INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad -500 043
CIVIL ENGINEERING
TUTORIAL QUESTION BANK

Course Name	$:$	FLUID MECHANICS
Course Code	$:$	ACE005
Class	$:$	IV Semester
Branch	$:$	CE
Year	$:$	$2018-19$
Course Coordinator	$:$	Dr. G.V. Ramana, Professor and Head, Civil Engineering Department.
Course Faculty	$:$	Dr. G.V. Ramana, Professor and Head, Civil Engineering Department. Mr. CH.V.S.S. Sudheer, Asst.Professor, Civil Engineering Department

COURSE OBJECTIVES:
The course should enable the students to:

I	Understand and study the effect of fluid properties on a flow system
II	Apply the concept of fluid pressure, its measurements and applications.
III	Explore the static, kinematic and dynamic behavior of fluids.
IV	Assess the fluid flow and flow parameters using measuring devices.

COURSE LEARNING OUTCOMES:
Students, who complete the course, will have demonstrated the ability to do the following:

CACE005.01	Define fluid and its properties. Describe effect of temperature on viscosity.
CACE005.02	Explain Newton's law of viscosity. Classify fluids based on Newton's law of viscosity and solve problems on Viscosity.
CACE005.03	Employ capillary principle to calculate capillary rise/fall in a given tube.
CACE005.04	Interpret different forms of pressure measurement.
CACE005.05	Employ principle of manometry to measure gauge and differential pressure. Define Pascal's law.
CACE005.06	Calculate Hydrostatic Force and its Location for a given geometry and orientation of plane surface
CACE005.07	Examine the possibility of a flow using continuity equation
CACE005.08	Employ Archimedes principle to solve numerical examples on Buoyancy
CACE005.09	Identify and interpret different flows with relevant equations
CACE005.10	Distinguish velocity potential function and stream function and solve for velocity and acceleration of a fluid at a given location in a fluid flow
CACE005.11	Examine stability of a floating body by determining its metacentric height
CACE005.12	Establish Euler's theorem and deduce Bernoulli's equation for a ideal fluid and comment on validation assumption made.
CACE005.13	Examine Bernoulli's equation for ideal and real fluids and evaluate the direction of flow
CACE005.14	Distinguish between major loss and minor loss.
CACE005.15	Employ Darcy-Weichbach and Chezy's equation to calculate friction losses
CACE005.16	Interpret different pipe fittings and evaluate the fluid velocity considering major and minor losses
CACE005.17	Sketch HGL and TEL for a given pipe setting.
CACE005.18	Distinguish between Drag force and lift force and Examine drag and lift force for a given set of dimension and variables

CACE005.19	Write the boundary layer concept.
CACE005.20	Distinguish displacement, momentum, and energy thickness
CACE005.21	Explain the concept of prandtl contribution.
CACE005.22	Evaluate the Vonkarmen momentum integral equation.
CACE005.23	Analyze the closed conduit flows using Renold's experiment.
CACE005.24	Possess the knowledge and skills for employability and to succeed in national and international level competitive examinations.

S.No.	QUESTIONS	$\begin{gathered} \hline \text { Blooms } \\ \text { Taxonomy } \\ \text { Level } \\ \hline \end{gathered}$	Course Learning Outcomes
UNIT - I			
INTRODUCTION			
Part - A (Short Answer Questions)			
1	Define density, weight density.	Understand	CACE005.01
2	Write the relation between density and specific volume	Remember	CACE005.01
3	What is Newton's law of viscosity?	Understand	CACE005.01
4	State surface tension, Cohesion.	Remember	CACE005.02
5	Define compressibility.	Understand	CACE005.02
6	Write the units of viscosity and kinematic viscosity.	Remember	CACE005.02
7	Define vapour pressure.	Understand	CACE005.02
8	Differentiate atmospheric gauge and vacuum pressure.	Remember	CACE005.02
9	Define compressible and incompressible fluid.	Understand	CACE005.03
10	What is Buoyancy and meta-centric height?	Remember	CACE005.03
11	List out specific gravity of water, mercury, and ccl_{4}.	Understand	CACE005.03
12	State Pascal's law.	Remember	CACE005.03
13	How is Fluids Classified based on Newton laws of Viscosity?	Understand	CACE005.04
14	Differentiate adhesion and cohesion	Remember	CACE005.04
15	Define and classify the manometers.	Understand	CACE005.04
16	What do you understand by 'Total Pressure' and 'Centre Pressure'?	Understand	CACE005.04
17	Give the relation for pressure inside a water droplet	Remember	CACE005.05
18	How does the vapour pressure vary with the temperature?	Understand	CACE005.05
19	What is manometer? How they are classified?	Remember	CACE005.05
20	List out Newtonian and Non-Newtonian Fluids?	Understand	CACE005.05

Part - B (Long Answer Questions)

