supplies a number of synchronous motors over 64-km transmission line having transformers at both ends, as shown in Fig. 1.11. The motors, all rated 13.2 kV, are represented by just two equivalent motors. Rated inputs to the motors are 200 MVA and 100 MVA for M1 and M2, respectively. For both motors X" = 20%. The three phase transformer T1 is rated 350 MVA, 230/20 kV with leakage reactance of 10%. Transformer T2 is composed of three single-phase transformers each rated 127/13.2 kV, 100 MVA with leakage reactance of 10%. Series reactance of the transmission line is 0.5 Ω/km. Draw the impedance diagram, with all impedances marked in perunit. Select the generator rating as base in the generator circuit	Understand	8
stability. 11 a) Explain the analysis of a short circuit on a loaded three phase synchronous machine. b) A synchronous generator and a synchronous motor each rated 25 MVA, 11 KV having 15% sub transient reactance are connected through transformers and a transmission line. The transformers are rated 25 MVA, 11/66 kV and and 66/11 kV with leakage reactance of 10% on a base of 25 MVA, 66kV. The motor is drawing 15 MW at 0.8 power factor leading and a terminal voltage of 10.6kV when a symmetrical three fault occurs at the motor terminals. Find the sub transient current in the generator, motor and the fault. 12 A Three phase fault(not involving ground) occurs at bus p. explain the method of finding fault current & fault voltages(voltage at faculty bus and at healthy buses) in terms of symmetrical component quantities. UNIT - IV POWER SYSTEM STEADY STATE STABILITY ANALYSIS PART - A SHORT ANSWER QUESTIONS	9	end of a transmission line feeds a balanced load rated 180 MVA, 22.5 kV, 0.8 power factor. Determine (a) The rating of each of three single-phase transformers which when properly connected will be equivalent to the above three-phase transformer and (b) The complex impedance of the load in per-	Understand	8
a) Explain the analysis of a short circuit on a loaded three phase synchronous machine. b) A synchronous generator and a synchronous motor each rated 25 MVA, 11 KV having 15% sub transient reactance are connected through transformers and a transmission line. The transformers are rated 25 MVA, 11/66 kV and and 66/11 kV with leakage reactance of 10% on a base of 25 MVA, 66kV. The motor is drawing 15 MW at 0.8 power factor leading and a terminal voltage of 10.6kV when a symmetrical three fault occurs at the motor terminals. Find the sub transient current in the generator, motor and the fault. 12 A Three phase fault(not involving ground) occurs at bus p. explain the method of finding fault current & fault voltages(voltage at faculty bus and at healthy buses) in terms of symmetrical component quantities. UNIT - IV POWER SYSTEM STEADY STATE STABILITY ANALYSIS PART - A SHORT ANSWER QUESTIONS	10		Understand	9
of finding fault current & fault voltages(voltage at faculty bus and at healthy buses) in terms of symmetrical component quantities. UNIT - IV POWER SYSTEM STEADY STATE STABILITY ANALYSIS PART - A SHORT ANSWER QUESTIONS	11	a) Explain the analysis of a short circuit on a loaded three phase synchronous machine. b) A synchronous generator and a synchronous motor each rated 25 MVA, 11 KV having 15% sub transient reactance are connected through transformers and a transmission line. The transformers are rated 25 MVA, 11/66 kV and and 66/11 kV with leakage reactance of 10% on a base of 25 MVA, 66kV. The motor is drawing 15 MW at 0.8 power factor leading and a terminal voltage of 10.6kV when a symmetrical three fault occurs at the motor terminals. Find the	Understand	8
POWER SYSTEM STEADY STATE STABILITY ANALYSIS PART – A SHORT ANSWER QUESTIONS	12	A Three phase fault(not involving ground) occurs at bus p. explain the method of finding fault current & fault voltages(voltage at faculty bus and at healthy	Understand	9
