

Dundigal, Hyderabad-500043

# **Department of Electrical and Electronics Engineering**

## TUTORIAL QUESTION BANK

| Course Name        | : | CONTROL SYSTEMS                        |
|--------------------|---|----------------------------------------|
| Course Code        |   | AEE009                                 |
| Class              | : | B.Tech IV Semester                     |
| Branch             | : | Electrical and Electronics engineering |
| Year               |   | 2018–2019                              |
| Course Coordinator |   | Dr. P Sridhar, Professor               |
| Course Faculty     | : | Ms. S Swathi, Assistant Professor      |

### I. COURSE OBJECTIVES:

#### The course should enable the students to:

| Ι   | Organize modeling and analysis of electrical and mechanical systems.        |
|-----|-----------------------------------------------------------------------------|
| II  | Analyse control systems by block diagrams and signal flow graph technique.  |
| III | Demonstrate the analytical and graphical techniques to study the stability. |
| IV  | Illustrate the frequency domain and state space analysis.                   |

#### II. COURSE LEARNING OUTCOMES:

#### Students, who complete the course, will have demonstrated the ability to do the following:

| S. No      | Description                                                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|
| CAEE009.01 | Differentiate between open loop, closed loop system and their importance in real time applications.                               |
| CAEE009.02 | Predict the transfer function of translational and rotational mechanical, electrical system using differential equation method.   |
| CAEE009.03 | Analyze the analogy between electrical, translation and rotational mechanical systems.                                            |
| CAEE009.04 | Apply the block diagram and signal flow graph technique to determine transfer function of a control systems.                      |
| CAEE009.05 | Demonstrate the response of first order and second order systems with various standard test signals.                              |
| CAEE009.06 | Estimate the steady state error and its effect on the performance of control systems and gives the importance of PID controllers. |
| CAEE009.07 | Summarize the procedure of Routh – Hurwirtz criteria to study the stability of physical systems.                                  |
| CAEE009.08 | List the steps required to draw the root – locus of any control system and predict the stability.                                 |

| CAEE009.09 | Explain the effect on stability by adding zeros and poles to the transfer function of control system.                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------|
| CAEE009.10 | Discuss the method of Bode plot and Polar plot to calculate gain margin and phase margin of control system.                      |
| CAEE009.11 | Describe the characteristics of control system and its stability by plotting Nyquist plot.                                       |
| CAEE009.12 | Compare the behaviour of control system in terms of time domain and frequency domain response.                                   |
| CAEE009.13 | Define the state model of control system using its block diagram and give the role of diagonalization in state space analysis.   |
| CAEE009.14 | Formulate the state transmission matrix and explain the concept of controllability and observability.                            |
| CAEE009.15 | Design of lag, lead, lag – lead compensator to improve stability of control system.                                              |
| CAEE009.16 | Apply the concept of different stability criterions and time, frequency response solution to solve real time world applications. |
| CAEE009.17 | Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.       |

| TUTORIAL QUESTION BANK |                                                                                                                       |                             |                                |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
|                        | UNIT – I                                                                                                              |                             |                                |  |
|                        | INTRODUCTION AND MODELING OF PHYSICAL S                                                                               | YSTEMS                      |                                |  |
|                        | PART – A (SHORT ANSWER QUESTIONS)                                                                                     |                             |                                |  |
| S. No                  | QUESTION                                                                                                              | Blooms<br>Taxonomy<br>Level | Course<br>Learning<br>Outcomes |  |
| 1                      | What is control system?                                                                                               | Remember                    | CAEE009.01                     |  |
| 2                      | Define open loop control system?                                                                                      | Understand                  | CAEE009.01                     |  |
| 3                      | Define closed loop control system?                                                                                    | Understand                  | CAEE009.01                     |  |
| 4                      | Define transfer function?                                                                                             | Remember                    | CAEE009.02                     |  |
| 5                      | Write examples for open loop and closed loop control systems?                                                         | Understand                  | CAEE009.01                     |  |
| 6                      | Compare open loop and closed loop control systems?                                                                    | Understand                  | CAEE009.03                     |  |
| 7                      | What are the basic elements used for modelling mechanical rotational system?                                          | Understand                  | CAEE009.03                     |  |
| 8                      | Write the force balance equation of ideal mass element?                                                               | Understand                  | CAEE009.03                     |  |
| 9                      | Write the force balance equation of ideal dashpot element?                                                            | Understand                  | CAEE009.03                     |  |
| 10                     | Write the force balance equation of ideal spring element?                                                             | Remember                    | CAEE009.03                     |  |
| 11                     | Write the analogous electrical elements in force voltage analogy for the elements of mechanical translational system? | Remember                    | CAEE009.03                     |  |
| 12                     | Write the analogous electrical elements in force current analogy for the elements of mechanical translational system? | Remember                    | CAEE009.03                     |  |
| 13                     | What are the basic elements used for modelling mechanical translational system?                                       | Remember                    | CAEE009.03                     |  |

| 14 | Write the torque balance equation of ideal rotational mass element?                                                                                                                                                            | Remember   | CAEE009.03 |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--|
| 15 | Write the torque balance equation of ideal dash-pot element?                                                                                                                                                                   | Understand | CAEE009.03 |  |
|    | PART - B (LONG ANSWER QUESTIONS)                                                                                                                                                                                               |            |            |  |
| 1  | Explain open loop & closed loop control systems by giving suitable<br>Examples & also highlights their merits & demerits?                                                                                                      | Understand | CAEE009.01 |  |
| 3  | Explain the difference between open loop and closed loop systems?                                                                                                                                                              | Remember   | CAEE009.01 |  |
| 4  | Illustrate at least three applications of feedback control systems?                                                                                                                                                            | Remember   | CAEE009.01 |  |
| 5  | Explain the classification of control systems?                                                                                                                                                                                 | Remember   | CAEE009.01 |  |
| 6  | Explain the advantages of systems with feedback? What are the effects of feedback On the performance of a system? Briefly explain?                                                                                             | Remember   | CAEE009.01 |  |
| 7  | Explain the traffic control systems using open loop and closed loop system                                                                                                                                                     | Understand | CAEE009.01 |  |
| 8  | Explain the basic components of control systems?                                                                                                                                                                               | Understand | CAEE009.01 |  |
| 9  | What is mathematical model of a physical system? Explain briefly?                                                                                                                                                              | Remember   | CAEE009.02 |  |
| 10 | What is transfer function and what are the advantages and limitations?                                                                                                                                                         | Understand | CAEE009.02 |  |
| 11 | Explain the temperature control system using open loop and closed loop systems?                                                                                                                                                | Understand | CAEE009.01 |  |
| 12 | Human being is an example of closed loop system. Justify your answer?                                                                                                                                                          | Remember   | CAEE009.01 |  |
| 13 | Explain translator and rotary elements of mechanical systems?                                                                                                                                                                  | Remember   | CAEE009.02 |  |
| 14 | Define transfer function and state its advantages and disadvantages?<br>Determine the transfer function of RLC series circuit if the voltage<br>across the capacitor is a output variable and input is voltage source<br>v(s). | Remember   | CAEE009.02 |  |
| 15 | Write the analogous quantities in force-voltage analogy and force – current analogy.                                                                                                                                           | Remember   | CAEE009.03 |  |
|    | PART - C (PROBLEM SOLVING AND CRITICAL THINKING                                                                                                                                                                                | G QUESTION | <b>S</b> ) |  |
| 1  | Write the differential equations governing the Mechanical system<br>shown in fig. and determine the transfer function?<br>$\begin{array}{c c c c c c c c c c c c c c c c c c c $                                               | Understand | CAEE009.02 |  |
| 2  | Write the differential equations governing the Mechanical rotational system shown in fig. find the transfer function?<br>$\begin{array}{c} & & \\ \hline \\ L \\ T \\ \end{array}$                                             | Understand | CAEE009.02 |  |