1	State Newton's law viscosity and explain how viscosity varies with temperature for liquids and gases.	Understand	CACE005.01
2	Derive an expression for surface tension on a liquid jet.	Remember	CACE005.01
3	Derive an expression for surface tension on a liquid droplet.	Understand	CACE005.01
4	How do you measure the pressure by using manometers and mechanical gauges?	Remember	CACE005.02
5	Derive an expression for the depth of centre of pressure from free surface of liquid of an inclined plane surface sub-merged in the liquid.	Understand	CACE005.02
6	Why does the viscosity of a gas increases with the increases in temperature? While that of a liquid decreases with increase in temperature?	Remember	CACE005.02

7	Calculate density, specific weight and weight of 1 litre of petrol of specific gravity 0.7	Remember	CACE005.02
8	State Newton's law viscosity and derive the relation for the shear stress and viscosity.	Understand	CACE005.02
9	Explain the phenomenon of capillarity .Obtain an expression for capillarity rise of a fluid.	Understand	CACE005.03
10	Develop the expression for the relation between gauge pressure P inside a droplet of liquid and the surface tension.	Remember	CACE005.03
11	State Newton's third law of motion and summarize how viscosities of liquids differ with temperature for particles in liquid state and gaseous state.	Understand	CACE005.03
12	Derive an expression for the force exerted on a sub-merged vertical plane surface by the static liquid and locate the position of centre of pressure.	Remember	CACE005.03
13	Prove that the centre of pressure of a completely sub-merged plane is always below the centre of gravity of the sub-merged surface or at most coincide with the centre of gravity when the plane surface is horizontal.	Understand	CACE005.04
14	Write the procedure for determining/measuring pressures by monometers and mechanical gauges.	Remember	CACE005.04
15	Obtain the relation with parameter like volumetric strain of cylindrical rod, its strain and diameter strain in case of a cylindrical rod subjected to axial tensile load.	Understand	CACE005.04
16	Explain the phenomenon of temperature changes in viscosities of a liquid and gas	Remember	CACE005.04
17	Explain how you would find the resultant pressure on a curved surface immersed in a liquid.	Understand	CACE005.05
18	Derive the expression for capillary rise of a fluid.	Remember	CACE005.05
19	Define pascal's law and Hydrostatic law and prove them?	Understand	CACE005.05
20	Define surface tension. Prove that relationship between surface tension and pressure inside a droplet pressure is given by $\mathrm{p}=(4 \sigma / \mathrm{r})$	Remember	CACE005.05
Part - C (Problem Solving and Critical Thinking Questions)			
1	A plate of certain oil weighs 40 KN . Calculate the specific weight, mass density and specific gravity of this oil.	Understand	CACE005.01
2	A plate 0.0254 mm distant from a fixed plate, moves at $61 \mathrm{~cm} / \mathrm{sec}$ and requires a force of $0.2 \mathrm{kgf} / \mathrm{m} 2$ to maintain this speed. Determine the dynamic viscosity of the fluid between the plates.	Remember	CACE005.01
3	A rectangular plate of size 25 cm by 50 cm and weighing 25 kgf slides down a 300 inclined surface at a uniform velocity of $2 \mathrm{~m} / \mathrm{sec}$. If the uniform 2 mm gap between the plate and the inclined surface is filled with oil determine the viscosity of the oil.	Understand	CACE005.02
4	Calculate the capillary effect in mm in a glass tube 3 mm in diameter when immersed in (a) water (b) mercury. Both the liquids are at 200c and the values of the surface tensions for water and mercury at 200c in contact with air are respectively $0.0736 \mathrm{~N} / \mathrm{m}$ and $0.51 \mathrm{~N} / \mathrm{m}$. Contact angle for water $=00$ and for mercury $=1300$.	Remember	CACE005.02
5	What is the pressure within a droplet of water 0.05 mm in diameter at 200c, if the pressure outside the droplet is standard atmospheric pressure of $1.03 \mathrm{~kg}(\mathrm{f}) / \mathrm{cm} 2$. Given $=0.0075 \mathrm{~kg}(\mathrm{f}) / \mathrm{m}$ for water at 200 C .	Understand	CACE005.03
6	If the equation of a velocity profile over a plate is $\mathrm{V}=2 \mathrm{y} 2 / 3$ in which V is the velocity in $\mathrm{m} / \mathrm{sec}$ at a distance of y meters above the plate. Determine the shear stress at $\mathrm{y}=0$ and $\mathrm{y}=0.075 \mathrm{~m}$ given $\mathrm{H}=0.835 \mathrm{~N} . \mathrm{S} / \mathrm{m} 2$.	Remember	CACE005.03
7	Convert a pressure head of 100 m of water to a) Kerosene of specific gravity 0.81 b) Carbon tetra chloride of specific gravity 1.6	Understand	CACE005.04

