INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal,Hyderabad-500043

CIVIL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	GEOTECHNICAL ENGINEERING
Course Code	:	ACE006
Class	:	B. Tech IV Semester
Branch	:	Civil Engineering
Year	:	2018-19
Course Coordinator	:	Ms. J. Hymavathi, Assistant Professor, Department of Civil Engineering.
Course Faculty	:	Mrs. J. Hymavathi, Assistant Professor, Department of Civil Engineering.
		Mr. Y. Ravi Kumar, Assistant Professor, Department of Civil Engineering.

COURSE OBJECTIVES: The course should enable the students to:

Ι	Identify the type of soil based on index properties of soils, soil formation & its structure	
II	Recognize the importance of permeability for calculating the seepage through soils. Find out the	
	coefficient of permeability using various laboratory & field tests	
III	Analyze the stress at any point below the ground surface due to self weight and externally applied load.	
	Interpret the importance of consolidation and compaction on the settlement of footing.	
IV	Recognise the importance of shear strength in load carrying capacity of soil. Calculate the shear strength	
	of soil using various laboratory tests.	

COURSELEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

1
Calculate the unit weights in various field conditions using different relationships.
Examine water content, specific gravity, bulk density and dry densities of a soil using various
laboratory and field tests.
Identify the type of soil present in the site by using particle size distribution curve & other
index properties of soils as per IS soil classification system.
Find the Atterberg limits of soils which is used in classifying the fine grained soils.
Understand the permeability of soil & find out the range of coefficient of permeability in
various soil types.
Explain the importance of permeability in calculation of seepage through earthen dams,
amount of water to be pumped when the soil is excavated below ground water table.
Evaluate the coefficient of permeability using falling head tests and constant head tests.
Evaluate the coefficient of permeability using pumping in and pumping out tests.
Calculate the stresses beneath the ground level due to self weight of soil.
Analyze the importance of total, neutral and effective stress in load carrying capacity of soil.
Sketch the total, neutral and effective stress distribution diagram for various field conditions.
Explain quick sand condition, its occurrence and its significance.
Understand the importance of flow net in calculating seepage loss, uplift pressure, exit
hydraulic gradient.
Calculate the stress below the ground due to externally applied load using Boussinesq's
theory.

CACE006.15	Calculate stress due to load using Westergaard's and approximate method of stress distribution.
CACE006.16	Importance of compaction in reducing the immediate settlement, improving the load carrying capacity.
CACE006.17	Determining themaximum dry density and optimum moisture content of soil using standard proctor test soil. List the various field equipments used for compacting the different types of soils.
CACE006.18	Recognize the importance of consolidation in settlement calculation& calculate the consolidation settlementespecially inclayey soils.
CACE006.19	Determination of consolidation parameters of a soil using laboratory test such as using square root of time fitting method, logarithmic square method and height of solids method.
CACE006.20	Understand the shear failure criteria proposed by Mohr-coulomband shear parameters of soil
CACE006.21	Determination of shear strength of soil using direct shear test and tri-axial test in various drainage conditions.
CACE006.22	Recognize the behaviour of soil in normal, over and under consolidated soil. Understand the concept of dilatancy in sandy soil.
CACE006.23	Posses the Knowledge and Skills for employability and to succeed in national and international level competitive examinations.

S.No	QUESTIONS	Blooms taxonomy level	Course Learning Outcomes			
	UNIT I					
	INTRODUCTION AND INDEX PROPERTIES OF SOILS					
	Part - A (Short Answer Questions)					
1	Sketch the process of soil formation.	Remember	CACE006.01			
2	Name common clay minerals.	Understand	CACE006.01			
3	Define void ratio, porosity.	Understand	CACE006.01			
4	What are the various types of structures present in soil?	Remember	CACE006.02			
5	Define degree of saturation, % air voids.	Understand	CACE006.02			
6	Define water content and name the laboratory tests used for determining water content.	Remember	CACE006.02			
7	Define saturated unit weight, submerged unit weight, what is the relationship between saturated and submerged unit weight.	Remember	CACE006.02			
8	What is the relationship between void ratio, specific gravity and water content?	Understand	CACE006.02			
9	Define relative density & explain its significance.	Remember	CACE006.03			
10	Draw two phase & three phase diagram.	Understand	CACE006.03			
11	What is the principle of hydrometer & write its expression?	Understand	CACE006.03			
12	Define liquid limit & plastic limit .	Remember	CACE006.03			
13	Define Shrinkage limit.	Remember	CACE006.03			
14	Define Consistency limits.	Understand	CACE006.03			
15	What is the classification of the soil based on particle sizes?	Understand	CACE006.04			
16	Write the expression for toughness index.	Remember	CACE006.04			
17	Draw plasticity chart proposed by IS soil classification system.	Remember	CACE006.04			
18	Define specific gravity & name the laboratory test used for determining specific gravity of soil.	Understand	CACE006.04			
19	Sketch Particle size distribution curve & explain its significance.	Remember	CACE006.04			
20	What is the relationship between void ratio and porosity?	Remember	CACE006.05			
21	Define Sensitivity.	Understand	CACE006.05			
22	Define Thixotropy.	Remember	CACE006.05			
23	Define Activity.	Understand	CACE006.05			
25	Define coefficient of curvature and coefficient of uniformity.	Remember	CACE006.05			
26	Classify the soils based on transportation agency.	Remember	CACE006.05			