| 3 | Obtain the transfer function $X1(s)/F(s)$ for the mechanical system as                                                                                                                                                                                                                                                                                                                                                                      |                  |            |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
|   | shown in figure.                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
|   | $K_1 \not \sim B_1$                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>T</b> T 1 / 1 |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand       | CAEE009.02 |
|   | $\begin{array}{c} B_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                        |                  |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
|   | • f(t) • X <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |
| 4 | Write the differential equations governing the mechanical system                                                                                                                                                                                                                                                                                                                                                                            |                  |            |
|   | shown below and determine the transfer function $Y I(s)/F(s)$ .                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
|   | MW K                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |            |
|   | B <sub>2</sub> M1                                                                                                                                                                                                                                                                                                                                                                                                                           | Remember         | CAEE009.02 |
|   | $\downarrow \qquad \qquad \downarrow \qquad \qquad$ |                  |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
|   | $f$ (t) $1_{2\setminus U}$                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |            |
| 5 | Draw the electrical analogous circuit of the mechanical system shown                                                                                                                                                                                                                                                                                                                                                                        |                  |            |
|   | below.                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |            |
|   | 3 k.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |            |
|   | B2 to a3                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |            |
|   | M_ a                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand       | CAEE009.02 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
|   | m. Ja.                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
| 6 | Determine the transfer function $Y2(S)/F(S)$ of the system shown in fig.                                                                                                                                                                                                                                                                                                                                                                    |                  |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
|   | kı M                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand       | CAEE009.02 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
|   | *2 M                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
| 7 | Obtain the transfer function $Y1(s)/F(s)$ of the mechanical system                                                                                                                                                                                                                                                                                                                                                                          |                  |            |
|   | shown in figure 1                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |
|   | $M_1$ $M_2$ $M_2$                                                                                                                                                                                                                                                                                                                                                                                                                           | Understand       | CAFE009.02 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand       | CALL007.02 |
|   | Anna Anna Anna Anna Anna Anna Anna Anna                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |
|   | Figure - 1 Bo                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |
|   | B1 22                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |            |



| 14 | Find the transfer function $\Theta(s)/t(s)$ .                                                                                           |            |            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
|    | 0) J, Good J, Jo Mark                                                                                                                   | Understand | CAEE009.02 |
| 15 | Obtain transfer function of the system shown in fig.<br>$k_1$ $k_2$ $M$ $f_{(t)}$<br>$k_1$ $k_2$ $M$ $f_{(t)}$<br>Frictionless<br>wheel | Understand | CAEE009.02 |
|    | UNIT - II                                                                                                                               |            |            |
|    | <b>BLOCK DIAGRAM REDUCTION AND TIME RESPONSE</b>                                                                                        | E ANALYSIS |            |
|    | PART – A (SHORT ANSWER QUESTIONS)                                                                                                       |            |            |
| 1  | What is block diagram?                                                                                                                  | Remember   | CAEE009.04 |
| 2  | What is the basis for framing the rules of block diagram reduction technique?                                                           | Remember   | CAEE009.04 |
| 3  | What are the components of block diagram?                                                                                               | Remember   | CAEE009.04 |
| 4  | What is transmittance?                                                                                                                  | Remember   | CAEE009.04 |
| 5  | What is sink and source?                                                                                                                | Remember   | CAEE009.04 |
| 6  | Write Masons Gain formula?                                                                                                              | Understand | CAEE009.04 |
| 7  | Define non- touching loop?                                                                                                              | Remember   | CAEE009.04 |
| 8  | What is a signal flow graph?                                                                                                            | Remember   | CAEE009.04 |
| 9  | Define forward path?                                                                                                                    | Understand | CAEE009.04 |
| 10 | Write the rule for moving summing point a head of a block?                                                                              | Understand | CAEE009.04 |
| 11 | Define loop?                                                                                                                            | Understand | CAEE009.04 |
| 12 | What is Proportional controller and what are its advantages?                                                                            | Remember   | CAEE009.06 |
| 13 | What is the drawback in P-controller?                                                                                                   | Understand | CAEE009.06 |
| 14 | What is integral control action? What is the advantage and disadvantage in integral controller?                                         | Understand | CAEE009.06 |
| 15 | What is PI, PD, PID controller?                                                                                                         | Remember   | CAEE009.06 |
| 16 | Define Damping ratio.                                                                                                                   | Understand | CAEE009.05 |
| 17 | Distinguish between type and order of a system?                                                                                         | Understand | CAEE009.05 |
| 18 | Define rise, Delay time                                                                                                                 | Understand | CAEE009.05 |

