

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomus) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	ELECTRONIC CIRCUIT ANALYSIS
Course Code	:	AEC004
Class	:	B. Tech IV Semester-R16
Branch	:	ECE
Academic Year	:	2018–2019
Course Coordinator	:	Mr.J. Siva Ramakrishna, Assistant Professor ,ECE
Course Faculty	:	Mr.J. Siva Ramakrishna, Assistant Professor ,ECE Mr.K. Ravi, Assistant Professor ,ECE

COURSE OBJECTIVES;

The course should enable the students to:

S. NO	DESCRIPTION		
I	Familiarize the student with the analysis and design of different amplifier circuits (single and multi		
	stage) using Bipolar Junction Transistors.		
II	Understand the analysis of transistor at low frequencies and high frequencies.		
III	Familiarize with different multi stage amplifiers and learn about various tuned amplifiers and their		
	frequency responses.		
IV	Understand the concepts of feed back in amplifiers and emphasis on feedback amplifiers (circuits		
	implementing different topologies) and oscillators.		
V	Familiarize with different power amplifier circuits using Bipolar Junction Transistor and designing the		
	power amplifier.		

COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

GAEGOOA OA	Design various amplifier circuits using Bipolar Junction Transistors in Common Emitter,
CAEC004.01	Common Base and Common Collector configurations.
CAEC004.02	Understand the effect of coupling and bypass capacitances on frequency response of single
CAEC004.02	stage amplifiers.
CAEC004.03	Understand various BJT amplifier circuits and their frequency responses at low, mid and High
CAEC004.03	frequencies.
CAEC004.04	Understand the usefulness of amplifiers using semiconductor devices in various real time
CAEC004.04	circuit making.
CAEC004.05	Understand and Remember the concept of Bipolar Junction Transistor amplifiers at high
CALCOO4.03	frequencies.
CAEC004.06	Understand various high frequency parameters like Conductance's, resistances and
C/1EC004.00	Capacitances in Hybrid- π model.
CAEC004.07	Understand RC, Transformer and Direct coupling techniques used in multi stage amplifiers
C/1EC001:07	and also Remember the differences between them.
CAEC004.08	Analyze various multistage amplifiers such as Darlington, Cascode (Common Emitter-
- CI IE COO 1.00	Common Base) etc.
CAEC004.09	Understand the concept of tuned circuits used in single tuned amplifier, double tuned
C/1EC00 1.09	amplifiers and stagger tuned amplifiers.
CAEC004.10	Understand and Remember the conditions required by an electronic circuit using Bipolar
27 IL 200 1.10	Junction Transistor to act like an Oscillator.
CAEC004.11	Understand and design various sinusoidal Oscillators like RC Phase shift, Wien bridge,
C112000 1.11	Hartley and Colpitts oscillator for various frequency ranges.

CAEC004.12	Understand the importance of positive feedback and negative feedback in connection in
	electronic circuits.
CAEC004.13	Understand and Analyze various types of feedback amplifiers like voltage series, current
CAEC004.13	series, current shunt and voltage shunt.
CAEC004.14	Understand the difference between small signal amplifiers and large signal amplifiers using
CAEC004.14	Bipolar Junction Transistors.
CAEC004.15	Understand types of power amplifiers based on position of Quiescent or operating point on
CAEC004.13	load lines and also understand its parameters.
CAEC004.16	Design different types of power amplifiers for practical applications of desired specifications
CAEC004.10	like efficiency, output power, distortion etc.
CAEC004.17	Acquire experience in building and troubleshooting simple electronic analog circuits using
CAEC004.17	Bipolar Junction Transistor.
CAEC004.18	Acquire the knowledge and develop capability to succeed national and international level
CAEC004.18	competitive examinations.

TUTORIAL QUESTION BANK			
S. No	Questions	Blooms Taxonomy	Course Learning
D. 110	Questions	Level	Outcome
	UNIT-I	220,02	Guccome
	SINGLE STAGE AMPLIFIERS AND FREQUENCY R	FSPONSE	
	PART-A (SHORT ANSWER QUESTIONS)		
1	List the classification of amplifiers.	Remember	CAEC004.03
2	List the classification of amplifiers based on frequency of operation	Remember	CAEC004.03
3	Define various hybrid parameters.	Remember	CAEC004.03
4	Draw the hybrid equivalent model of CE Amplifier	Understand	CAEC004.03
5	Reason out the causes and results of Phase distortion.	Understand	CAEC004.03
6	Reason out the causes and results of Frequency distortions in transistor Amplifiers.	Understand	CAEC004.03
7	Reason out the causes and results of Amplitude distortions in transistor Amplifiers.	Understand	CAEC004.03
8	Write the expressions for A _V and R _{in} of a CE amplifier signals	Remember	CAEC004.03
9	Write the expressions for A _V and R _{in} of a CB amplifier	Remember	CAEC004.03
10	Write the expressions for A _V and R _{in} of a CC amplifier	Remember	CAEC004.03
11	What is the effect of bypass capacitor?	Understand	CAEC004.02
12	What is the effect of coupling capacitor?	Understand	CAEC004.02
13	Write down the expression for f ₁ and f _h of a CE amplifier considering the effects of bypass and coupling capacitors	Understand	CAEC004.01
14	Draw the frequency response of BJT amplifier.	Remember	CAEC004.03
15	State Miller's theorem. Specify its relevance in the analysis of a BJT amplifier.	Remember	CAEC004.03
	PART-B (LONG ANSWER QUESTIONS)		
1	Analyze general transistor amplifier circuit using h parameter model. Derive the expressions for A_i , A_v , R_i , R_0 , A_{ls} , A_{Vs} .	Understand	CAEC004.01
2	Draw the circuit of an emitter follower, and derive the expressions for A_I , A_v , R_i , R_0 in terms of CE parameters.	Remember	CAEC004.01
3	Write the analysis of a CE amplifier circuit using h parameters. Derive the expressions for A_i , A_v , R_i , R_o , A_{is} , A_{vs} .	Understand	CAEC004.01
4	Define h-parameter of a transistor in a small signal amplifier. What are the benefits of h-parameters?	Remember	CAEC004.01
5	Analysis for CE amplifier with emitter resistance	Remember	CAEC004.01
6	Explain about different types of distortions that occur in amplifier circuits.	Understand	CAEC004.01
7	Explain the effect of coupling and bypass capacitors on amplifier at low frequencies.	Understand	CAEC004.01
8	Draw the low frequency parameter equivalent circuit of a CE amplifier and explain the significance of each parameter.	Remember	CAEC004.01
PART-C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)			
1	A CE amplifier is driven by voltage source with internal resistance $R_s=800\Omega$. The load impedance $R_L=2k$ Ω . The h-parameters are	Understand	CAEC004.01