	Part - B (Long Answer Questions)		
1	Explain the clay mineralogy in detail with their schematic	Remember	CACE006.01
	representation?		
2	Starting from three phase representation of soil mass, derive the	Understand	CACE006.01
	relationship between bulk unit weight, specific gravity, void ratio and		
	degree of saturation.		
3	With the help of three phase diagram, define the following: (i) Voids	Understand	CACE006.01
	ratio (ii) Porosity (iii) Degree of saturation (iv) Water content (v)		
	Absolute/true specific gravity (vi) Apparent specific gravity (vii) Air		
	content (viii) Percentage of air voids and (ix) Relative density.		
4	Explain in detail the procedure for Sieve analysis and discuss how you	Remember	CACE006.02
	can plot grain size distribution curve from sieve analysis.		
5	1m ³ of wet soil weighs 20 kN. Its dry weight is 18 kN, specific gravity	Understand	CACE006.02
	is 2.67. Determine the water content, porosity, void ratio, degree of		
	saturation. Draw phase diagram.		
6	An undisturbed sample of soil has a volume 100 cm3 & mass 200 g on	Understand	CACE006.02
	oven drying for 24 hrs, the mass is reduced to 170 g. If G=2.68,		
	determine void ratio, water content & degree of saturation.		
7	What are the various types of soils based on the method of formation,	Remember	CACE006.03
	explain them briefly?		
8	Explain briefly the various clay minerals.	Remember	CACE006.03
9	Explain the laboratory procedure for determining the liquid limit &	Remember	CACE006.04
	plastic limit of soil.		
10	Explain IS soil classification system for classifying the soil.	Remember	
11	Derive the relationship between saturated unit weight, specific gravity,	Understand	CACE006.04
	void ratio and unit weight of water?		
12	What is the relationship between bulk unit weight, specific gravity,	Understand	CACE006.04
	unit weight of water, water content and void ratio. 1 m ³ of soil weighs		
	18 kN, has a water content of 22%. The specific gravity of soil		
	particles is 2.68. Determine void ratio and porosity.		
13	Name various field tests used in determining the in-situ unit weight of	Remember	CACE006.05
	soil, explain them briefly?		
14	Derive the relationship between dry unit weight, unit weight of water,	Understand	CACE006.05
	% air voids, specific gravity and water content?		
15	Explain in detail Stoke's law along with its assumptions & limitations?	Remember	CACE006.05
	Part – C (Problem Solving and Critical Thinki	ing)	
1	A sample of fully saturated soil has a water content of 25% and a bulk	Remember	CACE006.01
	unit weight of 20kN/m ³ . Determine the (i) dry unit weight (ii) void		
	ratio (ii) specific gravity of the soil. What would be the bulk unit		
	weight of the soil if the soil is compacted for the same void ratio but		
	with a degree of saturation 90%.		
2	A sample of soil compacted according to standard proctor test has a	Understand	CACE006.01
	unit weight of 20.58kN/m ³ at 100% compaction and at optimum water		
	content of 14%. What is the dry unit weight? What is the dry unit		
	weight at zero air voids? If voids become filled with water what would		
	be the saturated unit weight? Assume G=2.7.		
3	Earth is required to be excavated from borrow pits for building an	Remember	CACE006.01
	embankment. The wet unit weight of undisturbed soil is 18 kN/m^3 and		1
	its water content is 8%. In order to build a 4 m high embankment with		1
	top width 2 m and side slopes 1:1, estimate the quantity of earth		
	required to be excavated per meter length of embankment. The dry unit		
	weight required in the embankment is 15 kN/m ³ with a moisture		
	content of 10%. Assume the specific gravity of solids as 2.67. Also		
	determine the void ratios and the degree of saturation of the soil in both		1
	the undisturbed and remoulded states.		

	•					-
4	A sample of sand				Understand	CACE006.02
	moisture content o					
	tests on a dried san					
	for the densest and					
5	saturation and the i				I I. de acteur d	CACE00C02
5	An undisturbed sa				Understand	CACE006.02
	and a mass of 30.					
	volume of dry spectrum 9.9 cm^2 . Determine					
	gravity, shrinkage		innit, volumente s	sinnikage, specific		
6	A soil has a liquid		limit of 17% and	33% respectively	Understand	CACE006.02
0	If the volumetric s				Onderstand	CACL000.02
	and 29%. Determin					
7	The laboratory test				Understand	CACE006.03
,	Natural moisture c				Onderstand	CACLOOD.05
	percentage of par					
	index (b) activity n					
8	The plastic limit of				Remember	CACE006.03
0	soil is dried from i				Remember	CHEL000.05
	its volume at plast					
	for the liquid limit					
	Determine the shrin			nie at nquia mint.		
9				e masses of soil	Understand	CACE006.04
,	500g of dry soil was used for sieve analysis. The masses of soil retained on each sieve is given below:			Onderstand	C/ICL000.04	
	IS sieve	Mass in g	IS sieve	Mass in g		
	2.0mm	10	250 μ	145		
	1.4mm	18	125 μ	56		
	1.0mm	60	75μ	45		
	500µ	135	75μ	45		
	Plot a grain distri		d compute the fo	llowing the % of		
	gravel, coarse sand					
	Find the uniformity					
10	A partially satura				Remember	
10	moisture content of				Remember	
	is 2.70. Determine					
	unit weight of sam			. what will be the		
11	A 1000cc core cut			found out the in-	Understand	CACE006.04
11	situ unit weight of				Onderstand	C/ICL000.04
	soil was noted to					
	indicated that the					
	Determine the bulk					
	of saturation of san		,	and degree		
12	Two soils were test		sistency limits in t	he laboratory. The	Remember	CACE006.04
	following data wer					
	Soil		Soi	В		
	No of blows, N	w %	No of blows, N	w %		
	8	43	5	65		
	20	39	15	61		
	30	37	30	59		
	45	37	40	58		
	Plastic Lim		Plastic Lin			
	The natural moistu					
	field and were four					
		s greater plasticit		y.		
			y: dation material u	on remoulding?		
	<i>of which som wh</i>		idation material u	pon remounding :	l	

	XX71 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·		
	c) Which soil is more compressible?		
	d) Which soil shows a higher rate of loss in shear strength upon		
	increase in water content?		
	e) Which soil has a higher strength at plastic limit?		
10	f) Is there a likelihood of organic matter present in these soils?		C + C D 0 6 0 5
13	A sample of sand with the specific gravity of solids as 2.65 has a	Remember	CACE006.05
	porosity of 40%. Find out the dry unit weight, unit weight of the		
	sample when fully saturated, submerged unit weight and bulk unit		
	weight when the degree of saturation is 50%.		
14	A sample of sand from a natural deposit has a porosity of 35%. For a	Understand	CACE006.05
	volume of 495 cc, the dry weight in the densest and loosest states is		
	950 and 700 g, respectively. Compute the relative density of sand		
1.5	assuming the specific gravity of solids to be 2.65.		G + GE00 < 0.5
15	In a liquid limit test, specimens of a certain sample of clay at water	Remember	CACE006.05
	content of 31.93, 27.62, 25.51 and 23.30% required 5, 16, 23 and 42		
	blows, respectively to close the standard groove. The plastic limit of		
	the clay is 13%. Natural water content is 18%. Determine the liquid		
	limit, plasticity index, consistency index, flow index and toughness		
	index of the soil.		
	UNIT 2		
	PERMEABILITY, EFFECTIVE STRESS AND SEEPAGE 1	THROUGH SC	DILS
	Part – A (Short Answer Questions)		
1	State Darcy's Law.	Remember	CACE006.06
2	Define Permeability.	Understand	CACE006.06
3	What are the factors affecting permeability of soil?	Remember	CACE006.06
4	What is the range of coefficient of permeability for gravel, sand, silt	Understand	CACE006.06
	and clayey soils?		
5	Enumerate the laboratory tests for determining the coefficient of	Remember	CACE006.06
	permeability?		
6	Define total stress & neutral stress.	Understand	CACE006.06
7	Define effective stress & explain its significance.	Remember	CACE006.07
8	Write the expression for vertical coefficient of permeability in layered	Understand	CACE006.07
	soils.		
9	Define flow net & uses of flow net.	Remember	CACE006.07
10	What are the characteristics of flow net.	Understand	CACE006.07
11	Explain quick sand condition.	Remember	CACE006.07
12	Define flow line.	Understand	CACE006.08
13	Define equipotential line.	Remember	CACE006.08
14	Sketch flow channel and field.	Understand	CACE006.08
15	Differentiate between absorbed and capillary water in soils.	Remember	CACE006.08
16	Write the expression for horizontal coefficient of permeability in	Understand	CACE006.08
	layered soils.		
17	Write the expression for height of capillary rise in soils.	Remember	CACE006.09
18	What is capillary fringe?	Understand	CACE006.09
19	Write the expressions for finding out the coefficient of permeability	Remember	CACE006.09
-	using falling head and constant head test.		
20	Name the field tests to find the coefficient of permeability.	Understand	CACE006.09
	Part - B (Long Answer Questions)		·
1	Explain the laboratory procedure for determining the coefficient of	Remember	CACE006.06
_	permeability for fine grained soils i.e., silts and clay?		
2	Explain the laboratory procedure for determining the coefficient of	Understand	CACE006.06
_	permeability using constant head permeability test?		
3	Explain in detail flow net with neat sketch? Discuss in detail	Remember	CACE006.06
5	properties and applications of flow net?	1.0	51122000.00
	F-F		