| 19 | Define Peak time? Write formula?                                                                                                                                                | Remember   | CAEE009.05 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 20 | Give the relation between generalized and static error coefficients?                                                                                                            | Remember   | CAEE009.05 |
| 21 | What are generalized error coefficients?                                                                                                                                        | Remember   | CAEE009.05 |
| 22 | Define settling time and write formula?                                                                                                                                         | Remember   | CAEE009.05 |
| 23 | Define Peak overshoot and write formula?                                                                                                                                        | Understand | CAEE009.05 |
| 24 | How the system is classified depending on the value of damping?                                                                                                                 | Understand | CAEE009.05 |
| 25 | Find the type and order of the system $G(S)=40/S(s+4)(s+5)(s+2)$                                                                                                                | Remember   | CAEE009.05 |
| 26 | Find the type and order of the system $G(S)=40/S(s+4)(s+5)(s+2)$                                                                                                                | Understand | CAEE009.05 |
|    | PART - B (LONG ANSWER QUESTIONS)                                                                                                                                                |            |            |
| 1  | Derive the transfer function of a field controlled DC servomotor and develop its block diagram. State the assumptions made if any.                                              | Understand | CAEE009.04 |
| 2  | Derive the transfer function of an armature controlled DC servomotor<br>and develop its block diagram                                                                           | Remember   | CAEE009.04 |
| 3  | <ul><li>(a) Write short notes on impulse response of a system?</li><li>(b) Explain and derive the relation between impulse response and transfer function?</li></ul>            | Understand | CAEE009.05 |
| 4  | <ul><li>(a) Explain the differences between field controlled and armature controlled DC servomotor?</li><li>(b) Explain the practical applications of servomotors?</li></ul>    | Remember   | CAEE009.04 |
| 5  | What is the basis for framing the rules of block diagram reduction technique? What are drawbacks of the block diagram reduction technique?                                      | Remember   | CAEE009.04 |
| 6  | Explain properties of signal flow graphs? Explain the need of signal flow graph representation for any system                                                                   | Understand | CAEE009.04 |
| 7  | How do you construct a signal flow graph from the equations?                                                                                                                    | Understand | CAEE009.04 |
| 8  | Explain briefly about mason's gain formula?                                                                                                                                     | Remember   | CAEE009.04 |
| 9  | What are advantages of signal flow graph over block diagram?                                                                                                                    | Remember   | CAEE009.04 |
| 10 | Explain about various test signals used in control systems?                                                                                                                     | Remember   | CAEE009.04 |
| 11 | Derive the expression for time domain specification of a under damped second order system to a step input?                                                                      | Understand | CAEE009.05 |
| 12 | Derive the transient response of under damped second order system when excited by unit step input?                                                                              | Understand | CAEE009.05 |
| 13 | Derive the transient response of over damped second order system when excited by unit step input?                                                                               | Remember   | CAEE009.05 |
| 14 | <ul><li>(a)How steady state error of a control system is determined? How it can be reduced?</li><li>(b) Derive the static error constants and list the disadvantages?</li></ul> | Understand | CAEE009.05 |
| 15 | For a system $G(s)H(s) = \frac{K}{s^2(s+2)(s+3)}$ Find the value of K to limit steady state error to 10 when input to system is $1 + 10t + \frac{40}{2}t^2$                     | Understand | CAEE009.05 |
| 16 | Explain error constants $K_p$ , $K_v$ and $K_a$ for type I system?                                                                                                              | Understand | CAEE009.05 |
| 17 | Explain the effect of PI control on the performance of control system?                                                                                                          | Remember   | CAEE009.06 |
| 18 | What are P, D, and I controllers? Why D controller is not used in control systems?                                                                                              | Remember   | CAEE009.06 |
| 19 | Discuss the advantages and disadvantages of proportional, proportional derivative, proportional integral control system?                                                        | Remember   | CAEE009.06 |

| 20 | Derive the transient response of un damped second order system when excited by unit step input?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remember   | CAEE009.06 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 21 | Derive the transient response of critically damped second order system when excited by unit step input?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Understand | CAEE009.06 |
| 22 | Explain the effect of PD control on the performance of control system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Understand | CAEE009.06 |
| 23 | Explain error constants $K_p$ , $K_v$ and $K_a$ for type II system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remember   | CAEE009.05 |
| 24 | What are generalized error constants? State the advantages and significance of generalized error constants?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand | CAEE009.05 |
|    | PART - C (PROBLEM SOLVING AND CRITICAL THINKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G QUESTION | <b>S</b> ) |
| 1  | Determine the overall transfer function $C(S)/R(S)$ for the system<br>shown in<br>fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Understand | CAEE009.04 |
| 2  | Discuss Mason's gain formula. Obtain the overall transfer function<br>C/R from the signal flow graph shown.<br>$-H_1$<br>$G_2$<br>$G_3$<br>$G_4$<br>$G_5$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$<br>$G_7$ | Understand | CAEE009.04 |
| 3  | Determine the transfer function C(S)/R(S) of the system shown below<br>fig. 2.3 by block diagram reduction method<br>$\begin{array}{c} H_3 \\ \hline \\ H_3 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Understand | CAEE009.04 |
| 4  | Reduce the given block diagram and hence obtain the transfer function $C(s)/R(s)$<br>$R(s)$ $G_1$ $G_2$ $G_3$ $G_3$ $C(s)$ $G_3$ $G_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand | CAEE009.04 |