he=1.1K,hr=2.5*10 ⁻⁴ he=50,he=25µAV. Compute Al.Av, Als, Rl, Ze & Ac Ac Ac amplifier is driven by voltage source with internal resistance R=800Ω. The load impedance Rl=2k Ω. The h-parameters are hs=22 Ω hs=3*10 ⁻⁴ hs=69.8hs=6.9jAV. Compute Al.Av, Als, Rl, Ze & Ac Ac Camplifier is driven by voltage source with internal resistance hic=1.1K, hre=1.fhc=51,ho=2.9jAV. Compute Al.Av, Als, Rl, Ze & Ac Ac Camplifier is driven by voltage source with internal resistance hic=1.1K, hre=1.fhc=51,ho=2.9jAV. Compute Al.Av, Als, Rl, Ze & Ac Direction of the h-parameters are hic=1.1K, hre=2.5*10-4.hfc=50,hoe=2.4jAV. Compute Al.Av, Als, Rl, Ze & Ac Direction of the h-parameters are hic=1.1K, hre=2.5*10-4.hfc=50,hoe=2.4jAV. Compute Al.Av, Als, Rl, Ze & Rot if Rs=1000Ω. The h-parameters are hic=1.1K, hre=2.5*10-4.hfc=50,hoe=2.4jAV. Compute Al.Av, Als, Rl, Ze & Rot if Rs=1000Ω. The h-parameters are hic=1.1K, hre=2.5*10-4.hfc=50,hoe=2.4jAV. Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate Al, AV, Rl, Ze & Rot if Rs=500Ω. Rl=2000Ω. The h-parameters are hic=1.1K, hre=2.5*10-4.hfc=50,hoe=2.4jAV. Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate Al, AV, Rl, Ze & Rot if Rs=500Ω, Rl=2000Ω. The h-parameters are hic=1.1K, hre=2.5*10-4.hfc=50,hoe=2.5jaAV. Compute Al, AV Als, Rl, Re Rot of Rs=600Ω, Rl=1000Ω, Rl=800Ω, Rl=1000Ω, Rl=800Ω in the collector circuit using Approximate model. Determinate are hic=1.1K, hre=2.4*10-4.hfc=50,hoe=2.5jaAV. Compute Al, AV Als, Rl, Re Rot if Rs=600Ω, Rl=1000Ω, Rl=800Ω in the collector circuit. The h-parameters are hic=1.1K, hre=3.6*10-4.hfc=50,hoe=2.5jaAV. Compute Al, AV Als, AV, Rl, Ze & Rot if Rs=600Ω, Rl=1000Ω, Rl=800Ω in the collector circuit. The h-parameters are hic=1.1K, hre=3.6*10-4.hfc=50,hoe=2.5jaAV. Compute Al, AV Als, AV, Rl, Ze & Rot if Rs=600Ω, Rl=1000Ω, Rl=800Ω in the collector circuit. The h-parameters are hic=1.1K, hre=3.0*10-4.hfc=50,hoe=2.5jaAV. Compute Al, AV Als, AV, Rl, Ze & Rot if Rs=60			Blooms	Course
ha=1.1K,ha=2.5*10 ⁴ ha=50.ha=25µA/V. Compute Al.Av, Aa, R., Za & Ac. A CB amplifier is driven by voltage source with internal resistance 2 ha=3*10 ⁴ ha=-39.ha=-05µA/V. Compute Al.Av, Aa, R., Za & Ag. A CB amplifier is driven by voltage source with internal resistance R=8000.The load impedance Rl=2k Ω. The h-parameters are ha=22 Ω Understand CAEC004. A CB amplifier is driven by voltage source with internal resistance R=8000.The load impedance Rl=2k Ω. The h-parameters are hic=1.1K, hrc=1.hfc=51.hoc=25µA/V. Compute Al, AV, Als, Rl, Zo & Ap. A CB amplifier is driven by voltage source with internal resistance R=600Ω.RL=1200Ω. The h-parameters are hic=1.Khrc=2.5*10-doc R=600Ω.RL=1200Ω. The h-parameters are hic=1.Khrc=2.5*10-doc R=1200Ω. The h-parameters are hic=1.Khrc=2.5*10-doc R=1200Ω. The h-parameters are hic=1.1Khrc=2.5*10-doc R=1200Ω. The h-parameters are hic=1.1Khrc=2.5*10-doc R=1200Ω. The h-parameters are hic=1.1Khrc=2.5*10-doc R=2000Ω. The h-parameters are hic=1.2Khrc=3*10-doc R=300Ω. R=300Ω. The h-parameters a	S. No	Questions	Taxonomy	Learning
A CB amplifier is driven by voltage source with internal resistance R=800Ω The load impedance RI=2k Ω. The h-parameters are h=22 Ω Linderstand Linderstand III. Hore-Infec-51, hos-29, hos-0.5 μΑ-V. Compute Δι.Αν. Δs. R., Z. & Δs. hos-3*10.1 hos-0.9 μΔ-0.5 μΑ-V. Compute Δι.Αν. Δs. R., Z. & Δs. hos-11. K, hre-Infec-51, hos-25μΑ-V. Compute Δι.Αν. Δs. R., Z. & Δs. hos-11. K, hre-Infec-51, hos-25μΑ-V. Compute Δι.Αν. As R. R., Zo & Rot Linderstand Rs-600Ω RI=1200Ω. The h-parameters are his-11. Khre-25 s.10- Δ. hre-50, hos-25μΑ-V. Compute ΔI.ΑV. Als. Ri. Zo & Rot using (a)exact analysis (b) Approximate Analysis. A CE amplifier is driven by voltage source with internal resistance Rs-600Ω RI=1200Ω. The h-parameters are his-11. Khre-25 s.10- Δ. hre-50, hos-25μΑ-V. Compute AI.AV. Als. Ri. Zo & Rot using (a)exact analysis (b) Approximate Analysis. Draw the circuit of CE amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri. Zo & Rot if Rs-900Ω. RI-1200Ω. The h-parameters are his-11. Khre-2.5*10- Δ. hre-50, hos-24μΑ-V. Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri. Zo & Rot if Rs-900Ω. RI-2000Ω. The h-parameters are his-11. Khre-2.5*10- Δ. hre-50, hos-24μΑ-V. Draw the circuit of CC amplifier Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri. Zo & Rot if Rs-500Ω. RI-2000Ω. The h-parameters are his-11. Khre-2.6*10- Δ. hre-50, hos-25μΑ-V. Compute AI, AV, AI, Ri. Rot. Cate the Approximate model if permission. A CE amplifier with emitter resistor RE-800Ω. RI-18. Av. Ri. Zo & Rot if Rs-500Ω. Ri-1900Ω. RE-800Ω. RI-18. Av. Ri. Zo & Rot if Rs-600Ω. RI-1000Ω. RE-800Ω. The h-parameters are his-11. Khre-2.4*10- Δ. Rot. Rot. Rot. Rot. Rot. Rot. Rot. Rot		-	Level	Outcome
2 R.=8000.The load impedance RI=2k Ω. The h-parameters are hs=22 Ω has=3*lot 3, has=0.9kh.sec.5yh.Qr. Compute At.Av, At. R. R. Z. & A. A. C. amplifier is driven by voltage source with internal resistance RE-8k Ω. The h-parameters are hic=1.1k, hr=1,hfe=51,hoc=25µA/V. Compute AI, AV, AIs, Ri, Zo & Ap. A CE amplifier is driven by voltage source with internal resistance RE-8k Ω. The h-parameters are hic=1.1k,hr=2.5x10-4,hfe=50,hoc=25µA/V. Compute AI,AV, AIs, Ri, Zo & Rot using (a)exact analysis (b) Approximate Analysis. Draw the circuit of CE amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=1000Ω, RI=1200Ω. The h-parameters are hic=1.1k,hre=2.5x10-4,hfe=50,hoc=24µA/V. Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=900Ω, RI=2000Ω. The h-parameters are hic=1.1k,hre=2.5x10-4,hfe=50,hoc=24µA/V. Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=500Ω, RI=2000Ω. The h-parameters are hic=1.1k,hre=2.5x10-4.hfe=50,hoc=24µA/V. Draw the circuit of CC amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=500Ω, RI=200Ω. The h-parameters are hic=1.1k,hre=2.5x10-4.hfe=50,hoc=24µA/V. A CE amplifier with emitter resistor RE-800Ω RI=1k Ω. The h-parameters are hic=1.1k,hre=2.5x10-4.hfe=50,hoc=25µA/V. Compute AI, AV, AIs, Ri, Rot. Use the Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=600Q. RI=1co0Q. Ri=800Q. The h-parameters are hic=1.1k,hre=2.4x10-4.hfe=50,hoc=25µA/V. Compute AI, AV, Ri, Zo & Rot if Rs=600Q. RI=1co0Q. Ri=800Q. Ri=800Q. Rr=400Q. Ri=600Q. Ri=600Q. Ri=1co0Q. Ri=600Q. Ri=1co0Q. Ri=600Q. Ri=1co0Q. Ri=600Q. Ri=1co0Q. Ri=600Q. R				
A CC amplifier is driven by voltage source with internal resistance hice.1.1K, hrc=1,hfc=51,hoc=25μA/V. Compute AI, AV, AIs, Ri, Zo & Ap. A CE amplifier is driven by voltage source with internal resistance and hice.1.1K, hrc=1,hfc=51,hoc=25μA/V. Compute AI, AV, AIs, Ri, Zo & Rot using (a)exact analysis (b) Approximate rander Analysis. Draw the circuit of CE amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot fi Rs=1000Ω, RI=1200Ω. The h-parameters are hice.1.1K, hrc=2.5x10-4.hfc=50,hoc=24μA/V. Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=900Ω, RI=1200Ω. The h-parameters are hice.1.1K, hrc=2.5x10-4.hfc=50,hoc=24μA/V. Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=900Ω, RI=2000Ω. The h-parameters are hice.1.1K, hrc=2.5x10-4.hfc=50,hoc=25μA/V. Draw the circuit of CC amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=500Ω, RI=2000Ω. The h-parameters are hice.1.1K, hrc=2.6x10-4.hfc=54,hoc=26μA/V. A CE amplifier with emitter resistor RE 800Ω, RL=1KΩ. The h-parameters are hice.1.1K, hrc=2.6x10-4.hfc=54,hoc=26μA/V. A CC amplifier with emitter resistor RE 800Ω. RL=1KΩ. The h-parameters are hice.1.1K, hrc=2.6x10-4.hfc=54,hoc=26μA/V. Compute AI, AV, Ri, Zo & Rot if Rs=600Ω, RI=300Ω. The h-parameters are hice.1.1K, hrc=2.4x10-4.hfc=54,hoc=26μA/V. Compute AI, AV, Ri, Zo & Rot if Rs=600Ω, RI=800Ω. The h-parameters are hice.1.1K, hrc=2.4x10-4.hfc=54,hoc=26μA/V. Compute AI, AV, Ri, Zo & Rot if Rs=600Ω, RI=800Ω. The h-parameters are hice.1.1K, hrc=2.4x10-4.hfc=50,hoc=25μA/V. Compute AI, AV, Ri, Zo & Rot if Rs=600Ω, RI=800Ω. The h-parameters are hice.1.Khc=2.6x10-4.hfc=50,hoc=25μA/V. Compute AI, AV, Ri, Zo & Rot if Rs=600Ω. RI=800Ω. The h-parameters are hice.1.Khc=2.6x10-4.hfc=50,hoc=25μA/V. Compute AI, AV, Ri, Zo & Rot if Rs=600Ω. RI=800Ω. The h-parameters are hice.1.Khc=	2	$R_s=800\Omega$. The load impedance RL=2k Ω . The h-parameters are $h_{ib}=22~\Omega$	Understand	CAEC004.01
A CE amplifier is driven by voltage source with internal resistance Re-600Ω R.I.=1200Ω. The h-parameters are hie=1.1K,hre=2.510 (a)exact analysis (b) Approximate model. Calculate AI, AV, RI, Zo & Rot using (a)exact analysis (b) Approximate analysis. Draw the circuit of CE amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, RI, Zo & Rot if Rs=000Ω. RI=1200Ω. The h-parameters are hie=1.1K,hre=2.5*10-4.hfe=50.hoe=24μΛV. Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, RI, Zo & Rot if Rs=000Ω. RI=2000Ω. The h-parameters are hie=1.1K,hre=2.5*10-4.hfe=50.hoe=24μΛV. Draw the circuit of CC amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, RI, Zo & Rot if Rs=500Ω. RI=2000Ω. The h-parameters are hie=1.1K,hre=2.6*10-4.hfe=50.hoe=25μΛV. A CE amplifier with emitter resistor RE=800Ω. RL=10.6 (Calculate AI, AV, RI, Zo & Rot if Rs=500Ω). Braw the circuit of CE amplifier. Draw it's equivalent circuit using Approximate model if permissible. Draw the circuit of CE amplifier with emitter resistor RE. Draw it's equivalent circuit using Approximate model if permissible. Draw the circuit of CE amplifier with emitter resistor RE. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, RI, Zo & RO in the collector circuit. The h-parameters are hie=1.1K, hre=2.4*10-4.hfe=50.hoe=25μΛV. Compute AI, AV, RI, Zo & RO in the collector circuit. The h-parameters are hie=1.1K, hre=2.4*10-4.hfe=50.hoe=25μΛV. RI-1000Ω, RE=800Ω. The h-parameters are hie=1.1K, hre=2.4*10-4.hfe=50.hoe=25μΛV. RI-1000Ω R	3	A CC amplifier is driven by voltage source with internal resistance Rs= 800Ω . The load impedance RL= $2k$ Ω . The h-parameters are hic=1.1K, hrc=1,hfc=-51,hoc= 25μ A/V. Compute AI, AV, AIs, Ri, Zo &	Understand	CAEC004.01
Draw the circuit of CE amplifier. Draw it's equivalent circuit using R=1000Ω. The h-parameters are hie=1.1K,hre=2.5*10-4.hfe=50,hoe=24µAV. Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=900Ω. The h-parameters are hie=1.1K,hre=2.5*10-4.hfe=50.hoe=24µAV. Draw the circuit of CC amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=500Ω. The h-parameters are hie=1.1K,hre=2.5*10-4.hfe=50.hoe=24µAV. Draw the circuit of CC amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=500Ω. RI=2000Ω. The h-parameters are hie=1.1K,hre=2.6*10-0. The h-parameters are hie=1.1K,hre=2.6*10-0. The h-parameters are hie=1.1K,hre=50.hoe=25µAV. Compute AI, AV, AIS, Ri, Rot. Use the Approximate model if permissible. Draw the circuit using Approximate model. Calculate AI, AV, Ri, AV, AIS, Ri, Rot. Use the Approximate model. Calculate AI, AV, Ri, AV, AIS, Ris, Rot. Use the Approximate model. Calculate AI, AV, Ri, AV, AIS, Ris, Rot. Use the Parameters are hie=1.2K,hre=3*10-4.hfe=50.hoe=25µAV. Draw the circuit of CE amplifier with emitter resistor RE-800Ω. The h-parameters are hie=1.2K,hre=3*10-4.hfe=50.hoe=25µAV. Compute AI, AV, Ri. Use the Exact model.	4	A CE amplifier is driven by voltage source with internal resistance $Rs=600\Omega$, $RL=1200\Omega$. The h-parameters are hie=1.1K,hre=2.5x10-4,hfe=50,hoe=25 μ A/V. Compute AI,AV, AIs, Ri, Zo & Rot using	Understand	CAEC004.01
Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=9000Ω, RI=2000Ω. The h-parameters are hi=1.1K,hre=2.5*10-4,hfe=50,hoe=24µA/V. Draw the circuit of CC amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=500Ω, RI=2000Ω. The h-parameters are hi=1.1K,hre=3*10-4,hfe=54,hoe=26µA/V. A CE amplifier with emitter resistor RE=800Ω, RI=1k,Ω. The h-parameters are hi=-1.1K,hre=3*10-4,hfe=50,hoe=25µA/V. Compute AI, AV, AIs, Rot. Use the Approximate model in permissible. Draw the circuit of CE amplifier with emitter resistor RE. Draw it's equivalent circuit using Approximate model in permissible. Draw the circuit of CE amplifier with emitter resistor RE. Draw it's equivalent circuit using Approximate model in permissible. A CC amplifier with emitter resistor RE. Draw it's equivalent circuit using Approximate model in permissible. Draw the circuit of CE amplifier Report Re=800Ω. The h-parameters are hie=1.1K, hre=2.4*10-4, hfe=50,hoe=25µA/V. A CC amplifier with emitter resistor RE. Braw it's equivalent circuit the h-parameters are hie=1.1K, hre=2.4*10-4, hfe=60,hoe=25µA/V. Compute AI,AV, Ri, Use the Exact model. UNIT-II HIGH FREQUENCY RESPONSE OF AMPLIFIER PART-A(SHORT ANSWER QUESTIONS) 1 State how an emitter follower behaves at high frequencies. 2 State how the hybrid – π parameters vary with respect to I _c . 3 What is the relationship between f, and f _i ? Discuss the significance of f _i . 4 Draw simplified high frequency model of CE amplifier. PART-A(SHORT ANSWER QUESTIONS) The parameters are hie=1.1K, hre=2.4*10-4, hfe=50,hoe=25µA/V. Compute AI,AV, Ri, Zo & Remember CAEC002 Write the hybrid-π conductance equations of common emitter transistor. Remember CAEC002 Boefine I ₁ , f ₁ and f ₀ . Write the expression for upper 3-dB frequency of a single stage CE amplifier. Remember CAEC002 Write the expression for current gain for a CE amplifier with o/p short circuit. Write the express	5	Draw the circuit of CE amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs= 1000Ω , RL= 1200Ω . The h-parameters are hie= 1.1 K,hre= $2.5*10$ -	Understand	CAEC004.01
Draw the circuit of CC amplifier. Draw it's equivalent circuit using proximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=500Ω, RI=9000Ω. The h-parameters are hie=1.1K,hre=2.6*10-4.hfe=54,hoe=26µA/V.	6	Draw the circuit of CB amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=900Ω, RL=2000Ω. The h-parameters are hie=1.1K,hre=2.5*10-	Understand	CAEC004.01
A CE amplifier with emitter resistor RE=800Ω , RL=1k Ω. The h- parameters are hie=1.1k,hre=5*10·4,hfe=50,hoe=25μA/V. Compute Al, AV, Als, Ri, Rot . Use the Approximate model if permissible. Draw the circuit of CE amplifier with emitter resistor RE. Draw it's quivalent circuit using Approximate model. Calculate Al, AV, Ri, Zo & Rot if Rs=600Ω, RL=1000Ω, RE=800Ω. The h-parameters are hie=1.2k,hre=3*10·4, hfe=50, hoe=25μA/V. A CC amplifier with emitter resistor RE=800Ω in the collector circuit. The h-parameters are hie=1.1k, hre=2.4*10- 4,hfe=60,hoe=25μA/V. Compute Al,AV, Ri . Use the Exact model. **UNIT-II** HIGH FREQUENCY RESPONSE OF AMPLIFIER* PART-A(SHORT ANSWER QUESTIONS) 1 State how an emitter follower behaves at high frequencies. 2 State how the hybrid - π parameters vary with respect to Ic. 3 What is the relationship between f₁ and f₂? Discuss the significance of f₂. 4 Draw simplified high frequency model of CE amplifier. Swite the hybrid-π conductance equations of common emitter transistor. 6 How does gm and Cc vary with Icl. Vcg and T. Define the gain bandwidth product of common emitter transistor. 8 Show that in Hybrid - π model, the diffusion capacitance is proportional to the emitter bias current. 9 Define f₂, f₁ and f₂. Write the expression for upper 3-dB frequency of a single stage CE amplifier. 2 Write the expression for current gain for a CE amplifier with o/p short circuit. Write the expression for current gain for a CE amplifier with o/p short circuit. Write the expression for current gain for a CE amplifier with o/p short circuit. Write the expression for current gain for a CE amplifier with o/p short circuit. Write the expression for current gain for a CE amplifier with o/p short circuit. Write the expression for current gain for a CE amplifier with o/p short circuit. Write the expression for current gain for a CE amplifier with o/p short circuit. Write the expression for current gain for a CE amplifier with o/p short circuit. PART-B (LONG ANSWER QUESTIONS) (a)Draw th	7	Draw the circuit of CC amplifier. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=500Ω, RL=2000Ω. The h-parameters are hie=1.1K,hre=2.6*10-	Understand	CAEC004.01
Draw the circuit of CE amplifier with emitter resistor RE. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs=600Ω, RL=1000Ω, RE=800Ω. The h-parameters are hie=1.2K,hre=3*10-4, hfe=50, hoe=25μA/V. A CC amplifier with emitter resistor RE=800Ω, Rc=400 Ω in the collector circuit. The h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The collector circuit is the h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The collector circuit is the h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The collector circuit is the h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The collector circuit is the h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The collector circuit is the h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The collector circuit is the h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The collector circuit is the h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The collector circuit is the h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The collector circuit is the parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The first h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The first h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. The first h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. CAEC004.	8	A CE amplifier with emitter resistor RE= 800Ω , RL= $1k\Omega$. The h-parameters are hie= $1.1K$,hre= $5*10-4$,hfe= 50 ,hoe= 25μ A/V. Compute	Understand	CAEC004.01
A CC amplifier with emitter resistor RE=800Ω , Rc=400 Ω in the collector circuit. The h-parameters are hie=1.1K, hre=2.4*10-4,hfe=60,hoe=25μA/V. Compute AI,AV, Ri . Use the Exact model. UNIT-II	9	Draw the circuit of CE amplifier with emitter resistor RE. Draw it's equivalent circuit using Approximate model. Calculate AI, AV, Ri, Zo & Rot if Rs= 600Ω , RL= 1000Ω , RE= 800Ω . The h-parameters are	Understand	CAEC004.01
HIGH FREQUENCY RESPONSE OF AMPLIFIER PART-A(SHORT ANSWER QUESTIONS) 1 State how an emitter follower behaves at high frequencies. Remember CAEC002 2 State how the hybrid − π parameters vary with respect to I _c . Remember CAEC002 3 What is the relationship between f _τ and f _β ? Discuss the significance of f _τ . Understand CAEC002 4 Draw simplified high frequency model of CE amplifier. Remember CAEC002 5 Write the hybrid-π conductance equations of common emitter transistor. Remember CAEC002 6 How does g _m and C _e vary with I _C , V _{CE} and T. Understand CAEC002 7 Define the gain bandwidth product of common emitter amplifier in terms of high frequency parameters. Remember CAEC002 8 Show that in Hybrid − π model, the diffusion capacitance is proportional to the emitter bias current. Remember CAEC002 10 Write the expression for upper 3-dB frequency of a single stage CE amplifier. Remember CAEC002 11 Define hybrid −π parameters. Remember CAEC002 12 Write the expression for current gain for a CE amplifier with o/p short circuit. 13 Write the expression for current gain for a CE amplifier with resistive load Remember PART-B (LONG ANSWER QUESTIONS) (a)Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain. Understand CAEC004.	10	A CC amplifier with emitter resistor RE= 800Ω , Rc= 400Ω in the collector circuit. The h-parameters are hie=1.1K, hre= $2.4*10$ -	Understand	CAEC004.01
PART-A(SHORT ANSWER QUESTIONS) State how an emitter follower behaves at high frequencies. Remember CAEC002				
1 State how an emitter follower behaves at high frequencies. Remember CAEC002 2 State how the hybrid – π parameters vary with respect to I_c . Remember CAEC002 3 What is the relationship between f_τ and f_θ ? Discuss the significance of f_τ . Understand CAEC002 4 Draw simplified high frequency model of CE amplifier. Remember CAEC002 5 Write the hybrid- π conductance equations of common emitter transistor. Remember CAEC002 6 How does g_m and C_e vary with $ I_C $, V_{CE} and T . Understand CAEC002 7 Define the gain bandwidth product of common emitter amplifier in terms of high frequency parameters. Remember CAEC002 8 Show that in Hybrid – π model, the diffusion capacitance is proportional to the emitter bias current. Remember CAEC002 9 Define f_θ , f_τ and f_α . Remember CAEC002 10 Write the expression for upper 3-dB frequency of a single stage CE amplifier. Remember CAEC002 11 Define hybrid – π parameters. Remember CAEC004 12 Write the expression for current gain for a CE amplifier with resistive load Remember CAEC004 13		HIGH FREQUENCY RESPONSE OF AMPLIFIE	R	
2 State how the hybrid $-\pi$ parameters vary with respect to I_c . Remember CAEC002 3 What is the relationship between f_τ and f_θ ? Discuss the significance of f_τ . Understand CAEC002 4 Draw simplified high frequency model of CE amplifier. Remember CAEC002 5 Write the hybrid- π conductance equations of common emitter transistor. Remember CAEC002 6 How does g_m and C_e vary with $ I_C $, V_{CE} and T . Understand CAEC002 7 Define the gain bandwidth product of common emitter amplifier in terms of high frequency parameters. Remember CAEC002 8 Show that in Hybrid – π model, the diffusion capacitance is proportional to the emitter bias current. Remember CAEC002 9 Define f_θ , f_T and f_{CL} Remember CAEC002 10 Write the expression for upper 3-dB frequency of a single stage CE amplifier. Remember CAEC002 11 Define hybrid – π parameters. Remember CAEC002 12 Write the expression for current gain for a CE amplifier with o/p short circuit. Remember CAEC004 13 Write the expression for current gain for a CE amplifier with resistive load Remember CAEC004		PART-A(SHORT ANSWER QUESTIONS)		
3 What is the relationship between f₁ and f₃? Discuss the significance of f₁. 4 Draw simplified high frequency model of CE amplifier. 5 Write the hybrid-π conductance equations of common emitter transistor. 6 How does gm and C₂ vary with Ic , VCE and T. 7 Define the gain bandwidth product of common emitter amplifier in terms of high frequency parameters. 8 Show that in Hybrid − π model, the diffusion capacitance is proportional to the emitter bias current. 9 Define f₃, f₁ and fα. 10 Write the expression for upper 3-dB frequency of a single stage CE amplifier. 11 Define hybrid −π parameters. 12 Write the expression for current gain for a CE amplifier with o/p short circuit. 13 Write the expression for current gain for a CE amplifier with resistive load 14 PART-B (LONG ANSWER QUESTIONS) (a)Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain. 15 Understand CAEC002. 16 Remember CAEC002. 17 CAEC002. 18 Remember CAEC002. 19 Remember CAEC002. 10 Remember CAEC002. 10 Remember CAEC002. 11 Define hybrid −π parameters. 12 Remember CAEC002. 13 CAEC004. 14 CAEC004. 15 CAEC004. 16 CAEC004. 17 CAEC004. 18 CAEC004. 19 CAEC004. 10 CAEC004. 10 CAEC004. 10 CAEC004. 11 CAEC004. 12 CAEC004. 13 CAEC004. 14 CAEC004. 15 CAEC004. 16 CAEC004. 17 CAEC004. 18 CAEC004. 19 CAEC004. 10 CAEC004. 10 CAEC004. 10 CAEC004. 10 CAEC004.	1	State how an emitter follower behaves at high frequencies.	Remember	CAEC002.06
4Draw simplified high frequency model of CE amplifier.RememberCAEC0025Write the hybrid- π conductance equations of common emitter transistor.RememberCAEC0026How does gm and Ce vary with Ic , VcE and T.UnderstandCAEC0027Define the gain bandwidth product of common emitter amplifier in terms of high frequency parameters.RememberCAEC0028Show that in Hybrid – π model, the diffusion capacitance is proportional to the emitter bias current.RememberCAEC0029Define f _β , f _T and f _α .RememberCAEC00210Write the expression for upper 3-dB frequency of a single stage CE amplifier.RememberCAEC00211Define hybrid – π parameters.RememberCAEC00212Write the expression for current gain for a CE amplifier with o/p short circuit.RememberCAEC00413Write the expression for current gain for a CE amplifier with resistive loadCAEC004CAEC00413Write the expression for current gain for a CE amplifier with resistive loadCAEC004CAEC00413Oracle of the complex of the com	2	State how the hybrid $-\pi$ parameters vary with respect to I_c .	Remember	CAEC002.06
5Write the hybrid- π conductance equations of common emitter transistor.RememberCAEC0026How does gm and Ce vary with Ic , VcE and T.UnderstandCAEC0027Define the gain bandwidth product of common emitter amplifier in terms of high frequency parameters.RememberCAEC0028Show that in Hybrid – π model, the diffusion capacitance is proportional to the emitter bias current.RememberCAEC0029Define f_{β} , f_{T} and f_{α} .RememberCAEC00210Write the expression for upper 3-dB frequency of a single stage CE amplifier.RememberCAEC00211Define hybrid – π parameters.RememberCAEC00212Write the expression for current gain for a CE amplifier with o/p short circuit.RememberCAEC00413Write the expression for current gain for a CE amplifier with resistive loadRememberCAEC00413Write the expression for current gain for a CE amplifier with resistive loadCAEC00414Approximately the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain.UnderstandCAEC004	3	What is the relationship between $f_{\scriptscriptstyle T}$ and $f_{\scriptscriptstyle \beta}$? Discuss the significance of $f_{\scriptscriptstyle T}$.	Understand	CAEC002.05
6How does gm and C_e vary with $ I_C $, V_{CE} and T .UnderstandCAEC0027Define the gain bandwidth product of common emitter amplifier in terms of high frequency parameters.RememberCAEC0028Show that in Hybrid – π model, the diffusion capacitance is proportional to the emitter bias current.RememberCAEC0029Define f_{β} , f_{T} and f_{C} RememberCAEC00210Write the expression for upper 3-dB frequency of a single stage CE amplifier.RememberCAEC00211Define hybrid – π parameters.RememberCAEC00212Write the expression for current gain for a CE amplifier with o/p short circuit.RememberCAEC00413Write the expression for current gain for a CE amplifier with resistive loadRememberCAEC00413PART-B (LONG ANSWER QUESTIONS)CAEC004(a)Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain.UnderstandCAEC004	4	Draw simplified high frequency model of CE amplifier.		CAEC002.05
7Define the gain bandwidth product of common emitter amplifier in terms of high frequency parameters.RememberCAEC0028Show that in Hybrid – π model, the diffusion capacitance is proportional to the emitter bias current.RememberCAEC0029Define f_{β} , f_{T} and f_{C} RememberCAEC00210Write the expression for upper 3-dB frequency of a single stage CE amplifier.RememberCAEC00211Define hybrid – π parameters.RememberCAEC00212Write the expression for current gain for a CE amplifier with o/p short circuit.RememberCAEC00413Write the expression for current gain for a CE amplifier with resistive loadCAEC004CAEC00413Write the expression for current gain for a CE amplifier with resistive loadCAEC004CAEC00413One of the parameters of the current gain for a CE amplifier with resistive loadCAEC004CAEC00413One of the parameter of th	5	Write the hybrid- π conductance equations of common emitter transistor.	Remember	CAEC002.06
7 of high frequency parameters. Remember CAEC002 8 Show that in Hybrid – π model, the diffusion capacitance is proportional to the emitter bias current. Remember CAEC002 9 Define f_{β} , f_{T} and f_{α} . Remember CAEC002 10 Write the expression for upper 3-dB frequency of a single stage CE amplifier. Remember CAEC002 11 Define hybrid – π parameters. Remember CAEC002 12 Write the expression for current gain for a CE amplifier with o/p short circuit. Remember CAEC004 13 Write the expression for current gain for a CE amplifier with resistive load CAEC004 Remember PART-B (LONG ANSWER QUESTIONS) (a)Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain. Understand CAEC004	6	How does g_m and C_e vary with $ I_C $, V_{CE} and T .	Understand	CAEC002.06
to the emitter bias current. Remember Define f_{β} , f_{T} and f_{α} . Remember Write the expression for upper 3-dB frequency of a single stage CE amplifier. Remember CAEC002. Write the expression for current gain for a CE amplifier with o/p short circuit. Write the expression for current gain for a CE amplifier with resistive load Remember CAEC004.	7	of high frequency parameters.	Remember	CAEC002.06
9Define f_{β} , f_{T} and f_{C} RememberCAEC00210Write the expression for upper 3-dB frequency of a single stage CE amplifier.RememberCAEC00211Define hybrid $-\pi$ parameters.RememberCAEC00212Write the expression for current gain for a CE amplifier with o/p short circuit.RememberCAEC00413Write the expression for current gain for a CE amplifier with resistive loadCAEC004PART-B (LONG ANSWER QUESTIONS)RememberCAEC0041(a)Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain.UnderstandCAEC004	8		Remember	CAEC002.06
10 Write the expression for upper 3-dB frequency of a single stage CE amplifier. CAEC002. 11 Define hybrid –π parameters. Remember CAEC002. 12 Write the expression for current gain for a CE amplifier with o/p short circuit. CAEC004. 13 Write the expression for current gain for a CE amplifier with resistive load Remember CAEC004. 14 PART-B (LONG ANSWER QUESTIONS) CAEC004. 15 CAEC004. CAEC004. 16 CAEC004. CAEC004. 17 CAEC004. CAEC004. 18 CAEC004. CAEC004. 19 CAEC004. CAEC004. 10 CAEC004. CAEC004. 10 CAEC004. CAEC004. 11 CAEC004. CAEC004. 12 CAEC004. CAEC004. 13 CAEC004. CAEC004. 14 CAEC004. CAEC004. 15 CAEC004. CAEC004. 16 CAEC004. CAEC004. 17 CAEC004. CAEC004. 18 CAEC004. CAEC004. 19 CAEC004. CAEC004. 10 CAEC004. CAEC004. CAEC004. 10 CAEC004. CAEC004. CAEC004. 10 CAEC004. CAEC004	9		Remember	CAEC002.06
Write the expression for current gain for a CE amplifier with o/p short circuit. 13 Write the expression for current gain for a CE amplifier with resistive load Remember PART-B (LONG ANSWER QUESTIONS) (a)Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain. CAEC004. CAEC004. CAEC004. CAEC004.	10	Write the expression for upper 3-dB frequency of a single stage CE	Remember	CAEC002.05
Write the expression for current gain for a CE amplifier with o/p short circuit. Write the expression for current gain for a CE amplifier with resistive load PART-B (LONG ANSWER QUESTIONS) (a)Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain. CAEC004. CAEC004. CAEC004. CAEC004. CAEC004.	11	*	Remember	CAEC002.06
PART-B (LONG ANSWER QUESTIONS) (a)Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain. Understand CAEC004.	12	Write the expression for current gain for a CE amplifier with o/p short circuit.	Remember	CAEC004.06
(a)Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and Obtain the voltage gain. CAEC004. CAEC004.	13	load	Remember	CAEC004.06
at high frequencies and Obtain the voltage gain. Understand CAEC004.				
	1	at high frequencies and Obtain the voltage gain.	Understand	CAEC004.06 CAEC004.05