4	Explain about Darcy's law. Explain its validity in soil.	Remember	CACE006.06
5	Explain quick sand phenomenon.		CACE006.07
6	Discuss pumping-out method for the determination of the coefficient	Remember	CACE006.07
	of permeability in the field.		
7	Discuss pumping-in method for the determination of the coefficient of	Remember	CACE006.07
	permeability in the field.		
8	Derive expressions for average permeability of stratified soil when	Understand	CACE006.07
	flow is parallel and perpendicular to the direction of stratification.		<u></u>
9	Define coefficient of permeability and explain factors affecting	Remember	CACE006.08
10	permeability.		
10	Differentiate between absorbed and capillary water in soils? Write the	Remember	CACE006.08
	expression for determining height of capillary rise in small diameter		
11	pipe and in soils respectively.	TT 1 / 1	
11	Draw the total, neutral and effective stress distribution diagram up to	Understand	CACE006.08
10	a depth of z m for a soil below a water body.	Damaanahan	
12	Calculate the total, neutral and effective stresses in case of upward	Remember	CACE006.09
12	seepage condition and sketch its stress distribution diagrams.	The denotes a	
13	Sketch the total, neutral and effective stress distribution diagrams	Understand	CACE006.09
14	when there is a downward seepage of water through the soil.Derive the expression for calculating the seepage quantity using flow	Remember	CACE006.09
14		Kennennber	CACE000.09
15	net. Explain the following terms?	Understand	CACE006.09
15	a) Flow lines and equipotential lines	Understand	CACE000.09
	b) Uplift pressure		
	c) Exit gradient		
	d) Piping failure		
	e) Elementary squares.		
	Part – C (Problem Solving and Critical Think		
1	A sand sample of 35 cm ² cross sectional area and 20 cm long was	Remember	CACE006.06
	tested in a constant head permeameter. Under a head of 60 cm, the		
	discharge was 120 ml in 6 min. The dry weight of sand used for the		
	test was 1120 g, and $Gs = 2.68$. Determine (a) the hydraulic		
	test was 1120 g, and $Gs = 2.68$. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage		
	test was 1120 g, and Gs = 2.68 . Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity.		
2	 test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions 	Understand	CACE006.06
2	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity.Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil	Understand	CACE006.06
2	test was 1120 g, and Gs = 2.68 . Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom	Understand	CACE006.06
2	 test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and 	Understand	CACE006.06
	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^{-4} cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively.		
2	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^{-4} cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test.	Understand	
	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample		
	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626		
	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of		
	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^3 cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the		
	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the seepage velocity during the test. If the test was carried out at a		
	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^{-4} cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the seepage velocity during the test. If the test was carried out at a temperature of 25 ⁰ C, estimate the permeability of the soil for a		
3	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the seepage velocity during the test. If the test was carried out at a temperature of 25 ^o C, estimate the permeability of the soil for a porosity of 39% and at 20 ^o C.	Remember	CACE006.06
	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the seepage velocity during the test. If the test was carried out at a temperature of 25^{0} C, estimate the permeability of the soil for a porosity of 39% and at 20^{0} C.		CACE006.06
3	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^3 cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the seepage velocity during the test. If the test was carried out at a temperature of 25 ^o C, estimate the permeability of the soil for a porosity of 39% and at 20 ^o C.	Remember	CACE006.06
3	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the seepage velocity during the test. If the test was carried out at a temperature of 25 ⁰ C, estimate the permeability of the soil for a porosity of 39% and at 20 ⁰ C.	Remember	CACE006.06
3	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^{-4} cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the seepage velocity during the test. If the test was carried out at a temperature of 25 ⁰ C, estimate the permeability of the soil for a porosity of 39% and at 20 ⁰ C. The water table in a certain area is at a depth of 4m below the ground surface. To a depth of 12m the soil consists of very fine sand having an average veloc of saturation of 50%. Calculate the effective pressure	Remember	CACE006.06
3	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^4 cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the seepage velocity during the test. If the test was carried out at a temperature of 25^{0} C, estimate the permeability of the soil for a porosity of 39% and at 20^{0} C. The water table in a certain area is at a depth of 4m below the ground surface. To a depth of 12m the soil consists of very fine sand having an average void ratio of 0.65. Above the water table the sand has an average degree of saturation of 50%. Calculate the effective pressure on a horizontal plane at a depth 10m below the earth surface. Assume	Remember	CACE006.06
3	test was 1120 g, and Gs = 2.68. Determine (a) the hydraulic conductivity in cm/sec, (b) the discharge velocity, and (c) the seepage velocity. Determine the average coefficient of permeability in directions parallel and perpendicular to the planes of a stratified deposit of soil consisting of 3 layers of total thickness 3 m. The top and bottom layers are 0.5 m and 0.8 m thick. The values of K for top, middle, and bottom layers are 2×10^{-4} cm/s, 3×10^{-3} cm/s, 1×10^{-2} cm/s respectively. The following data were recorded in a constant head permeability test. Internal diameter of Permeameter = 7.5 cm, head lost over a sample length of 18 cm = 24.7 cm, quantity of water collected in 60 s = 626 ml, porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil. Also determine the discharge velocity and the seepage velocity during the test. If the test was carried out at a temperature of 25 ⁰ C, estimate the permeability of the soil for a porosity of 39% and at 20 ⁰ C. The water table in a certain area is at a depth of 4m below the ground surface. To a depth of 12m the soil consists of very fine sand having an average veloc of saturation of 50%. Calculate the effective pressure	Remember	CACE006.06