| 20 | A unity feedback system has $G(s) = \frac{40(S+2)}{S(S+1)(S+4)}$<br>Determine (i) Type of the system (ii) All error coefficients and (iii)                                                                                                                                                                                                               | Understand | CAEE009.05 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 21 | For a unity feedback system whose open loop transfer function is $G(s) = 50/(1+0.1s)(1+2s)$ , find the position, velocity & acceleration error Constants.                                                                                                                                                                                                | Understand | CAEE009.05 |
| 22 | A unity feedback system is characterized by an open loop transfer<br>function<br>$G(s) = \frac{K}{S(S+10)}$ Determine gain 'K' so that system will have a damping ratio of 0.5.<br>For this value of 'K' determine settling time, peak overshoot and time<br>to peak overshoot for a unit step input. Also obtain closed loop<br>response in time domain | Understand | CAEE009.05 |
| 23 | The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K}{S(TS+1)}$ where K and T are positive constants. By what factor should the amplifier gain be reduced so that the peck overshoot of unit step response of the system is reduced from 75% to 25%?                                                                   | Understand | CAEE009.05 |
| 24 | A unity feed-back system is characterized by the open-loop transfer<br>function: $G(s) = \frac{1}{s(0.5s+1)(0.2s+1)}$ . Determine the steady-state<br>errors for unity-step, unit-ramp and unit-acceleration input. Also find<br>the damping ration and natural frequency of the dominant roots.                                                         | Understand | CAEE009.05 |
| 25 | The forward transfer function of a unity feedback type1, second order system has a pole at -2. The nature of gain k is so adjusted that damping ratio is 0.4. The above equation is subjected to input $r(t)=1+4t$ . Find steady state error?                                                                                                            | Understand | CAEE009.05 |
| 26 | A feedback control system is described as<br>G(s) = 50/s(s+2)(s+5), $H(s) = 1/sFor a unit step input, determine the steady state error constants &errors$                                                                                                                                                                                                | Understand | CAEE009.05 |
| 27 | The closed loop transfer function of a unity feedback control system is<br>given by-<br>$C(s)/R(s) = 10/(s^2+4s+5)$ Determine<br>(i) Damping ratio<br>(ii) Natural undammed resonance frequency<br>(iii) Percentage peak overshoot<br>(iv) Expression for error response                                                                                 | Understand | CAEE009.05 |
| 28 | For a unity feedback system whose open loop transfer function is $G(s) = 50/(1+0.1s)(1+2s)$ , find the position, velocity & acceleration error Constants.                                                                                                                                                                                                | Understand | CAEE009.05 |
| 29 | The open loop transfer function of a control system with unity feedback is given by $G(s) = \frac{100}{s(s+0.1s)}$ . Determine the steady state error of the system when the input is 10+10t+4t <sup>2</sup>                                                                                                                                             | Understand | CAEE009.05 |
| 30 | A feedback control system is described as<br>G(s) = 50/s(s+3)(s+5), $H(s) = 1/sFor a unit step input, determine the steady state error constants &errors.$                                                                                                                                                                                               | Understand | CAEE009.05 |
| 31 | For a system $G(s)H(s) = \frac{K}{s^2(s+2)(s+6)}$ Find the value of K to limit steady state error to 10 when input to system is $1 + 10t + \frac{40}{2}t^2$                                                                                                                                                                                              | Understand | CAEE009.05 |

| 32 | A unity feedback system has $G(s) = \frac{40(S+2)}{S(S+3)(S+4)}$<br>Determine (i) Type of the system (ii) All error coefficients and (iii)<br>Error for the ramp input with magnitude 4                                                                                       | Understand | CAEE009.05 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 33 | For a unity feedback system whose open loop transfer function is $G(s) = 50/(1+s)(1+2s)$ , find the position, velocity & acceleration error Constants.                                                                                                                        | Understand | CAEE009.05 |
| 34 | The closed loop transfer function of a unity feedback control system is<br>given by-<br>$C(s)/R(s) = 20/(s^2+16s+25)$<br>Determine<br>(i) Damping ratio<br>(ii) Natural undammed resonance frequency<br>(iii) Percentage peak overshoot<br>(iv) Expression for error response | Understand | CAEE009.05 |
|    | UNIT – III                                                                                                                                                                                                                                                                    |            |            |
|    | CONCEPT OF STABILITY AND ROOT LOCUS TECH                                                                                                                                                                                                                                      | HNIQUE     |            |
|    | PART – A (SHORT ANSWER QUESTIONS)                                                                                                                                                                                                                                             |            |            |
| 1  | Define BIBO stability. What is the necessary condition for stability?                                                                                                                                                                                                         | Understand | CAEE009.07 |
| 2  | What is characteristic equation?                                                                                                                                                                                                                                              | Understand | CAEE009.07 |
| 3  | What is the relation between stability and coefficient of characteristic polynomial?                                                                                                                                                                                          | Understand | CAEE009.07 |
| 4  | What will be the nature of impulse response when the roots of characteristic equation are lying on imaginary axis?                                                                                                                                                            | Remember   | CAEE009.07 |
| 5  | What will be the nature of impulse response if the roots of characteristic equation are lying on right half s-plane?                                                                                                                                                          | Understand | CAEE009.07 |
| 6  | What is routh stability criterion?                                                                                                                                                                                                                                            | Understand | CAEE009.07 |
| 7  | What is auxiliary polynomial?                                                                                                                                                                                                                                                 | Understand | CAEE009.07 |
| 8  | What is quadratic symmetry?                                                                                                                                                                                                                                                   | Understand | CAEE009.07 |
| 9  | In routh array what conclusion you can make when there is a row of all zeros?                                                                                                                                                                                                 | Understand | CAEE009.07 |
| 10 | What is limitedly stable system?                                                                                                                                                                                                                                              | Understand | CAEE009.07 |
| 11 | Define absolute stability?                                                                                                                                                                                                                                                    | Understand | CAEE009.07 |
| 12 | Define marginal stability?                                                                                                                                                                                                                                                    | Understand | CAEE009.07 |
| 13 | Define conditional stability?                                                                                                                                                                                                                                                 | Understand | CAEE009.07 |
| 14 | Define stable system?                                                                                                                                                                                                                                                         | Understand | CAEE009.07 |
| 15 | Define Critically stable system?                                                                                                                                                                                                                                              | Understand | CAEE009.07 |
| 16 | Define conditionally stable system?                                                                                                                                                                                                                                           | Understand | CAEE009.07 |
| 17 | For the represented by the following characteristic equation say whether the necessary condition for stability is satisfied or not $s^4+3s^3+4s^2+5s+10=0$                                                                                                                    | Understand | CAEE009.07 |
| 18 | For the represented by the following characteristic equation say whether the necessary condition for stability is satisfied or not $s^4+3s^3+4s^2+5s+10=0$                                                                                                                    | Understand | CAEE009.07 |
| 19 | For the represented by the following characteristic equation say whether the necessary condition for stability is satisfied or not $s^6 - 2s^5 + s^3 + s^2 + s + 6 = 0$                                                                                                       | Understand | CAEE009.07 |