S. No	Questions	Blooms Taxonomy Level	Course Learning Outcome
2	 (a) Explain why the 3-dB frequency for current gain is not the same as f_H for voltage gain. (b) Derive the expression for the CE short-circuits current gain Ai with resistive load. 	Understand	CAEC004.06
3	Draw the hybrid-pi model, explain and derive the conductance and capacitances.	Remember,	CAEC004.06
4	 (a) Draw the hybrid-π equivalent of a CE transistor valid for high frequency and (b)Explain significance of each parameter. 	Understand	CAEC004.05
5	(a) Derive the expression of gain bandwidth product for voltage.(b) Derive the expression of gain bandwidth product for current.	Understand	CAEC004.06
6	 (a) Prove that (i) h_{fe}=g_{m*} r_{b'e} for a Hybrid -π model of CE amplifier. (b) How does a C_e and C_c vary with I_c and V_{CE} . (c) How does gm vary with I_c and V_{CE} , T 	Understand	CAEC004.06
7	Draw the high frequency equivalent circuit of a BJT and explain the same.	Remember	CAEC004.05
8	Give the typical values of various Hybrid- π parameters.	Remember	CAEC004.06
9	Derive the expressions for Hybrid - π parameters., C_e , r_{bb} , $r_{b'e}$, C_c	Understand	CAEC004.06
10	Derive the expression for the Hybrid - π t parameters gm, rce, Ce and rb'e, gce.	Understand	CAEC004.06
11	Explain about Hybrid - π capacitances. How do Hybrid - π parameters vary with temperature.	Understand	CAEC004.06
	PART-C (PROBLEM SOLVING AND CRITICAL THINKIN	G QUESTIO	NS)
1	A CE amplifier with the load impedance RL=2k Ω . The hybrid- π parameters are rb'e=1K Ω , Ce=100pF,hfe=50,CC =3pF,gm=50mS. Draw the high frequency hybrid- π circuit neglecting R1, R2, rbb'. Calculate the time constants of output & input circuits & fH & AI at 100 KHz.	Understand	CAEC004.06
2	At Ic=1mA & VCE=10V a certain transistor has Cc= Cb'c=3pF and wt=500Mrad/sec. Calculate rb'e,Ce,gm & wβ.	Understand	CAEC004.06
3	Short circuit current gain of CE amplifier is 25 at frequency=2Mhz. If fβ=200Khz.Calculate fT, hfe, AI at frequency of 10Mhz & 100 Mhz.	Understand	CAEC004.06
4	A high frequency CE amplifier with the Rs=0 calculate fH if load impedance RL=0k Ω & RL=1k Ω . Assume typical hybrid- π parameters.	Understand	CAEC004.06
5	A high frequency CE amplifier with the Rs=1K Ω calculate fH , AVSlow and AVShigh if load impedance RL=0k Ω & RL=1k Ω . Assume typical hybrid- π parameters.	Understand	CAEC004.06
6	A CE amplifier is measured to have a bandwidth of 4Mhz with the RL=600 Ω calculate Rs that will give the required bandwidth. Assume typical hybrid- π parameters rbb'=100 Ω , ,hfe=100,CC =2pF, gm=50mS, fT=300Mhz.	Understand	CAEC004.06
7	A BJT has the following parameters measured at IC=1mA, ,hie=3k , hfe=100, CC =2pF , Ce =18pF ,fT=4Mhz. Find , rbb', rb'e,gm & fH for RL=1K Ω .	Understand	CAEC004.06
8	The hybrid- π parameters are rb'e=1K Ω , rb'c=4M Ω , rce=80K Ω , rbb'=100 Ω ,Ce=100pF hfe=50,CC =3pF,gm=50mS. Find upper 3db frequency of current gain AI, AVS.	Understand	CAEC004.06
9	For a single stage CE amplifier Find the value of Rs that will give 3db frequency fH which is twice the value obtained with Rs= ∞ (ideal current source). rb'e=1K Ω , Ce=100pF, hfe=50,CC =3pF, gm=50mS, rbb'=100 Ω .	Understand	CAEC004.06
10	The following low frequency parameters are given at 3000K, Ic=10mA, Vce=8V, hie=500 Ω , hre=10-4,hfe=100,hoe=2*10-4A/V. Calculate the values of hybrid- π parameters.	Understand	CAEC004.06