_			G + G = 0.0 + 0.5
5	The water table in a deposit of sand 8m thick is at a depth of 3m below the surface. Above the water table the sand is saturated with capillary water for a 2m height. The saturated and dry density of sample is 19.62kN/m ³ and 18 kN/m ³ respectively. Calculate the effective pressure at 1m, 3m, and 8m below the surface. Hence plot the variation of total pressure, neutral pressure and effective pressure at the depth of 8m.	Understand	CACE006.07
6	 A 5m thick sand layer with specific gravity 2.67 and void ratio 0.6 is underlain by a bed of 4m clay having saturated unit weight 20 kN/m³. Plot the total, neutral & effective stress distribution diagram up to the bottom of clay layer, when 1) Water table is at 2m below Ground surface (S = 50% above WT) 2) Water table is at ground surface 3) The water table is 2m above ground surface. 	Understand	CACE006.07
7	 a) A masonry dam has pervious sand as foundation. Determine the maximum permissible upward gradient, if a FOS of 4 is required against boiling? For the sand, n = 45% and G = 2.65. b) What is the theoretical height of capillary rise and capillary pressure in a fine grained soil with effective size of 0.002 mm? 	Remember	CACE006.07
8	In a falling head permeability test on a sample 12.2 cm high and 441 cm2 in cross-sectional area, the water level in a standpipe of 6.25 mm internal diameter dropped from a height of 75 cm to 24.7 cm in 15 minutes. Find the coefficient of permeability?	Understand	CACE006.07
9	For the subsoil condition shown below, draw the total, neutral and effective stress diagrams up to a depth of 8 m. Neglect capillary flows. 0 m Ground surface Sand e=0.5 Sr=300% Gs=2.7 -4 m Gs=2.65	Remember	CACE006.08
10	For a field pumping test, a well was sunk through a horizontal stratum of sand 14.5 m thick underlain by a clay stratum. Two observation wells were sunk at a horizontal distance of 16 m and 34 m respectively from the pumping well. The initial position of WT was 2.2 m below GL. At a steady-state pumping rate of 925lt/min, the drawdown in the observation wells was found to be 2.45 m and 1.20 m respectively. Calculate the coefficient of permeability of the sand.	Understand	CACE006.08
11	The flow for a concrete dam of 17.5 m base width which retains 5m of water is shown below. The base of the dam is 1.5 m below the ground surface. Compute the seepage flow below the dam per meter length of the dam, uplift pressure along the base of dam and exit gradient.	Remember	CACE006.08

	17.5m		
	Sm 1.Sm 1.Sm 8m 1.Sm		
12	For the soil profile shown below, plot total stress, neutral stress and	Remember	CACE006.09
	effective stress from EI 0 to EI -10 m.		
	EI. 0 S = 50%		
	-2 m S = 75%		
	-4m S = 100 % Sand		
	$rac{S = 100\%}{VT}$ Sand $rac{WT}{e} = 0.5$		
	-6 m $G = 2.70$		
	-10 m		G + G P 0 + 0 0
13	A clay structure of thickness 8 m is located at a depth of 6 m below	Understand	CACE006.09
	the ground surface, it is overlaid by fine sand, the water table is		
	located at a depth of 2 m below the ground surface. For fine sand submerged unit weight is 10.2kN/m ³ . The moist unit weight of sand		
	submerged unit weight is 10.2 kV/m^3 . For clay layer, G=2.76 and		
	water content is 25% . Compute the effective stress at the middle of		
	the clay layer.		
14	A stratified layer of soil consists of 4 layers of equal thickness the	Remember	CACE006.09
14	coefficient of permeability of second, third and fourth layers are	Kemember	CACL000.09
	respectively $\frac{1}{2}$, $\frac{1}{3}$ and twice of the permeability of the top layer.		
	Compute the average permeability of the deposit, parallel and		
	perpendicular to the direction of stratification in terms of permeability		
	of top layer.		
15	a) The end of a clean glass tube is inserted in pure water. What is	Understand	CACE006.09
	the height of capillary rise, if the tube is (a) 0.1 mm, and (b)		
	0.001 mm in diameter?		
	b) Calculate the approx height of capillary rise in a soil having $e =$		
	$0.75, D_{10} = 0.05 \text{ mm.} (C = 25).$		
	UNIT – III		
	STRESS DISTRIBUTION IN SOILS AND COMP	ACTION	
	Part – A (Short Answer Questions)		
1	Define Pressure bulb & explain its significance.	Understand	CACE006.10
2	State the Boussinesq's expression for the vertical stressdistribution in	Remember	CACE006.10
	case of point load.		
3	What are the assumptions of Boussinesq's stress distribution theory?	Remember	CACE006.10
4	What is the difference between Boussinesq's & Westergaard's theory	Remember	CACE006.10
5	Sketch the variation of vertical stress distribution along vertical and	Understand	CACE006.10
	horizontal plane.		
6	Explain the approximate method of stress distribution insoils.	Remember	CACE006.10
7	Sketch Newmark's Influence chart & innumerate its uses.	Understand	CACE006.11
8	State Westergaard's equation for vertical stress at a pointdue to point	Remember	CACE006.11
	load.		
9	Write a short note on isobar.	Understand	CACE006.11
10	State Newmark's equation for vertical stress below thecorner of a	Remember	CACE006.11
	uniformly loaded rectangular area.		
	-		•

11	State Boussinesq's equation for vertical stress at a pointdue to	Remember	CACE006.11
	uniformly loaded circular area.		
12	Define compaction & its use.	Remember	CACE006.12
13	Innumerate the factors affecting compaction.	Remember	CACE006.12
14	Differentiate between compaction and consolidation.	Understand	CACE006.12
15	Differentiate between standard proctor and modified proctor test.	Understand	CACE006.12
16	State zero air voids line equation.	Remember	CACE006.12
17	Name few field compaction equipments for clayey soil.	Understand	CACE006.13
18	What is the field compaction equipment for sandy soil?	Understand	CACE006.13
19	How would you control the compaction quality?	Remember	CACE006.13
20	Define OMC and MDD.	Understand	CACE006.13
	Part - B (Long Answer Questions)		•
1	What are the assumptions made by Boussinesq's in deriving the expression for vertical stress in soil due to point load? Explain its limitations?	Remember	CACE006.10
2	Explain assumptions & limitations of Westergaard's theory. State the expression for vertical stress in soil due to point load.	Remember	CACE006.10
3	Explain Newmark's influence chart preparation and usage.	Understand	CACE006.10
4	Explain the phenomena of compaction?	Remember	CACE006.10
5	Explain the effect of compaction on properties of soil.	Understand	CACE006.11
6	How compaction of soil is controlled in field?	Remember	CACE006.11
7	List the field compaction equipment and explain them in detail.	Understand	CACE006.11
8	Describe standard proctor test and modified proctor test.	Remember	CACE006.11
9	Explain the laboratory procedure to determine maximum dry density	Understand	CACE006.11
	and optimum moisture content by using standard compaction test.		
10	Discuss briefly on methods of compaction and field compaction method.	Remember	CACE006.12
11	Explain in detail various factors affecting the compaction of soil.	Remember	CACE006.12
12	What are the types of rollers used for compacting different types of	Understand	CACE006.12
	soils in the field? How do you decide the compactive effort required		
	for compacting the soil to a desired density in field?		
13	Discuss how quality control of compacted earth mass is ensured in the in-situ.	Remember	CACE006.13
14	Compare the properties of soil on dry of optimum and wet of optimum.	Understand	CACE006.13
15	Explain the structure and engineering behaviour of compacted soils?	Understand	CACE006.13
1.5	Part – C (Problem Solving and Critical Think		0.101000.15
1	A proctor compaction test was conducted on a soil sample and the	Remember	CACE006.10
1	A proton compaction test was conducted on a son sample and thefollowing observations were madeWater content (%) 5.0 6.5 8.9 11.4 13.6 15.1 Mass of wet soil (kg) 1.70 1.90 2.00 1.98 1.95 1.92 If the volume of the mould used was 950 cc and the specific gravity of soil was 2.65. (i) draw dry density vs moisture content curve (ii) also plot the zero air voids line (iii) Find OMC & MDD of soil (iv) find the degree of saturation at OMC.	Kentenioer	CACLOUD.10
2	 a) A long strip footing of width 2m transmits a pressure of 200kPa to the underlying soil. Using 2 : 1 dispersion method, compute the approximate value of the vertical stress at a depth of 5m below the footing. b) A point load of 100 kN acts on the surface. Determine the intensity of vertical stress at a point 2m below the surface at a distance of 2m from the point of load. Use Boussinesq's theory. 	Understand	CACE006.10