| 20                               | For the represented by the following characteristic equation say whether the necessary condition for stability is satisfied or not $s^5+4s^4-5s^3-4s^2+2s+1=0$                              | Understand | CAEE009.07 |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 21                               | How the roots of characteristic equation are related to stability?                                                                                                                          | Understand | CAEE009.07 |
| 22                               | For the represented by the following characteristic equation say whether the necessary condition for stability is satisfied or not $5 s^4+4s^2+5s+10=0$                                     | Understand | CAEE009.07 |
| 23                               | For the represented by the following characteristic equation say whether the necessary condition for stability is satisfied or not $3s^3+4s^2+5s+10=0$                                      | Understand | CAEE009.08 |
| 24                               | For the represented by the following characteristic equation say whether the necessary condition for stability is satisfied or not $s^6 + 2s^5 + 3s^3 + s^2 + s + 6 = 0$                    | Understand | CAEE009.08 |
| 25                               | For the represented by the following characteristic equation say whether the necessary condition for stability is satisfied or not $s^5+4s^4-5s^3-6s^2+2s+1=0$                              | Understand | CAEE009.08 |
|                                  |                                                                                                                                                                                             |            |            |
| 26                               | What is root locus? How will you find root locus on real axis?                                                                                                                              | Understand | CAEE009.07 |
| 27                               | What are asymptotes?                                                                                                                                                                        | Understand | CAEE009.08 |
| 28                               | What is centroid, how it is calculated?                                                                                                                                                     | Remember   | CAEE009.08 |
| 29                               | What is breakaway point?                                                                                                                                                                    | Remember   | CAEE009.08 |
| 30                               | What is dominant pole?                                                                                                                                                                      | Remember   | CAEE009.08 |
| 31                               | What is break in point?                                                                                                                                                                     | Remember   | CAEE009.08 |
| 32                               | Determine poles for $G(S)=40/S(s+4)(s+5)$                                                                                                                                                   | Remember   | CAEE009.09 |
| 33                               | Determine poles for $G(S)=40/S(s+6)(s+2)$                                                                                                                                                   | Understand | CAEE009.09 |
| 34                               | Determine the zeros for $G(S)=40(s+2)(s+6)/(s+4)(s+5)$                                                                                                                                      | Understand | CAEE009.09 |
| 35                               | Determine the zeros for $G(S)=10(s+6)(s+8)/(s+3)(s+2)$                                                                                                                                      | Understand | CAEE009.09 |
| 36                               | How will you find the gain K at a point on root locus?                                                                                                                                      | Understand | CAEE009.09 |
| PART – B (LONG ANSWER QUESTIONS) |                                                                                                                                                                                             |            |            |
| 1                                | Define the terms<br>(i) absolute stability (ii) marginal stability (iii)conditional stability<br>(iv) stable system(v) Critically stable system (vi) conditionally stable<br>system?        | Remember   | CAEE009.07 |
| 2                                | State Routh's stability criterion. State their advantages and limitations of Routh Hurwitz criteria?                                                                                        | Understand | CAEE009.07 |
| 3                                | what are the necessary conditions to have all the roots of characteristics equation in the left half of s-plane?                                                                            | Remember   | CAEE009.07 |
| 4                                | By means of Routh criterion ,<br>determine the stability represented by characteristic equation ,<br>$s^4+2s^3+8s^2+4s+3=0$                                                                 | Remember   | CAEE009.07 |
| 5                                | The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K}{S(1+0.25S)(1+0.4S)}$ find the restriction on k so that the closed loop system is absolutely stable. | Understand | CAEE009.07 |
| 6                                | Check the stability of the given characteristic equation using Routh's method<br>$S^{6} + 2S^{5} + 8S^{4} + 12S^{3} + 20S^{2} + 16S + 16 = 0$                                               | Understand | CAEE009.07 |
| 7                                | Locate the poles and zeros on the S-plane of a system $G(s)=13(s+7)(s+9)/(s^2+5s+8)$                                                                                                        | Remember   | CAEE009.07 |
| 8                                | Using the routh's criterion determine the stability of the system represented by characteristic equation $s^4+8s^3+18s^2+16s+5=0$                                                           | Understand | CAEE009.07 |

| 9  | Using the routh's criterion determine the stability of the system represented by characteristic equation $s^7+9s^6+24s^5+24s^3+24s^2+23s+15$                                                                                                                               | Understand | CAEE009.07 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 10 | Using the routh's criterion determine the stability of the system represented by characteristic equation $s^4+s^3+5s^2+4s+4=0$                                                                                                                                             | Understand | CAEE009.07 |
| 11 | Using the routh's criterion determine the stability of the system represented by characteristic equation $s^7+9s^6+24s^5+24s^3+24s^2+23s+15$                                                                                                                               | Understand | CAEE009.07 |
| 12 | Using the routh's criterion determine the stability of the system represented by characteristic equation $s^4+s^3+5s^2+4s+4=0$                                                                                                                                             | Understand | CAEE009.07 |
| 13 | The characteristic equation for certain feedback control systems is given below $s^4+4s^3+13s^2+36s+k=0.$ determine the range of k for the system to be stable.                                                                                                            | Understand | CAEE009.07 |
| 14 | The open loop transfer function of a unity feedback system is given by $G(s) = K/S(S^2 + s + 1)(s + 2)$ find the range of K system will oscillate and what is frequency of oscillation                                                                                     | Understand | CAEE009.07 |
| 15 | The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K(s+13)}{S(s+3)(s+7)}$ find the restriction on k so that the closed loop system is stable.                                                                                            | Remember   | CAEE009.07 |
|    |                                                                                                                                                                                                                                                                            |            |            |
| 16 | Explain the steps for the construction of root locus?                                                                                                                                                                                                                      | Remember   | CAEE009.08 |
| 17 | What is break away and break in points? how to determine them?                                                                                                                                                                                                             | Remember   | CAEE009.08 |
| 18 | The open loop transfer function of a control system is given by G(s)<br>H(s) = $\frac{K}{S(S+6)(S^2+4S+13)}$ sketch complete root locus.                                                                                                                                   | Understand | CAEE009.08 |
| 19 | Write important rules of root locus to construct to construct?                                                                                                                                                                                                             | Understand | CAEE009.08 |
| 20 | Sketch the root locus $G(S)=K/s(s^2+6s+10)$ , $H(S)=1$                                                                                                                                                                                                                     | Understand | CAEE009.08 |
| 21 | Construct the routh array for the unity feedback system $G(s)=10/s(s+2)(s+4)(s+6)$                                                                                                                                                                                         | Remember   | CAEE009.08 |
| 22 | What is centroid? How to calculate it?                                                                                                                                                                                                                                     | Remember   | CAEE009.08 |
| 23 | state the effect of addition of poles and zeros on root locus and the stability of the system                                                                                                                                                                              | Remember   | CAEE009.09 |
|    | PART - C (PROBLEM SOLVING AND CRITICAL THINKING                                                                                                                                                                                                                            | G QUESTION | <b>S</b> ) |
| 1  | With the help of Routh Hurwitz criterion comments upon the stability of the system having the following characteristic equation $S^6+s^5-2s^4-3s^3-7s^2-4s-4=0$                                                                                                            | Understand | CAEE009.07 |
| 2  | How many roots does each of the following polynomials have in the right half of the s-plane $s^4+2s^3+4s^2+8s+15$                                                                                                                                                          | Understand | CAEE009.07 |
| 3  | The system having characteristic equation 2 s <sup>4</sup> +4s <sup>2</sup> +1=0<br>(i) the number of roots in the left half of s-plane<br>(ii) the number of roots in the right half of s-plane<br>(iii)The number of roots on imaginary axis use RH stability criterion. | Remember   | CAEE009.07 |
| 4  | A unity feedback system has an open loop transfer function<br>$G(s) = \frac{K}{(s+2)(s^2+4s+5)}$ Use RH test to determine the range of positive<br>values of K for which the system is stable                                                                              | Remember   | CAEE009.07 |
| 5  | Find the range of K for stability of the system with characteristic equation $s^4\!+\!3s^3\!+\!3s^2\!+\!2s\!+\!k\!=\!0$                                                                                                                                                    | Understand | CAEE009.07 |