8	A trapezoidal channel 2 m wide at the bottom and 1 m deep has side slopes 1:1. Determine the total pressure and the centre pressure on the vertical gate closing the channel when it is full of water.	Understand	CACE005.04
9	A flat plate weighing 0.45 KN has a surface area of 0.1 m 2 . It slides down an inclined plane at 300 to the horizontal at a constant speed of $3 \mathrm{~m} / \mathrm{s}$. if the inclined plane is lubricated with an oil of viscosity $0.1 \mathrm{Ns} / \mathrm{m} 2$. Find the thickness of the oil film.	Remember	CACE005.05
10	A rectangular plane surface 3 m wide and 4 m deep lies in water in such a way that its plane making an angle of 300 with the surface of water. Determine the total pressure force and position of centre of pressure, when upper edge is 2 m below the free surface	Understand	CACE005.05
UNIT - II			
FLUID KINEMATICS			
Part - A (Short Answer Questions)			
1	Define path line, stream line, stream tube and streak line.	Remember	CACE005.06
2	State steady and unsteady flows.	Understand	CACE005.06
3	Mention one difference between streamline and path line.	Remember	CACE005.06
4	Define uniform and non uniform flows.	Understand	CACE005.06
5	Give the equation of motion for free vortex flow and force vortex flow?	Remember	CACE005.06
6	Define laminar and turbulent flows.	Understand	CACE005.06
7	What is one dimensional flow with example?	Remember	CACE005.07
8	Define the equation of continuity.	Understand	CACE005.07
9	What is vorticity?	Remember	CACE005.07
10	Define the terms vortex, free vortex flows and forced vortex flows.	Understand	CACE005.07
11	Define rotational and ir-rotational flows.	Remember	CACE005.07
12	What are streak lines?	Understand	CACE005.07
13	Define compressible and incompressible flows.	Remember	CACE005.08
14	List out two dimensional flows with example?	Understand	CACE005.08
15	List out three dimensional flows with example?	Remember	CACE005.08
16	Define the terms velocity potential and stream functions.	Understand	CACE005.08
17	State Archimedes principle?	Remember	CACE005.08
18	Give the relation between stream function and velocity potential function?	Understand	CACE005.09
19	Define the Newton's Second law of motion.	Remember	CACE005.09
20	What is flow net?	Understand	CACE005.09
Part - B (Long Answer Questions)			
1	Sketch the flow pattern of an ideal fluid past a cylinder with circulation.	Understand	CACE005.06
2	Derive the condition for ir-rotational flow. Prove that for potential flow, both the stream function and velocity potential function must satisfy Laplace equation.	Remember	CACE005.06
3	Show that in case of forced vortex flow, the rise of liquid level at the ends is equal to the fall of liquid level at the axis of rotation.	Understand	CACE005.06
4	Obtain an expression for continuity equation for a 3-D Flow.	Remember	CACE005.06
5	Bring out the mathematical and physical distinction between rotational and ir- rotational flows.	Understand	CACE005.06
6	Describe the uses and limitations of flow nets.	Remember	CACE005.06
7	Obtain an expression for continuity equation for a 1-D Flow	Understand	CACE005.07

8	Explain the following terms in brief: a) Stream function b) Velocity potential function c) Circulation d) Flow net	Understand	CACE005.07
9	State the properties of stream function and prove each one of them.	Remember	CACE005.07
10	What is a stream tube and explain are its characteristics.	Understand	CACE005.07
11	Draw the flow pattern of a non- ideal fluid past a cylinder with rotation.	Remember	CACE005.07
12	What is ir-rotational Flow? Show that in a Laplace equation is satisfied in potential flows-stream function and velocity potential function.	Understand	CACE005.07
13	Distinguish between the following: a) Rotational flow and ir-rotational flow b) Streamlines and streak lines c) Circulation and vorticity	Remember	CACE005.08
14	What is continuity equation? Obtain the continuity equations for multi/ three dimensional flows.	Understand	CACE005.08
15	What are the characteristics of Rotational and Ir-rotational Flows? Also distinguish with mathematical expressions.	Remember	CACE005.08
16	Define stream function and velocity potential function. Show that the lines of constant stream function and velocity potential function must intersect orthogonally.	Understand	CACE005.08
17	Explain continuity equation and derive the continuity equation for one dimensional flow.	Remember	CACE005.08
18	Define Uniform and non- uniform, Compressible and non- compressible, ideal and non ideal fluids.	Understand	CACE005.09
19	What is a streamline and a streak line. By justifying any one of the stream functions state its properties.	Remember	CACE005.09
20.	What is flow net? What are advantages and limitations of flow net analysis?	Understand	CACE005.09
Part - C (Problem Solving and Critical Thinking)			
1	An open circular cylinder of 15 cm diameter and 100 cm long contains water upto a height of 70 cm . Find the speed at which the cylinder is to be rotated about its vertical axis so that the axial depth becomes zero.	Understand	CACE005.06
2	A vessel cylindrical in shape and closed at the bottom contains water upto a height of 80 cm . The diameter of the vessel is 20 cm and length of vessel is 120 cm . the vessel is rotated at a speed of $400 \mathrm{r} . \mathrm{p} . \mathrm{m}$ about its vertical axis. Find the height of paraboloid formed.	Remember	CACE005.06
3	In a free cylindrical vortex flows, at a point in the fluid at a radius of 200 mm and a height of 100 mm . The velocity and pressures are $10 \mathrm{~m} / \mathrm{s}$ and $117.72 \mathrm{KN} / \mathrm{m} 2$.find the pressure at a radius of 400 mm and at a height of 200 mm . the fluid is air having density equal to $1.24 \mathrm{~kg} / \mathrm{m} 3$.	Understand	CACE005.06
4	The stream line function for a two dimensional flow is given by $2 x y$, the velocity at a point $(2.0,2.0)$ is? The velocity of a fluid particle is given as (in meters) $\mathrm{V}=4 \mathrm{x} 2 \mathrm{ti}-5 \mathrm{y} 2 \mathrm{j}+6 \mathrm{ztk}$ (where I, j and k are unit vectors in x, y and z directions). The resultant local acceleration at the point $(2,3,2)$	Remember	CACE005.06