3	A mentan analan analog of 2m m Am agains a multiplicate la distribute d lood 80	Un donaton d	CACE006 10
3	A rectangular area of 2m x 4m carries a uniformly distributed load 80	Understand	CACE006.10
	kN/sq.m at ground surface. Find the vertical pressure at 5m below the		
	centre and corner of the loaded area. Solve the problem by a) dividing		
	the rectangle into four equivalent rectangles, b) 2:1 method.		G + GE00 < 11
4	A load 500kN acts as a point load at the surface of a soil mass.	Remember	CACE006.11
	Estimate the vertical stress at a point 4 m below and 3m away from		
	the point of load using Boussinesq's and Westergaard's theory.		
5	During a compaction test, a soil attains a maximum dry density of 18	Remember	CACE006.11
	kN/m^3 at a water content of 12%. Determine the degree of saturation		
	and percent air voids at maximum dry density. Also find the		
	theoretical maximum dry density corresponding to zero air voids at		
	OMC. The specific gravity of soils 2.67.		
6	The maximum dry density of a sample by the light compaction test is	Understand	CACE006.11
0	1.78 g/cc at an optimum water content of 15%. Find the air voids and	ondorbaild	CHELOUOIII
	the degree of saturation. $G = 2.67$ what would be the corresponding		
	value of dry density on the zero air void line at O.W.C.	D 1	G + GE00 < 11
7	a) A Concentrated load of 40kN acts on the surface of the soil mass.	Remember	CACE006.11
	Estimate the vertical stress at a point directly below beneath the		
	load up to a depth of 10m and draw a plot.		
	b) A Concentrated load of 40kN acts on the surface of thesoil mass.		
	Estimate the vertical stress due to load onhorizontal planes at a		
	depth of 1m, 2m and 3m up to a horizontal distance of 3m on		
	either side of centre and draw a plot on horizontal plane.		
8	a) The four legs of a transmission tower form in plan a square of	Remember	CACE006.11
	side 4m and together carry a total load of 200kN. Compute the		
	increase in vertical stress at a depth of 3m vertically below a Leg.		
	Use Boussinesq's theory.		
	b) Find the intensity of vertical pressure at a point 4m directly below		
	20 kN point load acting at a horizontal ground surface. What will		
	be the vertical pressure at a point 2 m horizontally away from the		
	axis of loading but at the same depth of 4m and directly under the		
9	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.	Remember	CACE006 12
9	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has	Remember	CACE006.12
9	 axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m. A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water 	Remember	CACE006.12
9	 axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m. A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit 	Remember	CACE006.12
9	 axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m. A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what 	Remember	CACE006.12
	 axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m. A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67. 		
9	 axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m. A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67. The records of a soil compaction in the past gave compaction water 	Remember	CACE006.12 CACE006.12
	 axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m. A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67. The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of 		
10	 axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m. A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67. The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil? 	Remember	CACE006.12
	 axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m. A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67. The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil? Standard Proctor test conducted on a soil gave the following details: 		
10	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit 	Remember	CACE006.12
10	 axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m. A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67. The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil? Standard Proctor test conducted on a soil gave the following details: 	Remember	CACE006.12
10	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil?Standard Proctor test conducted on a soil gave the following details:Bulk (kN/m³)18.019.019.620.521.020.520.1	Remember	CACE006.12
10	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil?Standard Proctor test conducted on a soil gave the following details:Bulk (kN/m³)19.019.620.521.020.520.1(kN/m³)11.012.514.016.018.019.5	Remember	CACE006.12
10	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil?Standard Proctor test conducted on a soil gave the following details:Bulk (kN/m³)18.019.019.620.521.020.520.1Water content (%)9.611.012.514.016.018.019.5Find OMC and maximum dry density by plotting compaction curve.	Remember	CACE006.12
10	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of $2.06g/cm^3$ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil?Standard Proctor test conducted on a soil gave the following details:Bulk (kN/m ³)18.019.019.620.521.020.520.1Water content (%)9.611.012.514.016.018.019.5Find OMC and maximum dry density by plotting compaction curve. Determine degree of saturation at OMC, if G = 2.68	Remember Understand	CACE006.12 CACE006.12
10	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of 	Remember	CACE006.12
10	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil?Standard Proctor test conducted on a soil gave the following details:Bulk Water content (%)9.611.012.514.016.018.019.5Find OMC and maximum dry density by plotting compaction curve. Determine degree of saturation at OMC, if G = 2.68The in-situ void ratio of a granular soil deposit is 0.50. The maximum and minimum ratios of the soil were determined to be 0.75 and 0.35.	Remember Understand	CACE006.12 CACE006.12
10	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of 	Remember Understand	CACE006.12 CACE006.12
10 11 12	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil?Standard Proctor test conducted on a soil gave the following details:Bulk Water content (%)9.611.012.514.016.018.019.5Find OMC and maximum dry density by plotting compaction curve. Determine degree of saturation at OMC, if G = 2.68The in-situ void ratio of a granular soil deposit is 0.50. The maximum and minimum ratios of the soil were determined to be 0.75 and 0.35. G =2.67. Determine the relative density and relative compaction of the deposit.	Remember Understand Remember	CACE006.12 CACE006.12 CACE006.12
10	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil?Standard Proctor test conducted on a soil gave the following details:Bulk (kN/m³)19.019.620.521.020.520.1(kN/m³)11.012.514.016.018.019.5Find OMC and maximum dry density by plotting compaction curve. Determine degree of saturation at OMC, if G = 2.68The in-situ void ratio of a granular soil deposit is 0.50. The maximum and minimum ratios of the soil were determined to be 0.75 and 0.35. G =2.67. Determine the relative density and relative compaction of the deposit.The compaction of an embankment is carried out in 300 mm thick	Remember Understand	CACE006.12 CACE006.12
10 11 12	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil?Standard Proctor test conducted on a soil gave the following details:Bulk Water content (%)9.611.012.514.016.018.019.5Find OMC and maximum dry density by plotting compaction curve. Determine degree of saturation at OMC, if G = 2.68The in-situ void ratio of a granular soil deposit is 0.50. The maximum and minimum ratios of the soil were determined to be 0.75 and 0.35. G =2.67. Determine the relative density and relative compaction of the deposit.The compaction of an embankment is carried out in 300 mm thick 	Remember Understand Remember	CACE006.12 CACE006.12 CACE006.12
10 11 12	axis of loading but at the same depth of 4m and directly under the load at a depth of 3 m.A sample of soil compacted according to the standard Proctor test has a density of 2.06g/cm³ at 100% compaction and at an optimum water content of 14%. What is the dry unit weight? What is the dry unit weight at zero air voids? If the voids become filled with water what would be the saturated unit weight? Assume G=2.67.The records of a soil compaction in the past gave compaction water content of 15% and saturation 85%. What might be the dry density of soil?Standard Proctor test conducted on a soil gave the following details:Bulk (kN/m³)19.019.620.521.020.520.1(kN/m³)11.012.514.016.018.019.5Find OMC and maximum dry density by plotting compaction curve. Determine degree of saturation at OMC, if G = 2.68The in-situ void ratio of a granular soil deposit is 0.50. The maximum and minimum ratios of the soil were determined to be 0.75 and 0.35. G =2.67. Determine the relative density and relative compaction of the deposit.The compaction of an embankment is carried out in 300 mm thick	Remember Understand Remember	CACE006.12 CACE006.12 CACE006.12