		Blooms	Course
S. No	Questions	Taxonomy	Learning
		Level	Outcome
	UNIT-III		
	MULTI STAGE AMPLIFIERS AND TUNED AMPI	LIFIERS	
	PART-A(SHORT ANSWER QUESTIONS)		
1	Compute the overall lower cut-off frequency of an identical two stage cascade of amplifier with individual lower cut-off frequency given 432 Hz.	Understand	CAEC004.07
2	List out the special features of Darlington pair and cascode amplifiers. State the areas where these amplifiers are used?	Remember	CAEC004.08
3	Differentiate between various coupling methods.	Remember	CAEC004.07
4	In a cascade amplifier, what is the coupling method which is capable of providing highest gain?	Remember	CAEC004.07
5	If 5-stages of single tuned amplifier are cascaded with each circuit resonant frequency of 25KHz. Find the overall band width.	Understand	CAEC004.08
6	In a multistage amplifier, what is the coupling method required to amplify dc signals?	Remember	CAEC004.07
7	Write the expression for lower $3 - dB$ frequency of an $n - stage$ amplifier with non – interacting stages.	Remember	CAEC004.07
8	Two stages of amplifier are connected in cascade. If the first stage has a decibel gain of 40 and second stage has an absolute gain of 20 then what is the overall gain in decibels.	Understand	CAEC004.08
9	Why the overall gain of multistage amplifier is less than the product of gains of individual stages.	Understand	CAEC004.08
10	What are the main characteristics of a Darlington amplifier?	Understand	CAEC004.08
1	Why direct coupling is not suitable for amplification of high frequency?	Understand	CAEC004.07
2	Mention the salient features of tuned amplifiers.	Remember	CAEC004.09
3	List out the applications of tuned amplifier.	Remember	CAEC004.09
4	Give the reason for using two tuned circuits are used in double tuned amplifier	Understand	CAEC004.09
5	Discuss the necessity of stabilization circuits in tuned amplifiers.	Understand	CAEC004.09
6	Define the expression for effective bandwidth of cascaded tuned amplifier.	Remember	CAEC004.09
7	Classify tuned amplifier based on the input signal applied, no of tank circuits and based on coupling	Understand	CAEC004.09
8	Give the reasons why parallel resonance circuits are used in tuned amplifiers?	Understand	CAEC004.09
9	Write the expression for voltage gain for a capacitive coupled single tuned amplifier and also gain at resonance?	Remember	CAEC004.09
10	Explain Why transformer coupling is not used in the initial stage of a multistage amplifier?	Understand	CAEC004.09
11	Define a tuned amplifier. State how its frequency response is different from an un tuned amplifier?	Understand	CAEC004.09
	PART-B (LONG ANSWER QUESTIONS)		
1	Draw and explain the two stage amplifier with Darlington connection. Give the advantages of this circuit What are the drawbacks of a Darlington amplifier.	Remember	CAEC004.08
2	Compare emitter follower and Darlington emitter follower configurations in respect of i. current gain ii. input impedance iii. voltage gain iv. output impedance.	Understand	CAEC004.08
3	Compare the different types of coupling methods used in multistage amplifiers.	Remember	CAEC004.07
4	Sketch two RC-coupled CE transistor stages. Show the middle and low frequency model for one stage. Write the expressions for current gains	Remember	CAEC004.07
5	Draw the circuit diagram of cascode amplifier with and without biasing circuit. What are the advantages of this circuit?	Remember	CAEC004.08