| 6  | For the unity feedback system the open loop T.F. is $G(s) = \frac{K}{S(1+0.6S)(1+0.4S)}$<br>Determine(a) Range of values of K,marginal K (c) Frequency of sustained oscillations                    | Understand | CAEE009.07 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
|    |                                                                                                                                                                                                     |            |            |
| 7  | Using the routh's criterion determine the stability of the system represented by characteristic equation $s^5+s^4+2s^3+2s^2+3s+5=0$ also determine the roots lying on the right half of the s-plane | Understand | CAEE009.08 |
| 8  | Sketch the Root Locus for the unity feedback system with<br>$G(s)H(s) = \frac{K}{S(S+1)(S+3)(S+6)}$ Find the breakaway point on real axis and find K of damping ratio=0.5                           | Understand | CAEE009.08 |
| 9  | Sketch the complete Root Locus of the system<br>$G(s) = \frac{K}{S(S+2)(S^2+4S+13)}$                                                                                                                | Understand | CAEE009.08 |
| 10 | Sketch root locus plot for unity feedback system whose open loop T.F is given by $G(S) = \frac{k(s+0.5)}{s^2(s+4.5)}$                                                                               | Understand | CAEE009.08 |
| 11 | Sketch the root locus plot of a unity feedback system whose open loop<br>T.F is $G(s) = \frac{s}{(s^2+4)(s+2)}$                                                                                     | Understand | CAEE009.08 |
| 12 | Construct the routh array for the unity feedback system<br>G(s)=10/s(s+2)(s+6)(s+7)                                                                                                                 | Remember   | CAEE009.08 |
| 13 | Sketch the root locus of open loop transfer function given<br>below? $G(s) = \frac{K}{s(s+3)(s^2+2s+2)}$                                                                                            | Understand | CAEE009.08 |
| 14 | Sketch the root locus of open loop transfer function given below? $G(s) = \frac{K}{S(S^2+8S+20)}$                                                                                                   | Remember   | CAEE009.08 |
| 15 | Sketch the root locus of open loop transfer function given below? $G(s) = \frac{K}{s(s+2)(s^2+2s+2)}$                                                                                               | Remember   | CAEE009.08 |
|    | UNIT – IV                                                                                                                                                                                           |            | 1          |
|    | FREQUENCY DOMAIN ANALYSIS                                                                                                                                                                           |            |            |
|    | PART – A (SHORT ANSWER QUESTIONS)                                                                                                                                                                   |            |            |
| 1  | Define frequency response? With advantages of frequency response analysis?                                                                                                                          | Remember   | CAEE009.10 |
| 2  | Define frequency domain specifications?                                                                                                                                                             | Understand | CAEE009.12 |
| 3  | Define Resonant Peak.                                                                                                                                                                               | Understand | CAEE009.10 |
| 4  | Define Bode plot? What are the advantages of Bode Plot?                                                                                                                                             | Understand | CAEE009.10 |
| 5  | Define gain margin and phase margin?                                                                                                                                                                | Understand | CAEE009.10 |
| 6  | Define corner frequency.                                                                                                                                                                            | Remember   | CAEE009.11 |
| 7  | Explain Gain cross-over frequency and phase cross-over frequency?                                                                                                                                   | Remember   | CAEE009.11 |
| 8  | What is polar plot?                                                                                                                                                                                 | Understand | CAEE009.11 |
| 9  | Define Bandwidth?                                                                                                                                                                                   | Remember   | CAEE009.11 |
| 10 | What are advantages of frequency response analysis?                                                                                                                                                 | Understand | CAEE009.12 |
| 11 | Write the expression for resonant peak?                                                                                                                                                             | Remember   | CAEE009.12 |
| 12 | What is cut-off rate?                                                                                                                                                                               | Remember   | CAEE009.10 |

| 13 | Write the expression for resonant frequency?                                                                                                                                       | Remember   | CAEE009.12 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 14 | Define corner frequency?                                                                                                                                                           | Remember   | CAEE009.10 |
| 15 | Define polar plot?                                                                                                                                                                 | Understand | CAEE009.11 |
| 16 | What is nyquist plot?                                                                                                                                                              | Remember   | CAEE009.11 |
|    | PART – B (LONG ANSWER QUESTIONS)                                                                                                                                                   |            |            |
| 1  | What is frequency response? What are advantages of frequency response analysis?                                                                                                    | Understand | CAEE009.12 |
| 2  | write short notes on various frequency domain specifications                                                                                                                       | Understand | CAEE009.12 |
| 3  | Explain the steps for the construction of Bode plot? What are the advantages of Bode Plot?                                                                                         | Understand | CAEE009.10 |
| 4  | Sketch the Bode plot for the open loop transfer function<br>$G(s) = \frac{10(S+3)}{S(S+2)(S^2 + 4S + 100)}$                                                                        | Understand | CAEE009.10 |
| 5  | The open loop transfer function of a system is<br>$G(s) = \frac{K}{S(1+S)(1+0.1S)}$ Determine the value of K such that (i) Gain Margin = 10dB and (ii)<br>Phase Margin = 50 degree | Remember   | CAEE009.10 |
| 6  | For H(s)=1, G(s)=Ke <sup>-0.23</sup> /s(s+2)(s+8). Determine K so that(i) phase margin is $45^{0}$ (ii.) value of k for the gain margin to be 10db                                 | Remember   | CAEE009.10 |
| 7  | Given the open loop transfer function $\frac{20}{s(1+3s)(1+4S)}$ Draw the Bode plot and hence the phase and gain margins.                                                          | Understand | CAEE009.10 |
| 8  | Sketch the bode plot for a system with unity feedback having the transfer function, and assess its closed-loop stability.<br>$G(s) = \frac{75}{S(s^2 + 16s + 100)}$                | Understand | CAEE009.10 |
| 9  | Sketch the bode plot for a system with unity feedback having the transfer function, and assess its closed-loop stability.<br>$G(s) = \frac{10}{S(1+0.4s)(1+0.1s)}$                 | Understand | CAEE009.10 |
| 10 | Derive expression for resonant peak and resonant frequency and hence<br>establish correlation between time and frequency response.                                                 | Remember   | CAEE009.10 |
| 11 | Define the following terms i) Gain cross over frequency ii)Resonant<br>peak<br>iii)Resonant frequency iv)Band width                                                                | Understand | CAEE009.10 |
| 12 | Sketch the bode plot for a system with unity feedback having the transfer function, and assess its closed-loop stability.<br>$G(s) = \frac{50(1+0.1S)}{S(1+0.01S)(1+S)}$           | Understand | CAEE009.10 |
| 13 | Sketch the bode plot for a system with unity feedback having the transfer function, and assess its closed-loop stability.<br>$G(s) = \frac{30(1+0.1S)}{S(1+0.01s)(1+s)}$           | Understand | CAEE009.10 |
| 14 | Sketch the bode plot for a system with unity feedback having the transfer function, and assess its closed-loop stability.<br>$G(s) = \frac{100(1+0.1S)}{S(1+0.2s)(1+0.5s)}$        | Understand | CAEE009.10 |
| 15 | Sketch the bode plot for a system with unity feedback having the transfer function, and assess its closed-loop stability.<br>$G(s) = G(s) = \frac{40(1+s)}{(1+5s)(s^2+2s+4)}$      | Understand | CAEE009.10 |