5	A vessel cylindrical in shape and closed at the bottom and the top contains water at a height of 700 mm . The dia of the vessel is 200 mm and length of the vessel is 1.1 m . Find the speed of rotation of the vessel if the axial depth of the water is Zero.	Understand	CACE005.07
6	An open circular cylinder of 20 cm dia and 100 cm long contains water upto a height of 80 cm . It is rotated about its vertical axis. Find the speed of rotation when there is no water spills and axial depth is Zero.	Remember	CACE005.07
7	In a free cylindrical vortex flow of water at a point at a radius of 150 mm the velocity and pressure are $5 \mathrm{~m} / \mathrm{s}$ and $14.715 \mathrm{~N} / \mathrm{cm}^{2}$. Find the pressure at a radius of 300 mm .	Understand	CACE005.08
8	If the cylindrical vessel of dia 15 cm and length 100 cm contains water at a height of 80 cm is rotated at $950 \mathrm{r} . \mathrm{p} . \mathrm{m}$. about its vertical axis, find the Area uncovered at the base of the tank.	Remember	CACE005.08
9	A rectangular pontoon of size 6 m length, 3 m width and 1.5 m height has a length of 0.95 m in sea water of specific weight $10055 \mathrm{~N} / \mathrm{m}^{3}$. Determine its meta centric height assuming it to have a uniform composition. composition.	Understand	CACE005.09
10	A triangular gate which has a base of 1.5 m and an altitude of 2 m lies in a vertical plane. The vertex of the gate is 1 m below the surface in a tank which contains oil of specific gravity 0.8 . Find the force exerted by the oil on the gate and the position of the centre of pressure	Remember	CACE005.09
UNIT-III			
FLUID DYNAMICS			
Part - A (Short Answer Questions)			
1	Name the different forces present in a fluid flow.	Understand	CACE005.10
2	What is Euler's equation of motion.	Remember	CACE005.10
3	Explain different types of pitot tubes.	Understand	CACE005.10
4	Define an orifice meter.	Remember	CACE005.10
5	What is a pitot tube.	Understand	CACE005.10
6	Define moment of momentum equation.	Remember	CACE005.10
7	What are the different forms of energy in a flowing fliud.	Understand	CACE005.11
8	What is a free jet of a liquid.	Remember	CACE005.11
9	Define continuity and Bernoulli's equation.	Understand	CACE005.11
10	What is venturimeter.	Remember	CACE005.11
11	Give Energy Equation of an ideal Flow along a Streamline	Understand	CACE005.12
12	Give the mechanical Energy equation	Remember	CACE005.12
13	Provide Navier's equation.	Understand	CACE005.12
14	Give the Bernoulli's equation in Irrotational flow	Remember	CACE005.12
15	What are the types of notches?	Understand	CACE005.13
16	Define potential head, velocity head, and datum head.	Remember	CACE005.13
17	Give the classsificatio of orifices.	Understand	CACE005.13
18	What are notches?	Remember	CACE005.13
19	Give the Bernoulli's equation with head loss	Understand	CACE005.13
20	What is a weir and what are its types?	Remember	CACE005.13