S. No	Questions	Blooms Taxonomy Level	Course Learning Outcome
1	Explain about different methods of Inter stage coupling in amplifiers. When 2- stages of identical amplifiers are cascaded, obtain the expressions for overall voltage gain, current gain and power gain.	Understand	CAEC004.08
2	a. Draw the circuit diagram of a tuned primary amplifier. Derive expression for its voltage gain at resonance and bandwidth.b. Differentiate between single tuned and double tuned amplifiers.	Understand	CAEC004.09
3	a. Derive the expression for quality factor of a single tuned inductively Coupled amplifier.b. Derive the expression for current gain to the tapped tuned circuit	Understand	CAEC004.09
4	a. List possible configurations of tuned amplifiers.b. Draw and explain the circuit diagram of a single tuned capacitance coupled amplifier. Explain its operation.	Remember	CAEC004.09
5	Derive the expressions for Bandwidth and Q-factor of single tuned, capacitive coupled amplifiers. List the assumptions made for the derivation.	Understand	CAEC004.09
6	Draw the circuit of double tuned transformer coupled amplifier and the working of it in detail and Discuss the nature of response of the amplifier for different values of $KQ = 1$, $KQ > 1$ and $KQ < 1$.	Understand	CAEC004.09
7	Draw the circuit diagram of a tapped single tuned capacitive coupled amplifier and explain its operation and derive A/A _{res} and plot the frequency response of it.	Understand	CAEC004.09
8	Using the circuit diagram and equivalent circuit of inductively coupled single stage tuned amplifier. Derive expressions bandwidth which interrelated to the circuit component values and quality factor of the tuned circuit and resonant frequency.	Understand	CAEC004.09
PAR'	Γ-C (PROBLEM SOLVING AND CRITICAL THINKING QUES	TIONS)	
1	A Darlington emitter follower circuit uses two identical transistors having the following h-parameters hie=1.1K, hre=2.5*10-4,hfe=60,hoe=20 μ A/V. RE=2K Ω , RS=500 Ω Compute overall A I & AV, Ri, Ro & Rot .	Understand	CAEC004.08
2	A Darlington emitter follower circuit uses two identical transistors having the following h-parameters hie=1.1K, hre=2.2*10-4,hfe=50,hoe=20 μ A/V. RE2=3K Ω , RS=400 Ω , . R1=90K Ω , R2=10K Ω Compute overall A I & AV, Ri, Ro & Rot .	Understand	CAEC004.08
3	A CE-CC Amplifier uses RS=1K Ω , . RC1= RE2=4K Ω . The h-parameters hie=1.2K, hre=5*10-4,hfe=50,hoe=25 μ A/V, hic=1.2 Ω ,hrc=1,hfc=-51,hoc=25 μ A/V. Compute individual & overall A I & AV, Ri, Ro & Rot .	Understand	CAEC004.08
4	A CE-CB (cascode) Amplifier uses RS=1K Ω , RC1=25K Ω , RE=100 Ω , R3=200K Ω R4=10K Ω . The h-parameters hie=2K, hre=0,hfe=100,hoe=0. Compute individual & overall A I & AV, Ri, Ri', Ro & Rot .	Understand	CAEC004.08
	A CE-CE(cascade) Amplifier uses RS=1K Ω , . RC1=15K Ω , RE1=100 Ω		
1	, RC2=4K Ω , RE2=33 $\hat{0}\Omega$,R1=200K Ω R2=10K Ω for the first stage,for second stage R1=47K Ω R2=4.7K Ω . The h-parameters hie=1.2K, hre=2.5*10-4,hfe=50,hoe=25*10-6 A/V. Compute individual & overall A I & AV, Ri, Ri', Ro& Rot .	Understand	CAEC004.08
2	In a tuned amplifier circuit C=500PF, L=20µH, RL=1.5K and the transistor has hfe=50 and input resistance of 200. The coil used has Q factor=30. Calculate i. resonant frequency of the tuned circuit ii. impedance of the tuned circuit iii. Voltage gain of the stage.	Understand	CAEC004.08
3	A single tuned transistor amplifier is used to amplifier modulated RF carrier of 500 KHz and bandwidth of 20KHz. The circuit has a total output resistance Rt=40K and output capacitance Co=50PF. Calculate values of inductance and capacitance of the tuned circuit.	Understand	CAEC004.08
4	In a tuned amplifier circuit C=400PF, L=30 μ H RL=1.5K and the transistor has hfe=60 and input resistance of 200. The coil used has Q factor = 30. Calculate i. f _r of the tuned circuit ii. iii. impedance of the tuned circuit	Understand	CAEC004.08