| 16                                                         | Draw the polar plot for open loop transfer function for unity feedback                                                                                                   | TT 1 / 1   | GAEE000 11 |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 16                                                         | system G(s)= $\frac{1}{s(1+s)(1+2s)}$ .determine gain margin, phase margin?                                                                                              | Understand | CAEE009.11 |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS) |                                                                                                                                                                          |            |            |
| 1                                                          | Given damping ratio $\xi$ =0.7 and $\omega_n$ =10 rad/sec find the resonant peak, resonant frequency and band width.                                                     | Remember   | CAEE009.12 |
| 2                                                          | For a second order system with unity feedback $G(s) = \frac{200}{s(s+8)}$ .find various frequency domain specifications.                                                 | Remember   | CAEE009.12 |
| 3                                                          | Sketch bode plot of a system $G(s) = \frac{1}{(1+s)(1+2s)}$                                                                                                              | Understand | CAEE009.12 |
| 4                                                          | Draw the exact bode plots and find the gain margin and phase margin<br>of a system represented by $G(s)H(s) = \frac{10(s+1)}{s(s+0.05)(s+3)(s+5)}$                       | Understand | CAEE009.12 |
| 5                                                          | Draw the exact bode plots and find the gain margin and phase margin<br>of a system represented by $G(s) = \frac{10(s+1)}{s(s+0.05)(s+3)(s+5)}$ , $H(S) = 1$              | Understand | CAEE009.11 |
| 6                                                          | The open loop transfer function of a unity feedback system is G(s)<br>= $\frac{50K}{s(s+10)(s+5)(s+1)}$ find the gain margin and phase margin using bode plot?           | Understand | CAEE009.12 |
| 7                                                          | Sketch the bode plot for transfer function $G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$ and find value of K such that gain cross over frequency is 5 rad/sec                  | Understand | CAEE009.11 |
| 8                                                          | Sketch the bode plot or a system $G(s) = \frac{15(s+5)}{s(s^2+16s+100)}$ .hence determine the stability of the system.                                                   | Understand | CAEE009.11 |
| 9                                                          | Sketch the bode plots of $G(s) = \frac{e^{-0.1s_{28.5}}}{s_{(1+s)(1+0.1s)}}$ hence find the gain cross over frequency                                                    | Understand | CAEE009.11 |
| 10                                                         | A unity feedback control system has $G(s) = \frac{K}{s(s+1)(1+\frac{s}{10})}$ find the value of K so that GM=12db and PM=30deg.                                          | Understand | CAEE009.12 |
| 11                                                         | Given damping ratio $\xi$ =0.8 and $\omega_n$ =10 rad/sec find the resonant peak, resonant frequency and band width                                                      | Understand | CAEE009.12 |
| 12                                                         | For a second order system with unity feedback $G(s) = \frac{200}{s(s+6)}$ .find various frequency domain specifications.                                                 | Understand | CAEE009.12 |
| 13                                                         | Calculate the damping ratio and natural frequency of second order system is 0.5 and 8 rad/sec respectively. Calculate the resonant peak and resonant frequency?          | Understand | CAEE009.11 |
| 14                                                         | Sketch the bode plots of G(s) = $\frac{Ke^{-0.2s}}{s(s+2)(s+8)}$ . Find k so that the system is stable with,(a) gain margin equal to 2db. (b)phase margin equal to 45deg | Understand | CAEE009.10 |
| 15                                                         | Sketch the bode plot for a system with unity feedback having the transfer function, and assess its closed-loop stability.<br>$G(s) = \frac{30}{S(1+3s)(1+4s)}$           | Understand | CAEE009.10 |
| 16                                                         | Sketch polar plot for $G(S) = \frac{1}{s^2(1+s)(1+2s)}$ with unity feedback system.<br>Determine gain margin and phase margin.                                           | Understand | CAEE009.11 |
| 17                                                         | Obtain the range of values of K for which the following open loop transfer function is stable use nyquist stability criterion $.G(S)H(S)=K(S+1)/S^2(s+2)(s+4)$           | Understand | CAEE009.11 |
| 18                                                         | Obtain the range of values of K for which the following open loop transfer function is stable use nyquist stability criterion $.G(S)H(S)=K/s(s^2+2s+2).$                 | Understand | CAEE009.11 |