PART – A SHORT ANSWER QUESTIONS		UNIT - IV		
		POWER SYSTEM STEADY STATE STABILITY ANALYS	IS	
1 Define stability. Remember 10		PART – A SHORT ANSWER QUESTIONS	.	
	1	Define stability.	Remember	10

Define transient state stability. Remember 10							
4 Define dynamic state stability. Remember 11 5 Define inertia constant. Remember 16 6 Why transient stability limit is lower than steady state stability limit. Understand 16 7 Give two methods to improve transient stability. Remember 11 8 Write short notes on power angle curve. Remember 16 9 Define Transfer reactance. Remember 16 10 Define inertia constant. Remember 16 11 Discuss the various factors that affects the steady state stability of a power system 2 Distinguish between steady state, transient state and dynamic stability Understand 17 2 Distinguish between steady state stability limit of the system Remember 12 4 Derive the expression for steady state stability limit using ABCD parameters. Understand 12 5 Derive the power angle equation of single machine connected to infinite bus Understand 14 6 Give the list of methods improving transient stability of the system Understand 15 6 Give the list of methods improving transient stability of the system Understand 16 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 16 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability 10 9 Describe about steady state stability power limit 10 10 Explain the transfer reactance Understand 16 11 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 1) Find the stored energy in the rotor at synchronous speed. 10 If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 11 If the acceleration calculated in (ii) is maintained for 10 cycles, find the	2	Define steady state stability.	Remember	10			
5 Define inertia constant. 6 Why transient stability limit is lower than steady state stability limit. 7 Give two methods to improve transient stability. 8 Write short notes on power angle curve. 9 Define Transfer reactance. 10 Define inertia constant. Remember 10 PART – B LONG ANSWER QUESTIONS 1 Discuss the various factors that affects the steady state stability of a power system 2 Distinguish between steady state, transient state and dynamic stability 3 Define power system stability and stability limit of the system 4 Derive the expression for steady state stability limit of the system 5 Derive the power angle equation of single machine connected to infinite bus 6 Give the list of methods improving transient stability of the system 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability power limit 10 Explain the transfer reactance 11 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 1) Find the stored energy in the rotor at synchronous speed. 10 ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 11 iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	3	Define transient state stability.	Remember	10			
6 Why transient stability limit is lower than steady state stability limit. 7 Give two methods to improve transient stability. 8 Write short notes on power angle curve. 9 Define Transfer reactance. 10 Define inertia constant. PART - B LONG ANSWER QUESTIONS 1 Discuss the various factors that affects the steady state stability of a power system 2 Distinguish between steady state, transient state and dynamic stability 3 Define power system stability and stability limit of the system 4 Derive the expression for steady state stability limit using ABCD parameters. 4 Derive the expression for steady state stability of the system 5 Derive the power angle equation of single machine connected to infinite bus 6 Give the list of methods improving transient stability of the system 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability 9 Describe about steady state stability power limit 10 Explain the transfer reactance 11 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 1) Find the stored energy in the rotor at synchronous speed. 10 ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 11 iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	4	Define dynamic state stability.	Remember	11			
7 Give two methods to improve transient stability. 8 Write short notes on power angle curve. 9 Define Transfer reactance. 10 Define inertia constant. PART – B LONG ANSWER QUESTIONS 1 Discuss the various factors that affects the steady state stability of a power system 2 Distinguish between steady state, transient state and dynamic stability 3 Define power system stability and stability limit of the system 4 Derive the expression for steady state stability limit using ABCD parameters. 5 Derive the power angle equation of single machine connected to infinite bus 6 Give the list of methods improving transient stability of the system Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability 9 Describe about steady state stability power limit 10 Explain the transfer reactance PART – C ANALYTICAL QUESTIONS 1 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	5	Define inertia constant.	Remember	10			