	overlap, calculate the number of passes required to develop		
	compactive energy equivalent to IS compaction for each layer.		
14	A compacted fill is to be constructed using one of the two potential	Understand	CACE006.13
	borrow areas A and B. The in-situ properties of the soil at these sites		
	are as follows:		
	Borrow area A: e=0.80, w=17.5%, G=2.65		
	Borrow area B: e=0.68, w=14.0%, G=2.65		
	The compacted volume of the embankment will be 50,000 m ³ , its		
	unit weight 20 kN/m ³ at a placement water content of 20%.		
	Soil from borrow area is to be excavated and transported to the site 10^{-3}		
	in trucks of 10 m ³ capacity. During excavation and dumping of soil in		
	the trucks, the soil increases in volume by 10%. At the site, the required additional amount of water is added to the soil and		
	compacted to the desired extent by pneumatic rubber tyred rollers.		
	The cost of excavation, transportation and compaction is Rs 400 per		
	truck for borrow area A and Rs 500 per truck for borrow area B.		
	Water charges per truck is Rs 150. Which of the two borrow areas is		
	more economical?		
15	Two columns A and B are standing 5m apart. Load transferred	Understand	CACE006.13
	through them may be taken as point load. Through column A, a load		
	of 400 kN are acting. Calculate the resultant vertical pressure due to		
	these load on a horizontal plane 2m below the ground surface at		
	points vertically below the column A and B.		
	UNIT 4		
	CONSOLIDATION		
	Part – A (Short Answer Questions)		
1	Define consolidation.	Remember	CACE006.14
2	What are the different types of settlements in soil.	Understand	CACE006.14
3	Define under consolidated clays.	Remember	CACE006.14
<u>4</u> 5	Define over consolidated clays.	Understand Remember	CACE006.14
<u> </u>	Define normally consolidated clays.	Remember	CACE006.15 CACE006.15
0	Write the formula to determine the compression index in terms of liquid limit.	Remember	CACE000.13
7	Explain the significance of pre-consolidation pressure.	Understand	CACE006.15
8	List the assumptions of Terzaghi's 1-D consolidation theory.	Remember	CACE006.15
9	Define compression index.	Understand	CACE006.16
10	Define coefficient of consolidation.	Remember	CACE006.16
11	Write the expression for immediate settlement.	Remember	CACE006.16
12	Differentiate between primary consolidation and secondary	Understand	CACE006.16
-	consolidation.		
14	Define primary consolidation & write the expression for calculating	Remember	CACE006.17
	the consolidation settlement.		
15	Define recompression index.	Understand	CACE006.17
16	Discuss Terzaghi's theory of consolidation.	Remember	CACE006.17
17	How is consolidation different from compaction?	Remember	CACE006.18
18	Under what conditions secondary consolidation becomes important?	Understand	CACE006.18
19	Differentiate between coefficient of compressibility and coefficient of	Remember	CACE006.18
• *	volume decrease.		a land
20	Define degree of consolidation.	Understand	CACE006.18
	Part - B (Long Answer Questions)		
1	Discuss Terzaghi's theory of consolidation, stating the various	Remember	CACE006.14
	assumptions and their validity.		
2	Write a brief procedure of consolidation test to determine the	Remember	CACE006.14
	coefficient of consolidation by both logarithmic time fitting method.		

3	Explain the square root of time fitting method of determining the	Remember	CACE006.14
4	coefficient of consolidation of a clay sample? Explain the procedure for determining pre consolidated pressure?	Remember	CACE006.15
5	Explain how you will determine void ratio of the sample by change in	Understand	CACE000.15
5	void ratio method. Also explain how do you find coefficient volume	onderstand	CHCL000.15
	change?		
6	What are the different causes of pre consolidation of soils? What is	Remember	CACE006.15
	the effect of pre consolidation on the settlement?		
7	Differentiate between normally consolidated, under consolidated and	Understand	CACE006.16
	over consolidated soils. How would you determine the over		
	consolidation pressure.		
8	Discuss the spring analogy for primary consolidation.	Remember	CACE006.16
9	What is over consolidation soil? Explain briefly with an example.	Understand	CACE006.16
10	Explain briefly the laboratory consolidation test.	Remember	CACE006.17
11	Explain the procedure for determining the total settlement of the	Understand	CACE006.17
	footing.		
12	Define the following terms:	Remember	CACE006.17
	(i) Coefficient of compressibility (ii)Coefficient of volume change		
	(iii)Compression index (iv)Expansion index (v) Recompression index.		
13	Explain graphical method to determine the pre-consolidation pressure.	Understand	CACE006.18
14	Explain the procedure for determining the consolidation settlement.	Remember	CACE006.18
15	Sketch e-p and e-logp curves and explain their significance.	Understand	CACE006.18
	Part – C (Problem Solving and Critical Thinl		•
1	A soil sample 20 mm thick takes 20 minutes to reach 20%	Understand	CACE006.14
	consolidation. Find the time taken for a clay layer 6 m thick to reach		
	40% consolidation. Assuming double drainage in both the cases.		
2	A stratum of normally consolidated clay 7m thick is located at a depth	Understand	CACE006.14
	12m below ground level. The natural moisture content of the clay is		
	43% and its liquid limit is 48%. The specific gravity of the solid		
	particles is 2.76. The water table is at a depth of 5m below ground		
	surface. The soil is sand above the clay stratum. The submerged unit		
	weight of the sand is 11kN/m ³ and 18 kN/m ³ above the water table. The average increase in pressure at the centre of the clay stratum is		
	120kN/m ³ due to the weight of the building that will be constructed on		
	the sand above the clay stratum. Estimate the expected settlement of		
	the structure.		
3	A clay layer of 6m thick is situated with sand on top and impervious	Remember	CACE006.14
5	rock at the bottom. In a consolidation test conducted in the laboratory	remember	C/102000.14
	on an undisturbed specimen of 20 mm thick clay sample, 90%		
	settlement was reached in 3 hours. Estimate the time in years for the		
	building on this deposit to reach 90% of its final settlement.		
4	An oedometer test is performed on a 2 cm thick clay sample. After 5	Understand	CACE006.15
	minutes, 50% consolidation is reached. After how long time would		
	the same degree of consolidation is achieved in the field where the		
	clay layer is 3.70 m thick? Assume the sample and the clay layers		
	have the same drainage boundary conditions (double drainage).		
5	In a consolidation test the pressure on a sample was increased from	Remember	CACE006.15
	150 to 300kN/m ² . The void ratio after 100% consolidation under		
	150kN/m ² was 0.945, and that under 300 kN/m ² was 0.812. The		
	coefficient of permeability of the soil was 25 x 10-6 mm/s and the		
	initial height of the sample was 20mm. Determine (i) the coefficient		
	of compressibility, (ii) the coefficient of volume compressibility.		-
6	Saturated soil of 5 m thick lies above an impervious stratum and	Understand	CACE006.15
	below a pervious stratum. It has a compression index of 0.25 with $k =$		
	3.2×10^{-10} m/sec. Its void ratio at a stress of 147 kN/m ² is 1.9.		