|                                                            | UNIT – V                                                                                                                                                                                                                                                                                                                                                                        |            |            |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| STATE SPACE ANALYSIS AND COMPENSATORS                      |                                                                                                                                                                                                                                                                                                                                                                                 |            |            |
| PART - A (SHORT ANSWER QUESTIONS)                          |                                                                                                                                                                                                                                                                                                                                                                                 |            |            |
| 1                                                          | What are the advantages of state space analysis?                                                                                                                                                                                                                                                                                                                                | Remember   | CAEE009.13 |
| 2                                                          | What are draw backs of transfer function model analysis                                                                                                                                                                                                                                                                                                                         | Understand | CAEE009.13 |
| 3                                                          | Define state?                                                                                                                                                                                                                                                                                                                                                                   | Understand | CAEE009.13 |
| 4                                                          | Define state variable?                                                                                                                                                                                                                                                                                                                                                          | Remember   | CAEE009.13 |
| 5                                                          | Define state vector??                                                                                                                                                                                                                                                                                                                                                           | Remember   | CAEE009.13 |
| 6                                                          | What are the properties of state transition matrix?                                                                                                                                                                                                                                                                                                                             | Understand | CAEE009.13 |
| 7                                                          | Write resolving matrix?                                                                                                                                                                                                                                                                                                                                                         | Remember   | CAEE009.13 |
| 8                                                          | Define observability?                                                                                                                                                                                                                                                                                                                                                           | Understand | CAEE009.13 |
| 9                                                          | Define controllability?                                                                                                                                                                                                                                                                                                                                                         | Understand | CAEE009.14 |
| 10                                                         | How the modal matrix can be determined?                                                                                                                                                                                                                                                                                                                                         | Understand | CAEE009.13 |
| 11                                                         | What is i/p and o/p space?                                                                                                                                                                                                                                                                                                                                                      | Understand | CAEE009.13 |
| 12                                                         | What are eigen values?                                                                                                                                                                                                                                                                                                                                                          | Understand | CAEE009.14 |
|                                                            | PART - B (LONG ANSWER QUESTIONS)                                                                                                                                                                                                                                                                                                                                                |            |            |
| 1                                                          | Explain the state variable and state transition matrix?                                                                                                                                                                                                                                                                                                                         | Understand | CAEE009.13 |
| 2                                                          | Write shot notes on formulation of state equations?                                                                                                                                                                                                                                                                                                                             | Remember   | CAEE009.13 |
| 3                                                          | Derive the expression for the calculation of the transfer function from the state variables for the analysis of system?                                                                                                                                                                                                                                                         | Understand | CAEE009.13 |
| 4                                                          | Write short notes on canonical form of representation .list its advantages and disadvantages?                                                                                                                                                                                                                                                                                   | Understand | CAEE009.13 |
| 8                                                          | Write properties of state transition matrix?                                                                                                                                                                                                                                                                                                                                    | Remember   | CAEE009.13 |
| 9                                                          | State and explain controllability and observability?                                                                                                                                                                                                                                                                                                                            | Remember   | CAEE009.13 |
| 10                                                         | Write the necessary and sufficient conditions for complete state controllability and observability?                                                                                                                                                                                                                                                                             | Understand | CAEE009.13 |
| 11                                                         | What is compensator?                                                                                                                                                                                                                                                                                                                                                            | Remember   | CAEE009.15 |
| 12                                                         | Define lead compensator?                                                                                                                                                                                                                                                                                                                                                        | Understand | CAEE009.15 |
| 13                                                         | Define lag compensator?                                                                                                                                                                                                                                                                                                                                                         | Understand | CAEE009.15 |
| 14                                                         | Define lag-lead compensator?                                                                                                                                                                                                                                                                                                                                                    | Understand | CAEE009.14 |
| 15                                                         | What are the various compensation schemes used in practice?                                                                                                                                                                                                                                                                                                                     | Understand | CAEE009.14 |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS) |                                                                                                                                                                                                                                                                                                                                                                                 |            |            |
| 1                                                          | Linear time invariant system is described by the following state model.<br>Obtain the canonical form of the state model.<br>$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1/3 & -1/3 \end{bmatrix}$ | Understand | CAEE009.13 |
| 2                                                          | convert the following system matrix to canonical form $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 1 & 3 & -1 \end{bmatrix}$                                                                                                                                                                                                                                                 | Understand | CAEE009.13 |

| 3  | a linear time invariant system is described by the following state model.obtain the canonical form of state model $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} $        | Understand | CAEE009.13 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 4  | convert the following system matrix to canonical form and hence<br>calculate the STM A= $\begin{bmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{bmatrix}$                                                                                                                                                                                                                                                        | Understand | CAEE009.13 |
| 5  | a system variables for the state variable representation of the system<br>are,<br>$A = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ Determine the complete state response and the output response of the<br>system for the initial state<br>$X(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$                                     | Understand | CAEE009.13 |
| 6  | for the state equation $\dot{x} = Ax$<br>Where $A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix}$ . find the initial condition vector $x(0)$<br>which will excite only the mode corresponding to eigen value with the most negative real part.                                                                                                                                              | Understand | CAEE009.13 |
| 7  | consider the differential equation system given by $y + 3y + 2\dot{Y} = 0$ , $y(0)=0.1,y(0)=0.05$ .<br>Obtain the response y(t), subjected to the given initial condition                                                                                                                                                                                                                                            | Understand | CAEE009.13 |
| 8  | consider the system described by the state equation<br>$X(t) = \begin{bmatrix} 1 & e^{-t} \\ 0 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$                                                                                                                                                                                                                                                  | Understand | CAEE009.13 |
| 9  | determine the state controllability and observability of the following system $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & -1 \\ -2 & 1.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \end{bmatrix} u $ C=[0 1]                                                                                                                                 | Understand | CAEE009.13 |
| 10 | examine the observability of the system given below using canonical<br>form<br>$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$ $Y = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ | Understand | CAEE009.14 |
| 11 | Design a suitable lag compensator for a system with,<br>$G(S) = \frac{4}{s(s+2)}$ to meet the specifications as<br>a. $K_v \ge 5 \text{ sec}^{-1}$ b. P. $M \ge +40^0$ c. G.M. $\ge +10$ db.                                                                                                                                                                                                                         | Understand | CAEE009.15 |
| 12 | Design a lead compensator using root locus for the system with ,<br>$G(S) = \frac{4}{s(s+2)}$ to meet the specifications as<br>a. Damping ratio = 0.5 b. setting time = 2 sec.                                                                                                                                                                                                                                       | Understand | CAEE009.15 |

| 13 | Design a suitable lag compensator root locus for the system with,<br>$G(S) = \frac{\kappa}{s(s+1)(s+2)}$ to meet the specifications as<br>a. Damping ratio = 0.5<br>b. $K_v \ge 5 \text{ sec}^{-1}$<br>c. Undamped natural frequency = 0.7 rad/sec | Understand | CAEE009.15 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|

Prepared By: Ms. S Swathi, Assistant Professor

HOD, EEE