S. No	Questions iii. Voltage gain of the stage.	Blooms Taxonomy Level	Course Learning Outcome
	UNIT-IV		
	FEEDBACK AMPLIFIERS & OSCILLATOR	RS	
	PART-A(SHORT ANSWER QUESTIONS)		
1	What is feedback and what are feedback amplifiers.	Remember	CAEC004.12
2	What is meant by positive and negative feedback.	Remember	CAEC004.12
3	What are the advantages and disadvantages of negative feedback.	Understand	CAEC004.12
4	Differentiate between voltage and current feedback in amplifiers.	Understand	CAEC004.12
5	Define sensitivity.	Remember	CAEC004.12
6	Define De-sensitivity.	Remember	CAEC004.12
7	What are the conditions for sustained oscillator or what is Barkhausen Criterion.	Remember	CAEC004.10
8	What is Oscillator circuit.	Understand	CAEC004.10
9	What are the classifications of Oscillators.	Understand	CAEC004.10
10	What are the types of feedback oscillators.	Understand	CAEC004.11
11	Define Piezo-electric effect.	Remember	CAEC004.11
12	Draw the equivalent circuit of crystal oscillator.	Understand	CAEC004.11
13	What is Miller crystal oscillator? Explain its operation. State the frequency for RC phase shift oscillator.	Remember Remember	CAEC004.11 CAEC004.11
15	Give the topology of current amplifier with current shunt feedback.	Remember	CAEC004.11 CAEC004.13
16	What are gain margin and phase margin.	Remember	CAEC004.13
17	What is the minimum value of he for the oscillations in transistorized RC Phase shift oscillator.	Remember	CAEC004.11
18	What is LC oscillator.	Remember	CAEC004.11
19	Draw the circuit of Clapp oscillator.	Remember	CAEC004.11
20	How does an oscillator differ from an amplifier.	Understand	CAEC004.10
21	Name two low frequency oscillators.	Remember	CAEC004.10
22	Calculate the frequency of oscillation for the Clapp oscillator with c1=0.1μf, c2=1μf, c3=100pF and L=470μH.	Understand	CAEC004.11
	PART-B (LONG ANSWER QUESTIONS)		
1	Explain the concept of feedback as applied to electronic amplifier circuits.	Understand	CAEC004.12
2	What are the advantages and disadvantages of positive and negative feedback.	Understand	CAEC004.12
3	With the help of a general block schematic diagram explain the term feedback.	Understand	CAEC004.12
4	What type of feedback is used in electronic amplifiers? What are the advantages of this type of feedback. Prove each one mathematically.	Understand	CAEC004.12
5	Give the equivalent circuits, and characteristics of ideal and practical amplifiers of the following types (i) Voltage amplifier, (ii) Current amplifiers, (i i i) Trans-resistance amplifier, (iv) Trans-conductance amplifier.	Understand	CAEC004.12
6	Derive the expression for the input resistance with feedback R _{if} and output resistance with feedback R _{of} in the case of (a) Voltage series feedback amplifier. (b) Voltage shunt feedback amplifier. (c) Current series feedback amplifier. (d) Current shunt feedback amplifier	Remember	CAEC004.13
7	In which type of amplifier the input impedance increases and the output impedance decreases with negative impedance? Prove the same drawing equivalent circuit.	Remember	CAEC004.13
8	Draw the circuit for Voltage series amplifier and justify the type of feedback.	Understand	CAEC004.13
9	Derive the expressions for Av, Ri and Ro for the circuit.	Understand	CAEC004.13
10	Draw the circuit for Current series amplifier and justify the type of feedback.	Understand	CAEC004.13
11	Derive the expressions for Av, Ri and Ro for the circuit.	Understand	CAEC004.13