8 Write short notes on power angle curve. 9 Define Transfer reactance. 10 Define inertia constant. PART – B LONG ANSWER QUESTIONS 1 Discuss the various factors that affects the steady state stability of a power system system 2 Distinguish between steady state, transient state and dynamic stability Understand 12 3 Define power system stability and stability limit of the system Remember 12 4 Derive the expression for steady state stability limit using ABCD parameters. Understand 12 5 Derive the power angle equation of single machine connected to infinite bus Understand 13 6 Give the list of methods improving transient stability of the system Understand 14 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 12 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability power limit Understand 12 10 Explain the transfer reactance Understand 16 11 PART – C ANALYTICAL QUESTIONS 11 12 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 1) Find the stored energy in the rotor at synchronous speed. 11 If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 11 If the acceleration calculated in (ii) is maintained for 10 cycles, find the	6	Why transient stability limit is lower than steady state stability limit.	Understand	10			
9 Define Transfer reactance. Remember 10 10 Define inertia constant. Remember 10 PART – B LONG ANSWER QUESTIONS 1 Discuss the various factors that affects the steady state stability of a power system 2 Distinguish between steady state, transient state and dynamic stability 2 Understand 11 3 Define power system stability and stability limit of the system Remember 12 4 Derive the expression for steady state stability limit using ABCD parameters. Understand 12 5 Derive the power angle equation of single machine connected to infinite bus Understand 12 6 Give the list of methods improving transient stability of the system Understand 12 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 12 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability power limit Understand 12 10 Explain the transfer reactance Understand 11 11 Explain the transfer reactance Understand 11 12 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 1) Find the stored energy in the rotor at synchronous speed. 11 If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 11 If the acceleration calculated in (ii) is maintained for 10 cycles, find the	7	Give two methods to improve transient stability.	Remember	11			
PART – B LONG ANSWER QUESTIONS 1 Discuss the various factors that affects the steady state stability of a power system 2 Distinguish between steady state, transient state and dynamic stability 3 Define power system stability and stability limit of the system 4 Derive the expression for steady state stability limit using ABCD parameters. 5 Derive the power angle equation of single machine connected to infinite bus 6 Give the list of methods improving transient stability of the system 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability 9 Describe about steady state stability power limit 10 Explain the transfer reactance 11 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 1) Find the stored energy in the rotor at synchronous speed. 11 ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 11 iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	8	Write short notes on power angle curve.	Remember	10			
PART – B LONG ANSWER QUESTIONS 1 Discuss the various factors that affects the steady state stability of a power system 2 Distinguish between steady state, transient state and dynamic stability 3 Define power system stability and stability limit of the system 4 Derive the expression for steady state stability limit using ABCD parameters. 5 Derive the power angle equation of single machine connected to infinite bus 6 Give the list of methods improving transient stability of the system 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability 9 Describe about steady state stability power limit 10 Explain the transfer reactance 11 PART – C ANALYTICAL QUESTIONS 1 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 1 i) Find the stored energy in the rotor at synchronous speed. 1 ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 1 iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	9	Define Transfer reactance.	Remember	10			
1 Discuss the various factors that affects the steady state stability of a power system 2 Distinguish between steady state, transient state and dynamic stability 3 Define power system stability and stability limit of the system 4 Derive the expression for steady state stability limit using ABCD parameters. 5 Derive the power angle equation of single machine connected to infinite bus 6 Give the list of methods improving transient stability of the system 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability 9 Describe about steady state stability power limit 10 Explain the transfer reactance 11 Depart - C ANALYTICAL QUESTIONS 1 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 10 i) Find the stored energy in the rotor at synchronous speed. 11 ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 11 iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	10	Define inertia constant.	Remember	10			
Define power system stability and stability limit of the system Define power system stability and stability limit of the system Remember Derive the expression for steady state stability limit using ABCD parameters. Understand Derive the power angle equation of single machine connected to infinite bus Give the list of methods improving transient stability of the system Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor Clearly explain what you understand stability. Distinguish between steady state and transient stability Describe about steady state stability power limit Describe about steady state stability power limit Explain the transfer reactance Describe about steady state stability power limit A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the		PART – B LONG ANSWER QUESTIONS					