7	Compute (i) The change in voids ratio due to increase of stress to 196		
7			
7	kN/m ² (ii) Coefficient of volume compressibility (iii) Coefficient of		
7	consolidation (iv) Time required for 50% consolidation.		
Ì	A 8 m thick clay layer with a single drainage settles by 120 mm in 2	Remember	CACE006.16
	years. The coefficient of consolidation for this clay was found to be 6		
	$X10^{-3}$ cm ² /sec. Calculate the likely ultimate consolidation settlement		
	and find how long it will take to undergo 90 percent of this settlement.		
8	A layer of submerged soil 8m thick is drained at its upper surface but	Understand	CACE006.16
Ũ	is underlain by impermeable shale. The sol is subjected to a uniform	Chiefstand	01102000110
	vertical stress of 200 kN/m ² which is produced by the construction of		
	an extensive embankment on the ground surface. If the coefficient of		
	consolidation for the soil is 2 x 10^{-3} cm ² /sec calculate the times when		
	50% and 90% respectively of the final settlement will take place.		
0	Consider $T_{50} = 0.197$.	D 1	
9	A laboratory sample of clay 2cm thick took 15min to attain 60%	Remember	CACE006.16
	consolidation under a double drainage condition. What will be the		
	time required to attain the same degree of consolidation for a clay		
	layer 3cm thick under the foundation of a building for a similar		
	loading and drainage condition, What is the value of c_v .		
10	During a consolidation test, as sample of fully saturated clay 3cm	Understand	CACE006.17
	thick is consolidated under a pressure increment of 200kN/m ² . When		
	equilibrium is reached, the sample thickness is reduced to 2.6cm. The		
	pressure is then removed and the sample is allowed to expand and		
	absorb water. The final thickness is observed as 2.8cm and the final		
	moisture content is determined as 24%. If the specific gravity of the		
	soil solids is 2.7, find the void ratio of the sample before and after		
	consolidation.		
11	A 2.5cm thick sample of clay was taken from the field for predicting	Understand	CACE006.17
	the time of settlement for a proposed building which exerts pressure		
	of 100kN/m^2 over the clay stratum. The sample was loaded to		
	100kN/m ² and proper drainage allowed from top to bottom. It was		
	seen that 50% of the total settlement occurred in 3minutes. Find the		
	time required for 50% of the total settlement of the building, if it is to		
	be constructed on a 6m thick layer of clay which extends from the		
12	ground surface and is underlain by sand.	Remember	CACE006 17
12	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the	Remember	CACE006.17
12	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a	Remember	CACE006.17
12	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would	Remember	CACE006.17
12	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of	Remember	CACE006.17
	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m.		
12	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to	Remember	
	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found		
	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about		CACE006.17 CACE006.18
	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found		
	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double drainage to occur.	Understand	CACE006.18
	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double		CACE006.18
13	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double drainage to occur.	Understand	
13	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double drainage to occur. A sample of layer of silty clay, 5 m thick were tested and the results are as follows: initial void ratio is 0.90, pre-consolidation pressure is	Understand	CACE006.18
13	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double drainage to occur. A sample of layer of silty clay, 5 m thick were tested and the results are as follows: initial void ratio is 0.90, pre-consolidation pressure is 120 kN/m^2 , $C_r = 0.03$ and $C_c = 0.27$. Estimate consolidation settlement	Understand	CACE006.18
13	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double drainage to occur. A sample of layer of silty clay, 5 m thick were tested and the results are as follows: initial void ratio is 0.90, pre-consolidation pressure is 120 kN/m^2 , $C_r = 0.03$ and $C_c = 0.27$. Estimate consolidation settlement if present overburden pressure is 70 kN/m^2 and change in stress is 80	Understand	CACE006.18
13	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double drainage to occur. A sample of layer of silty clay, 5 m thick were tested and the results are as follows: initial void ratio is 0.90, pre-consolidation pressure is 120 kN/m ² , C _r = 0.03 and C _c = 0.27. Estimate consolidation settlement if present overburden pressure is 70kN/m ² and change in stress is 80 kN/m ² (ii) when change is stress is 40 kN/m ² .	Understand	CACE006.18 CACE006.18
13	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double drainage to occur. A sample of layer of silty clay, 5 m thick were tested and the results are as follows: initial void ratio is 0.90, pre-consolidation pressure is 120 kN/m ² , C _r = 0.03 and C _c = 0.27. Estimate consolidation settlement if present overburden pressure is 70kN/m ² and change in stress is 80 kN/m ² (ii) when change is stress is 40 kN/m ² . A soil has a compression index Cc of 0.28. At a stress of 120kN/m ² ,	Understand	CACE006.18
13	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double drainage to occur. A sample of layer of silty clay, 5 m thick were tested and the results are as follows: initial void ratio is 0.90, pre-consolidation pressure is 120 kN/m ² , C _r = 0.03 and C _c = 0.27. Estimate consolidation settlement if present overburden pressure is 70kN/m ² and change in stress is 80 kN/m ² (ii) when change is stress is 40 kN/m ² . A soil has a compression index Cc of 0.28. At a stress of 120kN/m ² , the void ratio was 1.02. Calculate (i) void ratio if the stress on the soil	Understand	CACE006.18 CACE006.18
13	ground surface and is underlain by sand. A certain clay layer has a thickness of 5 m. After 1 year, when the clay was 50 percent consolidated, 8 cm of settlement occurred. For a similar clay and loading conditions, how much settlement would occur at the end of 1 year and 4 years respectively, if the thickness of this new layer were 25 m. The loading period for a new building extended form May 1995 to May 1997. In May 1960, the average measured settlement was found to be 11.43cm. It is known that the ultimate settlement will be about 35.56cm. Estimate the settlement in May 1965. Assume double drainage to occur. A sample of layer of silty clay, 5 m thick were tested and the results are as follows: initial void ratio is 0.90, pre-consolidation pressure is 120 kN/m ² , C _r = 0.03 and C _c = 0.27. Estimate consolidation settlement if present overburden pressure is 70kN/m ² and change in stress is 80 kN/m ² (ii) when change is stress is 40 kN/m ² . A soil has a compression index Cc of 0.28. At a stress of 120kN/m ² ,	Understand	CACE006.18 CACE006.18