S. No	Questions	Blooms Taxonomy Level	Course Learning Outcome
12	Draw the circuit for Voltage shunt amplifier and justify the type of feedback.	Understand	CAEC004.13
13	Derive the expressions for Av, Ri and Ro for the series – shunt feed back amplifier circuit.	Understand	CAEC004.13
14	Draw the circuit for Current shunt amplifier and justify the type of feedback.	Understand	CAEC004.13
15	Derive the expressions for Av, Ri and Ro for series – series feed back amplifier circuit.	Understand	CAEC004.13
16	Explain the basic principle of generation of oscillations in LC tank circuits. What are the considerations to be made in the case of practical L.C. Oscillator Circuits?	Understand	CAEC004.11
17	Deduce the Barkausen Criterion for the generation of sustained oscillations.	Understand	CAEC004.10
18	How are the oscillations initiated?	Understand	CAEC004.10
19	Draw the circuit and explain the principle of operation of RC phase-shift oscillator circuit. What is the frequency range of generation of oscillations? Derive the expression for the frequency of oscillations.	Understand	CAEC004.11
20	Derive the expression for the frequency of Hartely oscillators.	Understand	CAEC004.11
21	Derive the expression for the frequency of Colpitt Oscillators.	Understand	CAEC004.11
22	Derive the expression for the frequency of Wein Bridge Oscillators.	Understand	CAEC004.11
23	Derive the expression for the frequency of Crystal Oscillators.	Understand	CAEC004.11
24	Explain how better frequency stability is obtained in crystal oscillator?	Understand	CAEC004.11
25	Draw the equivalent circuit for a crystal and explain how oscillations can be generated in electronic circuits, using crystals.	Remember	CAEC004.11
26	Reason out the need for three identical R-C sections in R-C phase-shift oscillator circuits?	Understand	CAEC004.11
	PART-C (PROBLEM SOLVING AND CRITICAL THINKIN	IG QUESTIC	NS)
1	The following information is available for the generalized feedback network. Open loop voltage amplification (Av) = -100. Input voltage to the system (V,') = 1mV. Determine the closed loop voltage amplification, the output voltage, feedback voltage, input voltage to the amplifier, and type of feed back for (a) β = 0.01, (b) β = -0.005 (c) β = 0 (d) β = 0.01. Also determine the % variation in AvI resulting from 100 % increase in A, when βv = 0.01. When Δv = -100 Δv = -50.	Understand	CAEC004.13
2	An amplifier has a mid band gain of 125 and bandwidth of 250 kHz. If 4% negative feedback is introduced, find the new bandwidth and gain.	Understand	CAEC004.13
3	An amplifier with open loop voltage gain $A_v = 1000 \pm 100$ is available. It is necessary to have an amplifier where voltage gain varies by not more than \pm 0.1 % (a) Find the reverse transmission factor β of the feedback network used. (b) Find the gain with feedback.	Understand	CAEC004.13
4	An amplifier with $Av = -500$, produces 5% harmonic distortion at full output. What value of β is required to reduce the distortion to 0.1 %? What is the overall gain?	Understand	CAEC004.13
5	For a voltage series feedback amplifier Find D, Avf, Rif, Rof.	Remember	CAEC004.13

S. No	Questions	Blooms Taxonomy Level	Course Learning Outcome
	$R_{c}=4.7K\Omega$ $R_{s}=1K\Omega$ $R_{s}=1K\Omega$ $R_{s}=1K\Omega$		
6	For a voltage shunt feedback amplifier Rs=8K,Rc=3K, RB=30K,. Find D, Avf, Rif, Rof, Rmf. hie=1K,hre=0,hfe=50,hoe=0.	Remember	CAEC004.13
7	For a current series feedback amplifier R _s =1K, g _{mf} =-2mA/V. A _{vf} =-8 D=60, h _{fe} =300. Find R _e R _L R _{if} I _e Q at room temperature	Remember	CAEC004.13
8	For a current shunt feedback amplifier R_s = R' = $1K$, R_{c1} = $2.5K$, R_{c2} = 600Ω , R_B = $82K$, R_E = 50Ω . Find D, A_{vf} , R_{if} , R_{of} .	Remember	CAEC004.13