3 Define power system stability and stability limit of the system 4 Derive the expression for steady state stability limit using ABCD parameters. 5 Derive the power angle equation of single machine connected to infinite bus 6 Give the list of methods improving transient stability of the system 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability 9 Describe about steady state stability power limit 10 Explain the transfer reactance 11 Depart - C ANALYTICAL QUESTIONS 1 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 1 i) Find the stored energy in the rotor at synchronous speed. 1 ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 1 iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	1		Understand	11			
4 Derive the expression for steady state stability limit using ABCD parameters. Understand 5 Derive the power angle equation of single machine connected to infinite bus Understand 6 Give the list of methods improving transient stability of the system Understand 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability 9 Describe about steady state stability power limit Understand 10 Explain the transfer reactance Understand 10 PART - C ANALYTICAL QUESTIONS 1 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 1) Find the stored energy in the rotor at synchronous speed. 11 ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 12 iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	2	Distinguish between steady state, transient state and dynamic stability	Understand	12			
5 Derive the power angle equation of single machine connected to infinite bus 11 6 Give the list of methods improving transient stability of the system 12 7 Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8 Clearly explain what you understand stability. Distinguish between steady state and transient stability 9 Describe about steady state stability power limit 10 Explain the transfer reactance 11 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. 11 i) Find the stored energy in the rotor at synchronous speed. 12 ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. 12 iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	3	Define power system stability and stability limit of the system	Remember	12			
Give the list of methods improving transient stability of the system Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor Clearly explain what you understand stability. Distinguish between steady state and transient stability Describe about steady state stability power limit Understand Explain the transfer reactance Describe about steady state stability power limit A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	4	Derive the expression for steady state stability limit using ABCD parameters.	Understand	12			
Derive the equal area criterion of stability and explain clearly how you can determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor 8	5	Derive the power angle equation of single machine connected to infinite bus	Understand	11			
determine the stability limit of a synchronous motor when there is a sudden change in the mechanical load on the motor Clearly explain what you understand stability. Distinguish between steady state and transient stability Describe about steady state stability power limit Understand Explain the transfer reactance Understand PART - C ANALYTICAL QUESTIONS A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	6	Give the list of methods improving transient stability of the system	Understand	12			
state and transient stability Describe about steady state stability power limit Understand Explain the transfer reactance Understand PART - C ANALYTICAL QUESTIONS A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	7	determine the stability limit of a synchronous motor when there is a sudden	Understand	12			
PART – C ANALYTICAL QUESTIONS 1 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	8		Understand	11			
PART – C ANALYTICAL QUESTIONS 1 A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	9	Describe about steady state stability power limit	Understand	12			
A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant of 8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	10	Explain the transfer reactance	Understand	10			
8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the	PART - C ANALYTICAL QUESTIONS						
iv) Another generator 200 MVA, 3000 rpm, having H=6 MJ/MVA is put in parallel with above generator. Find the inertia constant for the equivalent generator on a base of 100mva	1	8 MJ/MVA. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the change in torque angle and rotor speed in rpm at the end of this period. iv) Another generator 200 MVA, 3000 rpm, having H=6 MJ/MVA is put in parallel with above generator. Find the inertia constant for the equivalent generator on a base of 100mva	Understand	11			
Differentiate between steady state stability and transient state stability of power systems. Discuss the factors that effect. Understand	2		Understand	12			
3 Explain the Dynamic and transient stabilities. Understand 12	3	Explain the Dynamic and transient stabilities.	Understand	12			

4	List the methods of improving steady state stability limits	Understand	12		
5	Write short notes a) Transfer reactance b) Synchronizing power co-efficient	Understand	12		
6	Explain the power angle curve and determination of steady state stability.	Understand	11		
7	Derive the maximum steady state power	Understand	11		
8	Write short notes on elementary concepts of steady state stability dynamic stability and Transient stability.	Understand	11		