Part - B (Long Answer Questions)			
1	Define the momentum of momentum equation. What is the difference between momentum equation and impulse momentum equation	Understand	CACE005.10
2	How do you distinguish sharp crested weir from a broad crested weir? Derive the expression for discharge over a sharp crested rectangular weir?	Remember	CACE005.10
3	Name the different forces present in a fluid flow. For the Euler's equation of motion which forces are taken into consideration?	Understand	CACE005.10
4	What is Euler's equation? How will you obtain Bernoulli's equation from it.	Remember	CACE005.10
5	Discuss the relative merits and demerits of venturimeter with respect to orifice meter.	Understand	CACE005.10
6	What is the difference between the pitot tube and pitot static tube? Derive an expression for velocity of a fluid flowing through pitot-tube?	Remember	CACE005.11
7	What is the difference between the momentum equation and impulse momentum equation.	Understand	CACE005.11
8	Derive Euler's equation of motion along a stream line for an ideal fluid and clearly the assumptions.	Remember	CACE005.11
9	Derive an expression for the discharge over a rectangular notch.	Understand	CACE005.11
10	Explain the principle of venturimeter with a neat sketch. Derive the expression rate of flow of fluid through it.	Remember	CACE005.11
11	State Bernoulli's theorem. Mention the assumptions made. How it is classified while applying in practice. List out engineering applications	Understand	CACE005.12
12	Derive the expression for discharge over a broad crested weir. Differentiate broad and sharp crested weir.	Remember	CACE005.12
13	Explain the Euler's equation of motion considering the forces	Understand	CACE005.12
14	Find an expression for discharge over a triangular notch in terms of head of liquid over crest of the notch and the included angle.	Remember	CACE005.12
15	State the advantages and disadvantages between venturimeter and orifice meter.	Understand	CACE005.12
16	Show that the error in discharge due to error in the instrument of head over a rectangular notch or weir is given by $(\mathrm{dQ} / \mathrm{Q})=1.5(\mathrm{dH} / \mathrm{H})$	Remember	CACE005.13
17	Describe with the help of sketch the construction, operation, and use of pitot- static tube.	Understand	CACE005.13
18	What is velocity of approach? Derive the expression for discharge over a rectangular notch with the consideration of velocity of approach?	Remember	CACE005.13
19	Derive the expression for discharge through a Cipolletti weir.	Understand	CACE005.13
20	Derive an expression for the maximum discharge over a broad-crested weir?	Remember	CACE005.13
Part - C (Problem Solving and Critical Thinking)			
1	An oil of specific gravity 0.85 is flowing steadily in a 25 cm diameter pipe at a velocity of $5 \mathrm{~m} / \mathrm{s}$. At points X and Y measurements of pressure and elevation are $250 \mathrm{kN} / \mathrm{m}^{2}$ and $200 \mathrm{kN} / \mathrm{m}^{2}$ and 15 m and 20 m respectively. Find the loss between two points.	Understand	CACE005.10
2	A pipe of dia 400 mm carries water at a velocity of $25 \mathrm{~m} / \mathrm{s}$. The pressures at a point are given as $29.43 \mathrm{~N} / \mathrm{cm}^{2}$ and $22.563 \mathrm{~N} / \mathrm{cm}^{2}$ pressures at a point are given as $29.43 \mathrm{~N} / \mathrm{cm} 30 \mathrm{~m}$. Find the loss of head between A and B.	Remember	CACE005.10
3	A horizontal venturimeter with inlet and throat and diameters 30 cm and 15 cm is used to measure the flow of water. The reading of differential manometer connected to the inlet and the throat is 20 cm of mercury. Determine the rate of flow. Take $\mathrm{C}_{\mathrm{d}}=0.98$.	Understand	CACE005.11

4	At a certain location X of a pipe line carrying water, the diameter is 70 cm , the pressure is $200 \mathrm{kN} / \mathrm{m}^{2}$ and the average velocity is $6 \mathrm{~m} / \mathrm{s}$. At another section Y which is 3 m higher than X , the diameter is 40 cm and the pressure is $120 \mathrm{kN} / \mathrm{m}^{2}$. What is the direction of flow?	Understand	CACE005.11
5	An open cylindrical tank 16 cm diameter and 30 cm height is filled water up to the top. Find the quantity of water left in the tank, when the tank is rotated about its vertical axis with a speed of (a) 250 rpm and (b) 300 rpm .	Understand	CACE005.11
6	An open vertical cylinder 20 cm in diameter and 80 cm high contains 50 cm of water. If the cylinder rotates about its vertical axis, find the maximum speed that can be attained with out spilling any water?	Understand	CACE005.12
7	A 60° triangular notch with a coefficient of discharge of 0.59 is placed at the downstream end of a channel carrying $0.02 \mathrm{~m}^{3} / \mathrm{s}$ of water. What will be the height above the base of notch?	Remember	CACE005.12
8	A rectangular notch of width 0.5 m and coefficient of discharge 0.62 is placed at the downstream end of a channel carrying $0.04 \mathrm{~m}^{3} / \mathrm{s}$ of water. An error of 2.5 mm was made in measuring the head over the notch. Find the percentage error in the discharge.	Understand	CACE005.12
9	In a 100 mm dia horizontal pipe a venturimeter of 0.5 contraction ratio has been fixed the head of water on the meter when there is no flow is 3 m . Find the rate of flow for which the throat pressure will be 2 m of water absolute. Take atmospheric pressure head $=10.3 \mathrm{~m}$ of water. The coefficient of meter is 0.97 .	Remember	CACE005.13
10	A rectangular notch of width 1.4 m is fitted in the side of a tank of area $8 \mathrm{~m}^{2}$. Find the time required to lower the water level from 8 m to 3 m . The coefficient of discharge is 0.2	Understand	CACE005.13
UNIT-IV			
BOUNDARY LAYER THEORY			
Part - A (Short Answer Questions)			
1	What do you understand by the term boundary layer thickness?	Understand	CACE005.14
2	What is meant by boundary layer?	Remember	CACE005.14
3	What do you mean by boundary layer separation?	Understand	CACE005.14
4	Define displacement thickness.	Remember	CACE005.14
5	What are the different methods of preventing the separating of Boundary layers.	Understand	CACE005.15
6	What is the effect of pressure gradient on boundary layer separation?	Remember	CACE005.15
7	Define laminar boundary layer and turbulent boundary layer.	Understand	CACE005.15
8	Draw Boundary layer and Free Stream for Flow Over a flat plate	Remember	CACE005.15
9	Distinguish lift and drag.	Understand	CACE005.15
10	Define magnus effect.	Remember	CACE005.15
11	Write the prandtl contribution in boundary layer theory.	Understand	CACE005.16
12	Define laminar sub layer and boundary layer thickness.	Remember	CACE005.16
13	Write two applications of boundary layer theory	Understand	CACE005.16
14	Give an expression for the turbulent boundary layer on a flat plate?	Remember	CACE005.16
15	Write Von karman momentum integral transition equation?	Understand	CACE005.17
16	What is Boundary layer Transition?	Remember	CACE005.17
17	Give the condition for Boundary layer Separation.	Understand	CACE005.17
18	Enumerate Boundary layer control.	Remember	CACE005.18