S. No	Questions	Blooms Taxonomy Level	Course Learning Outcome
	a. State three fundamental assumptions which are made in order that the expression $Af = A/(1+A\beta)$ be satisfied exactly.		
9	 b. An Amplifier has a value of Rin=4.2K, AV =220 and β=0.01. Determine the value of input resistance of the feedback amplifier. c. The amplifier in part (a) had cut-off frequencies f1=1.5KHz and 	Understand	CAEC004.13
	f2=501.5KHz before the feedback path was added. What are the new cut-off frequencies for the circuit?		
10	The gain of an amplifier is decreased to 10,000 with negative feedback from its gain of 60,000. Calculate the feedback factor .Express the amount of negative feedback in dB.	Understand	CAEC004.13
11	Calculate the gain, input impedance, output impedance of voltage series feedback amplifier having A=300, Ri=1.5K,RO=50K and β =1/12. An amplifier has mid-band gain of 125 and a bandwidth of 250KHz.	Understand	CAEC004.13
12	 i. If 4% negative feedback is introduced, find the new bandwidth and gain ii. If bandwidth is restricted to 1MHz, find the feed back ratio. 	Understand	CAEC004.13
	 An Amplifier has a mid-frequency gain of 100 and a bandwidth of 200KHz. i. What will be the new bandwidth and gain if 5% negative feedback is 	II. danstand	CAEC004 12
13	introduced? ii. What should be the amount of negative feedback if the bandwidth is to be restricted to 1MHz?	Understand	CAEC004.13
14	An RC coupled amplifier has a voltage gain of 1000. f1=50Hz, f2=200KHz and a distortion of 5% without feedback. Find the amplifier voltage gain,f1', f2' and distortion when a negative feedback is applied with feedback ratio of 0.01.	Understand	CAEC004.13
15	A Hartley oscillator is designed with $L=20\mu H$ and a variable capacitance. Find the Range of capacitance values if the frequency of oscillation is varied between 950 KHz to 2050 KHz.	Understand	CAEC004.11
16	In a transistorized Hartley oscillator the two inductances are 2mH and 20Mh while the frequency is to be changed from 950KHZ to 2050KHZ. Calculate the range over which the capacitor is to be varied.	Understand	CAEC004.11
17	A crystal has L=2H, C=0.01PF and R=2k. Its mounting capacitance is 2PF. Calculate its series and parallel resonating frequency.	Understand	CAEC004.11
18	Find the capacitor C and hie for the transistor to provide a resonating frequency of 10KHZ of a phase-shift oscillator. Assume R1=25k, R2=60k,Rc=40k, R=7.1k and hie=1.8k.	Understand	CAEC004.11
19	A crystal has L=0.1H, C=0.01PF, R=10k and CM=1PF. Find the series resonance and Q-factor.	Understand	CAEC004.11
20	A quartz crystal has the following constants. L=50mH, C1=0.02PF, R=500 and C2=12PF. Find the values of series and parallel resonant frequencies. If the external capacitance across the crystal changes from 5PF to 6PF, find the change in frequency of oscillations	Understand	CAEC004.11
	LARGE SIGNAL AMPLIFIERS		
	PART-A(SHORT ANSWER QUESTIONS)		
1	Classify large signal amplifiers based on its operating point. Distinguish these amplifiers in terms of the conversion efficiency.	Understand	CAEC004.14
2	What is the origin of crossover distortion and how it can be eliminated?	Understand	CAEC004.14
3	Derive the expression for the output current in push -pull amplifier with base current as $i_b = I_{bm} \sin wt$	Understand	CAEC004.14
4	Differentiate power amplifier with that of a normal small signal amplifier in the aspects of its construction and applications	Understand	CAEC004.14
5	What are the drawbacks of transformer coupled power amplifiers?	Understand	CAEC004.15
6	What is the origin of crossover distortion and how it can be eliminated? State the need of a heat sink for large signal amplifier and state what is a	Understand	CAEC004.15
7	thermal resistance?	Understand	CAEC004.15
8	Define the terms collector dissipation and conversion efficiency of class A power amplifier.	Remember	CAEC004.15
9	In a modified class B power amplifier cross over, how distortion can be	Understand	CAEC004.15

S. No	Questions	Blooms Taxonomy Level	Course Learning Outcome
	eliminated.		
10	Prove that in class A power amplifier if distortion is 10%. power at the load is increased by 1%. State the advantages of push pull class B power amplifier over class B	Understand	CAEC004.15
11	power amplifier.	Understand	CAEC004.15
12	Calculate the power that can be dissipated by a transistor at an ambient temperature of T_A =500C, given T_J =2300C and θ_{JA} =1000C/W.	Understand	CAEC004.15
13	The thermal resistance of a transistor is 100C/W. It is operated at TA=250C and dissipates 3W of power. Calculate the junction temperature.	Understand	CAEC004.15
14	Compare various power amplifiers with respect to conduction angle, efficiency and distortion.	Remember	CAEC004.14
15	What is a harmonic distortion? How even harmonics is eliminated using push-pull circuit?	Remember	CAEC004.15
16	List the advantages of complementary-symmetry configuration over push pull configuration.	Remember	CAEC004.15
17	State different types of heat sinks.	Remember	CAEC004.15
18	State the features of class AB power amplifier like operating point, conduction angle and power dissipation.	Remember	CAEC004.15
19	If the dissipated power at the junction is 10W, and the junction capacitance is 1250C and TA=250C then find thermal resistance between junction to ambient.	Understand	CAEC004.15
20	Define conversion efficiency of power amplifier.	Remember	CAEC004.15
21	As the temperature increases, what will happen to the base –emitter voltage of a given Transistor	Remember	CAEC004.15
22	For a class B amplifier $V_{\text{CE}(MIN)} = 2V, V_{\text{CC}} = 15V$. Find its overall efficiency.	Understand	CAEC004.15
23	Explain how distortion is reduced in class AB push-pull topology.	Understand	CAEC004.15
24	What are the two primary metrics used to describe the performance of a large signal amplifier	Understand	CAEC004.14
25	Define the parameters exhibited by a Class AB power amplifier.	Remember	CAEC004.15
26	How is phase splitting achieved in push-pull topologies that do not use transformers?	Understand	CAEC004.15
27	What is thermal runaway? Show how it can be avoided	Understand	CAEC004.15
28	Why the conversion efficiency in a transformer coupled amplifier double that of the RC coupled class A amplifier?	Understand	CAEC004.15
	PART-B (LONG ANSWER QUESTIONS) What are the different methods of clarifying electronic amplifiers? How		
1	are they classified, based on the type of coupling? Explain.	Understand	CAEC004.15
2	Compare the characteristic features of Direct coupled, resistive capacitor coupled, and Transformer coupled amplifiers.	Understand	CAEC004.15
3	Distinguish between small signal and large signal amplifiers. How are the power amplifiers classified? Describe their characteristics.	Understand	CAEC004.14
4	Derive the general expression for the output power in the case of a class A power amplifier. Draw the circuit and explain the movement of operating point on the load line for a given input signal.	Understand	CAEC004.15
5	Derive the expressions for maximum. Theoretical efficiency 'for (i) Transformer coupled (ii) Series fed amplifier what are their advantages and disadvantages.	Understand	CAEC004.15
6	Show that in the case of a class A transforms coupled amplifier, with impedance matching, the expression for voltage gain AV is given as $A_{V} = -\left(\frac{h_{fe}}{2}\right) \cdot \frac{R_{L}}{h_{ie}} \cdot \frac{N_{1}}{N_{2}}$	Understand	CAEC004.15
7	List out the advantages and disadvantages of transformer coupling?	Remember	CAEC004.15
8	Show that class B push pull amplifiers exhibit half wave symmetry.	Understand	CAEC004.15

9	Derive the expression for Max. Theoretical efficiency in the case of class B push pull amplifier. Why is it named so ? What are its advantages and disadvantages?	Understand	CAEC004.15			
10	Explain about heat sinks. Explain the term Thermal Resistance. Give the sketches of heat sinks.	Understand	CAEC004.15			
11	(a) If two transistors are employed in a push-pull amplifier with cut-off bias, orin Class- B operation of the amplifier, explain the process of generation of 'crossover distortion' with necessary diagrams and the reasons behind such phenomenon.(b) Suggest a suitable circuit for minimizing the above distortion.	Understand	CAEC004.15			
•	PART-C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)					
1	A power amplifier supplies 3w to a load of 6K. The zero signal d.c collector current in 55 mA and the collector current with signal in 60mA. How much is the percentage in second harmonic distortion	Understand	CAEC004.15			
2	A class B, push pull amplifier drives a load on 16, connected to the secondary of the ideal transformer. The supply voltage in 25V. If the turns on the primary in 200 and the No. of turn the secondary in 50, Calculate maximum power o/p, d.c power input, efficiency and maximum power dissipation per transistor.	Understand	CAEC004.15			
3	In a class B complementary power amplifier V_{cc} =+15V, - V_{cc} =15V and R_L =4 Ω . Calculate i. maximum a.c power which can be developed ii. collector dissipation while developing maximum a.c power iii. efficiency iv. maximum power dissipation per transistor	Understand	CAEC004.15			
3	A series fed class A amplifier uses a supply voltage of 10V and load resistance of 20 Ω . The a.c input voltage results in a base current of 4mA peak. Calculate i. d.c input power ii. a.c output power iii. %efficiency	Understand	CAEC004.15			
5	What is the Junction to ambient Thermal Resistance for a device dissipating 600 mw into an ambient temperature of 500C and operating at a junction temperature of 1100C?	Understand	CAEC004.15			
6	Calculate the transformer turns ratio required to match a 8 Ω speaker load to an amplifier so that the effective load resistance is 3.2 K Ω .	Understand	CAEC004.15			
7	In complementary - symmetry class-B power amplifier circuit, VCC=25 Volts, RL=16 and Imax=2 Amps. Determine the input power, output power and efficiency.	Understand	CAEC004.15			
8	What is the junction to ambient thermal resistance for a device dissipating 600 m W into an ambient of 60°C and operating at a junction temperature of 120°C.	Understand	CAEC004.15			
9	Design a class A power amplifier to deliver 5V rms to a load of 8 Ohms using a transformer coupling. Assume that a supply of 12V is available. The resistance of the primary winding of the transformer also should be considered.	Understand	CAEC004.15			
10	Design a class A transformer coupled amplifier, using the transistor, to deliver 75 m W of audio power into a 40 load. At the operating point, IB = 250 μ A, V = 16V. The collector dissipation should not exceed 250 m W. R = 900 Ω . Make reasonable approximations wherever necessary.	Understand	CAEC004.15			
11	Design a class B power amplifier to deliver 30W to a load resistor RL = 40Ω using a transformer coupling. V m = 30 V = V cc. Assume reasonable data wherever necessary.	Understand	CAEC004.15			
12	The amplifier shown is made up of an NPN and PNP transistors. The h-parameters of the two transistors are identical and are given as hie=1K, hre=0, hfe=100,hoe=0. Find overall voltage gain Av = VO/ Vi	Understand	CAEC004.15			