9	Derive an expression for steady state stability limit if the resistance and shunt capacitance of the transmission line are considered	Understand	11		
10	Differentiate between steady state stability and transient state stability of power systems. Discuss the factors that effect.	Understand	11		
	UNIT - V				
	POWER SYSTEM TRANSIENT STATE STABILITY ANALY	YSIS			
	PART – A (SHORT ANSWERS QUESTIONS)				
1	Write the swing equation.	Remember	13		
2	Define transient stability.	Remember	13		
3	List the application of Equal Area Criterion	Remember	14		
4	Derive the critical clearing angle.	Understand	15		
5	Explain point by point solution of swing equation	Understand	15		
6	Write short notes on Auto Reclosing.	Remember	15		
7	Write short notes on fast operating circuit breakers.	Remember	14		
8	Write swing equation during Fault and post fault.	Remember	14		
9	Explain the procedure for selection of circuit breakers in power systems.	Understand	13		
10	Applications of auto reclosing and fast operating circuit breakers	Understand	13		
PART – B (LONG ANSWERS QUESTIONS)					
1	Write the steps followed for determining multi machine stability	Remember	14		
2	Write notes on the state variable formulation of swing equation	Remember	13		
3	Give the mathematical model for the transient analysis of multi machine power system	Understand	13		
4	Explain the critical clearing time and critical clearing angle	Understand	14		
5	Draw a diagram to illustrate the application of equal criterion to study transient stability when there is a sudden increase in the input of generator	Remember	15		
6	Discuss transient stability is lower than steady state stability and the use of automatic reclosing circuit breakers improve system stability	Understand	14		
7	Write notes on concept of multi machine stability	Understand	14		

8	Explain point by point method used for solving swing equation.	Understand	15
9	Derive the expression for critical clearing angle for a synchronous machine connected to infinite bus system when a 3 phase fault occurs and it is cleared by opening of circuit breakers	Understand	14
10	Explain "swing Curve" and its practical significance in stability analysis.	Understand	13
	PART – C ANALYTICAL QUESTIONS		
1	 A 200 MVA 11 KV 50 Hz 4 pole turbo generator has an inertia constant of 6 MJ/ MVA. (a) Find the stored energy in the rotor at synchronous speed. (b) The machine is operating at a load of 120 MW. When the load suddenly increases to 160 MW, find the rotor retardation. Neglect losses. The retardation calculated above is maintained for 5 cycles, find the change in power angle and rotor speed in rpm at the end of this period 	Understand	14
2	Derive the transient stability by Equal Area Criterion, What are the application of Equal Area Criterion	Understand	14
3	Derive the critical clearing angle	Understand	14
4	What is the critical fault clearing angle and its effect upon the stability? Obtain an expression for the same. What are the factors that affect the transient stability? Explain in detail.	Understand	14
5	a) Write short notes on fast operating circuit breakers. b) A 20 MVA, 50Hz generator delivers 18 MW over a double circuit line to an infinite bus. The generator has kinetic energy of 2.52 MJ/MVA at rated speed. The generator transient reactance is X' _d =0.35pu. Each transmission circuit has R=0 and a reactance of 0.2pu on a 20MVA base. Modules E'=1.1pu and infinite bus voltage V= 1.0 at an angle 0°. A three phase short circuit occurs at the midpoint of one the transmission lines. Plot swing curves with fault cleared by simultaneous opening of breakers oat both ends of the line at 2.5 cycles after the occurrence of fault.	Understand	15
6	Derive swing equation of two coherent machines.	Understand	14
7	A 50 Hz, 4 pole turbo alternator rated 150 MVA, 11 KV has an inertia constant of 9MJ/MVA. Find the a) stored energy at synchronous speed b) the rotor acceleration if the input mechanical power is raised to 100 MW when the electrical load is 75 MW. C) The speed at the end of 10 cycles if acceleration is assumed constant at the initial value	Understand	14
8	A 10 MVA, 50Hz generator delivers 9 MW over a double circuit line to an infinite bus. The generator has kinetic energy of 2.52 MJ/MVA at rated speed. The generator transient reactance is X' _d =0.35pu. Each transmission circuit has R=0 and a reactance of 0.2pu on a 20MVA base. Modules E'=1.1pu and infinite bus voltage V= 1.0 at an angle 0 ⁰ . A three phase short circuit occurs at the midpoint of one the transmission lines. Plot swing curves with fault cleared by simultaneous opening of breakers oat both ends of the line at 2.5 cycles after the occurrence of fault.	Understand	14
9	Give details of assumptions made in the study of steady state and transient stability solution techniques.	Understand	15

10	A 50 Hz, four pole generators rated 100 MVA, 11 kV has an inertia constant	Understand	15
	of 8 MJ/MVA.		
	i. Find the stored energy in the rotor at synchronous speed.		
	ii. If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration.		
	iii. If the acceleration calculated in (ii) is maintained for 10 cycles, find the change in torque angle and rotor speed in rpm at the end of this period.		
	iv. Another generator 200 MVA, 3000 rpm, having H=6 MJ/MVA is put in parallel with above generator. Find the inertia constant for the equivalent generator on a base of 100 MVA.		

Prepared by:

Mr. S Srikanth, Assistant Professor

HOD, EEE