19	State the term drag and lift?	Understand	CACE005.18
20	Define the term momentum thickness.	Remember	CACE005.18
Part - B (Long Answer Questions)			
1	Derive an expression for displacement thickness due to formation of boundary layer	Understand	CACE005.14
2	Explain with sketches the three methods of boundary layer control.	Remember	CACE005.14
3	Derive an expression for momentum thickness of boundary layer.	Understand	CACE005.14
4	The velocity distribution in the turbulent boundary layer over a flat plate is given as $\left(\mathrm{u} / \mathrm{U}_{\infty}\right)=2(\mathrm{y} / \delta)-(\mathrm{y} / \delta)^{2}$ Obtain the expression for displacement thickness and momentum thickness?	Remember	CACE005.14
5	Derive the expression for the energy and momentum correction factor?	Understand	CACE005.15
6	Derive an expression for energy thickness of boundary layer.	Remember	CACE005.15
7	Obtain Von karman momentum integral equation?	Understand	CACE005.15
8	Explain boundary layer separation? Mention few methods to prevent or delay the separation of boundary layer?	Remember	CACE005.15
9	Derive Prandtl's boundary layer equation.	Understand	CACE005.15
10	The velocity profile within boundary layer for steady, two-dimensional, constant density, laminar flow ovr a flat plate is given as $\mathrm{U}=\mathrm{A}+\mathrm{By}+\mathrm{Cy}^{2}$ Using suitable boundary conditions, find the form of the velocity profile.	Remember	CACE005.15
11	Explain the formation of boundary layer and displacement thickness.	Understand	CACE005.16
12	What is boundary layer control and explain with diagrams.	Remember	CACE005.16
13	What is momentum thickness? Explain its characteristics.	Understand	CACE005.16
14	The velocity distribution in the turbulent boundary layer over a flat plate is given as $\left(\mathrm{u} / \mathrm{U}_{\infty}\right)=2(\mathrm{y} / \delta)-(\mathrm{y} / \delta)^{2}$ Obtain the expression for energy thickness and momentum thickness?	Remember	CACE005.16
15	Explain Boundary layer in separation, Transition and control.	Understand	CACE005.17
16	Show that the following velocity profile in hydrodynamic boundary layer satisfies the requisite boundary conditions for fluid flow over a flat plate $\left(\mathrm{u} / \mathrm{U}_{\infty}\right)=\sin (\pi \mathrm{y} / 2 \delta)$	Remember	CACE005.17
17	Derive expressions for boundary layer thickness ,boundary shear stress and friction drag in a laminar boundary layer	Understand	CACE005.17
18	The velocity distribution in the turbulent boundary layer over a flat plate is given as $\left(\mathrm{u} / \mathrm{U}_{\infty}\right)=(\mathrm{y} / \delta)^{(1 / 5)}$. Obtain the expression for the displacement thickness and momentum thickness.	Remember	CACE005.18
19	Explain how laminar and turbulent boundary layers are formed and distinguish between their characteristics.	Understand	CACE005.18
20	Explain the characteristics of a boundary layer of a thin flat plate.	Remember	CACE005.18
Part - C (Problem Solving and Critical Thinking)			
1	A plate of 800 mm length and 500 mm wide is immersed in a fluid of specificgravity 0.92 and kinematic viscosity $v=10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. The fluid is moving with a velocity of $8 \mathrm{~m} / \mathrm{s}$. Determines boundary layer thickness, shear stress at the end of the plate and drags force one side of the plate.	Understand	CACE005.14

2	Air flows at $10 \mathrm{~m} / \mathrm{s}$ past a smooth rectangular flat plate 0.3 m wide and 3 m long. Assuming that's the turbulence level in the oncoming stream is low and that transition occurs at $\mathrm{R}_{\mathrm{e}}=5000$. Calculate ratio of total drag when the flow is parallel to the length of the plate to the value when the flow is parallel to the width.	Remember	CACE005.14
3	Oil with a free stream velocity of $2 \mathrm{~m} / \mathrm{s}$ flows over a thin plate 2 m wide and 2 m long. Calculate the boundary layer thickness and the shear stress at the trailing end point and determine the total surface resistance of the plate. Take specific gravity 0.86 and kinematic viscosity $10^{-3} \mathrm{~m}^{3} / \mathrm{s}$.	Understand	CACE005.14
4	A thin plate is moving in still atmospheric air at a velocity of $4 \mathrm{~m} / \mathrm{s}$. The length of plate is 0.5 m and width is 0.4 m , calculate the thickness of boundary layer at the end of the plate and the drag force on one side of the plate. Take density of air is $1.25 \mathrm{~kg} / \mathrm{m}^{3}$ and kinematic viscosity 0.15 stokes.	Remember	CACE005.15
5	A smooth flat plate of size $30 \mathrm{~cm} \times 60 \mathrm{~cm}$ is placed in a stream of water of uniform velocity $60 \mathrm{~cm} / \mathrm{sec}$. Flow takes parallel to the 30 cm length of the plate. If the kinematic viscosity of water is 0.011 stoke, is the boundary layer formed on the plate laminar or turbulent? Determine the shear stress at the trailing edge, maximum boundary layer thickness, mean drag coefficient and the work done by the fluid on one side of the plate per unit time in Joules.	Understand	CACE005.15
6	A stream lined train is 350 m long and has an average crosssection with a perimeter of 110.2 m above the wheels. Assuming that the boundary layer is completely turbulent, compute the surface drag for a speed of 120 Kmph and power required to overcome this drag. Dynamic viscosity of air $=0.000185$ poise and specific weight $=12$ $\mathrm{N} / \mathrm{m}^{3}$.	Remember	CACE005.16
7	A smooth flat plate of size 6 m by 3 m is towed in a liquid of density $900 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity 0.12 poises at a uniform velocity of 2.5 m / s. The motion is parallel to the 6 m side of the plate. What is the length of the plate over which the boundary layer is laminar? Calculate the surface drag on both sides of plate.	Understand	CACE005.16
8	A plate of 600 mm length and 400 mm wide is immersed in a fluid of specific gravity 0.9 and kinematic viscosity $\mathrm{v}=10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. The fluid is moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$. determines boundary layer thickness, shear stress at the end of the plate and drag force one side of the plate.	Remember	CACE005.17
9	Air flows at $10 \mathrm{~m} / \mathrm{s}$ past a smooth rectangular flat plate 0.3 m wide and 3 m long. Assuming that's the turbulence level in the oncoming stream is low and that transition occurs at $\mathrm{Re}_{\mathrm{e}}=5 \times 10^{5}$, Calculate ratio of total drag when the flow is parallel to the length of the plate to the value when the flow is parallel to the width.	Understand	CACE005.18
10	Oil with a free stream velocity of $2 \mathrm{~m} / \mathrm{s}$ flows over a thin plate 2 m wide and 2 m long. Calculate the boundary layer thickness and the shear stress at the trailing end point and determine the total surface resistance of the plate. Take specific gravity 0.86 and kinematic viscosity $0.0001 \mathrm{~m}^{2} / \mathrm{s}$	Remember	CACE005.18
UNIT-V			
Closed Conduit Flow			
Part - A (Short Answer Questions)			
1	Define Reynold's experiment.	Understand	CACE005.19
2	What are the characteristics of laminar flows?	Remember	CACE005.19
3	Draw the figure for shear stress and velocity profile in a pipe for laminar flow.	Understand	CACE005.19
4	Give an expression for the loss of head due to sudden expansion and sudden contraction of pipe.	Remember	CACE005.19
5	What are the laws of fluid friction?	Understand	CACE005.20

6	Define Darcy's equation.	Remember	CACE005.20
7	Give Expression for loss of energy due to friction.	Understand	CACE005.20
8	What are minor losses in pipes in parallel?	Remember	CACE005.20
9	What is total energy line?	Understand	CACE005.21
10	What is hydraulic gradient line?	Remember	CACE005.21
11	What are minor losses in pipes in series?	Understand	CACE005.21
12	What is the loss of head at the entrance of a pipe?	Remember	CACE005.21
13	What is hydraulic gradient line?	Understand	CACE005.21
14	What are the characteristics of turbulent flows?	Remember	CACE005.22
15	Draw the figure for shear stress and velocity profile in a pipe for turbulent flow.	Understand	CACE005.22
16	What is Moody's chart?	Remember	CACE005.23
17	Draw the figure for fully developed turbulent pipe flow.	Understand	CACE005.23
18	State the characteristics of turbulent flow.	Remember	CACE005.23
19	Compare velocity profiles in laminar and turbulent flows.	Understand	CACE005.24
20	What is Water hammer effect?	Remember	CACE005.24
Part - B (Long Answer Questions)			
1	What is meant by equivalent pipe? Determine the equivalent pipe corresponding to 3 pipes in series?	Remember	CACE005.19
2	Derive formulas for hydraulic gradient and total energy lines	Understand	CACE005.19
3	Derive the equation for head loss in pipes due to friction DarcyWeisbach equation.	Remember	CACE005.19
4	What are the minor losses in pipes? Give the appropriate formulae to calculate the losses.	Understand	CACE005.19
5	What do you understand by turbulent flow? What factor decides the type of flow in pipes?	Remember	CACE005.20
6	Derive an expression for the loss of head due to sudden enlargement in pipes.	Understand	CACE005.20
7	Show that the energy transmitted by a long pipe is maximum when $1 / 3$ rd of energy put into the pipe is lost in friction.	Remember	CACE005.20
8	Explain the phenomenon of water hammer pressure. Obtain an expression for the rise of pressure when the flowing water in a pipe is brought to rest by closing the valve gradually.	Understand	CACE005.20
9	Derive the equivalent size of the pipes when ' n ' no of pipes connected in a) parallel. b) series	Remember	CACE005.21
10	Explain what you understand by hydraulic grade line and total energy line. Discuss its practical significance in analysis of fluid flow problems.	Understand	CACE005.21
11	Explain the phenomenon of transmission of power through pipeline and the condition for maximum efficiency.	Remember	CACE005.21
12	Obtain the expressions for Hydraulic gradient line and total energy lines.	Understand	CACE005.21
13	Derive the equations for head loss in pipes using Darcy-Weisbach equation.	Remember	CACE005.21
14	Explain minor and major losses in pipes and list out the expressions with neat sketches.	Understand	CACE005.22
15	List out the important factors determining the type of flow in pipes.	Remember	CACE005.22
16	Explain the phenomenon of velocity defect in pipes.	Understand	CACE005.23

17	Explain the phenomenon of Water Hammer. Obtain an expression for the rise of pressure when the flowing water in a pipe is brought to rest by closing the valve gradually.	Remember	CACE005.23
18	Elaborate the practical significance in analysis of fluid flow problems. Distinguish Hydraulic gradient line and total energy line.	Understand	CACE005.23
19	Find an expression for the ratio of the ratio of the outlet area of the nozzle to the area of the pipe for maximum transmission power.	Remember	CACE005.24
20	Explain the characteristics of laminar and turbulent flow and flow between parallel plates with neat sketches.	Understand	CACE005.24
Part - C (Problem Solving and Critical Thinking)			
1	A pipe line of length 2100 m is used for transmitting 103 KW . The pressure at inlet of the pipe is $392.4 \mathrm{~N} / \mathrm{cm}^{2}$. If the efficiency of transmission is 80%, find the diameter of pipe. Take $f=0.005$	Understand	CACE005.19
2	A smooth pipe of diameter 400 mm and length 800 mm carries water at the rate of $0.04 \mathrm{~m}^{3} / \mathrm{s}$. determine the head lost due to friction, wall shear stress, centre line velocity and thickness of laminar sub layer. Take kinematic viscosity of water as 0.018 stokes.	Remember	CACE005.19
3	Water is flowing through a rough pipe of diameter 600 mm at the rate 600 liters $/ \mathrm{sec}$. the wall roughness is 3 mm . find the power lost for 1 km length of pipe.	Understand	CACE005.19
4	A 0.3 m diameter pipe 2340 m long is connected with a reservoir whose surface is 72 m above the discharging end of the pipe. If for the last 1170 m , a second pipe of the same diameter be laid beside the first and connected to it. What would be the increase in the discharge? Take $\mathrm{f}=0.02$	Remember	CACE005.20
5	A compound piping system consists of 1800 m of $0.50 \mathrm{~m}, 1200 \mathrm{~m}$ of 0.40 m and 600 m of 0.30 m new cast iron pipes connected in series. Convert the system to (a) an equivalent length of 0.40 m pipe and (b) Equivalent size pipe 3600 m long.	Understand	CACE005.20
6	A pipe having a length of 6 km and diameter 0.70 m connects two reservoirs A and B , the difference between their water levels is 30 m . Half way along the pipe there is a branch through which water can be supplied to a third reservoir C. Taking $\mathrm{f}=0.024$ determine the rate of flow of reservoir B when a) no water is discharged to reservoir C b) the quantity of water discharged to reservoir C is $0.15 \mathrm{~m}^{3} / \mathrm{s}$ neglect minor losses.	Remember	CACE005.21
7	A pipeline 0.225 m in diameter and 1580 m long has a slope of 1 in 200 for the first 790 m and 1 in 100 for the next 790 m . The pressure at the upper end of the pipeline is 107.91 kpa and at the lower end is 53.955 kpa . Taking $\mathrm{f}=0.032$ determine the discharge through the pipe.	Understand	CACE005.22
8	The velocities of water through a pipe of diameter 10 cm are $4 \mathrm{~m} / \mathrm{s}$ and $3.5 \mathrm{~m} / \mathrm{s}$ at the centre of the pipe and 2 cm from the pipe centre respectively. Determine the wall shearing stress in the pipe for turbulent flow.	Remember	CACE005.23
9	Determine the average height of the roughness for a rough pipe of diameter 10 cm when the velocity at a point 4 cm from wall is 40% more than the velocity at a point 1 cm from pipe wall.	Understand	CACE005.23
10	For turbulent flow in a pipe diameter 300 mm , find the discharge when the centre line velocity is $2 \mathrm{~m} / \mathrm{s}$ and the velocity at a point 100 mm from the centre as measured by pitot tube is $1.6 \mathrm{~m} / \mathrm{s}$.	Remember	CACE005.24

Prepared by

Dr G V Ramana, Professor \& HOD