	UNIT V		
SHEAR STRENGTH OF SOILS			
Part – A (Short Answer Questions)			
1	Explain importance of shear strength of soils in foundation design.	Remember	CACE006.19
2	Explain about determination of shear strength using vane shear test.	Understand	CACE006.19
3	What are the names of shear tests based on drainage conditions?	Remember	CACE006.19
4	What are the merits of direct shear test?	Understand	CACE006.20
5	What are the different tests for shear strength?	Remember	CACE006.20
6	What are the demerits of direct shear test?	Remember	CACE006.20
7	Define dilatancy.	Understand	CACE006.21
8	What does the Mohr Circle of stress represent?	Remember	CACE006.21
9	What is the meaning of peak and residual shear strength of clay soils?	Understand	CACE006.21
10	How can liquefaction in sands be prevented?	Remember	CACE006.21
11	What are the merits and demerits of tri-axial test?	Understand	CACE006.22
12	What are the merits and demerits of vane shear test.	Remember	CACE006.22
13	What is unconfined compression test?	Remember	CACE006.22
14	What is the difference between angle of repose and angle of internal	Understand	CACE006.23
	friction	chieffound	0.102000.20
15	Define critical void ratio.	Remember	CACE006.23
16	What are the factors on which critical void ratio depends?	Understand	CACE006.23
17	State Mohr- Coulomb failure theories.	Remember	CACE006.23
18	Describe tri-axial shear test.	Understand	CACE006.23
19	Discuss the shear characteristics of cohesion-less soils.	Remember	CACE006.23
20	Discuss the shear characteristics of cohesive soils.	Understand	CACE006.23
	Part - B (Long Answer Questions)	Childerbland	01102000.25
1	When do you use the following shear tests and give reasons: (a) direct	Remember	CACE006.19
1	shear test; (b) vane shear test; (c) unconfined compression test.	Remember	CHCL000.17
2	Sketch stress strain diagrams for loose sand, dense sand, soft clay and	Understand	CACE006.19
2	stiff clay and comment.	Chacistana	Chelouo.ij
3	Explain the merits and demerits of direct shear test when compared	Remember	CACE006.19
Ũ	with the other laboratory tests to determine the shear strength of soil.		
4	Write a note on the laboratory direct shear test.	Understand	CACE006.20
5	What is the Mohr-Coulomb theory of failure?Sketch typical strength	Remember	CACE006.20
-	envelope for a soft clay, clean sand and a silty clay.		
6	What are the various drainage conditions and what is the significance	Remember	CACE006.20
-	of each drainage conditions?		
7	Classify the shear tests based on drainage conditions. Explain how the	Understand	CACE006.20
	pore pressure variation and volume change take place during these		
	tests. Enumerate the field conditions which necessitate each of these		
	tests.		
8	Discuss modified failure envelope. What are its advantages and	Remember	CACE006.21
	disadvantages over the standard failure envelope.		
9	Explain liquefaction of soils. Discuss various conditions causing	Understand	CACE006.21
	liquefaction of sand.		
10	What is Coulomb's equation for shear strength of soil? Discuss the	Remember	CACE006.21
	factors that affect the shear strength parameters of soil.		
11	For which types of soils will the unconfined compression test give	Remember	CACE006.22
	reliable results? Draw a Mohr circle for this test. How do you		
	consider the change in the area of the specimen which takes place		
	during the test in final results?		
12	What is critical void ratio? How would you determine it in the	Remember	CACE006.22
	laboratory?		
13	Discuss the characteristics of cohesion-less and cohesive soils.	Remember	CACE006.23
14	Explain the phenomena of dilatancy & where it occurs.	Understand	CACE006.23

15	Discuss in detail the laboratory procedure for determining the shear	Remember	CACE006.23
	strength of soil using tri-axial test.	• ``	
	Part – C (Problem Solving and Critical Think		
1	The results of two drained triaxial tests on saturated clay are given as Specimen I : Horizontal confining stress = 70 kN/m ² Deviator stress = 213 kN/m ² Specimen II : Horizontal confining stress = 100 kN/m ² Deviator stress = 250 kN/m ² Calculate shear strength parameters of the soil.	Remember	CACE006.19
2	Given the following data from a consolidated undrained test with pore	Understand	CACE006.19
	water pressure measurement, determine the total and effective stress parameters: $\sigma 3$ 100 kN/m ² 200 kN/m ² $(\sigma 1 - \sigma 3)$ 150 kN/m ² 192 kN/m ² uf60 kN/m ² 140 kN/m ²		
3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Remember	CACE006.19
4	Determine the shear strength in terms of effective stress on a plane within saturated soil mass at a point where the total normal stress is 200 kN/m ² and the pore water pressure is 80 kN/m ² . The effective stress shear strength parameters for the soil are c' = 16 kN/m ² and $\varphi' = 30^{0}$.	Understand	CACE006.20
5	In an in-situ vane shear test on a saturated clay, a torque of 35 Nm was required to shear the soil. The diameter of the vane was 50 mm and length 100 mm. Calculate the undrained shear strength of clay. The vane was then rotated rapidly to cause remoulding of the soil. The torque required to shear the soil in the remoulded state was 5 Nm. Determine the sensitivity of the clay.	Remember	CACE006.20
6	A direct shear test was conducted on a soil, whose results are given below: Normal stress, kN/m^2 150 250 Shear stress at failure kN/m^2 110 120 Plot the graph and determine the shear strength parameters of the soil. If a triaxial test is conducted on the same soil, what would be the deviator stress at failure when the cell pressure is 150 kN/m^2 .	Understand	CACE006.20
7	A series of shear tests was performed on a soil. Each test was carried out until the soil sample sheared and the principal stress for each test are as follows: $ \begin{array}{r} \hline \text{Test} & \overline{\sigma_3(kN/m^2)} & \overline{\sigma_1(kN/m^2)} \\ \hline 1 & 300 & 875 \\ \hline 2 & 400 & 1160 \\ \hline 3 & 500 & 1460 \\ \hline \end{array} $ Plot the Mohr circle of stress and determine strength envelope and angle of internal friction of the soil.	Understand	CACE006.20
8	A direct shear test was performed on a 6cm x 6cm sample of dry sand the normal load was 360N. The failure occurred at a shear load of 180N.Plot the Mohr strength envelope and determine ∞ . Assume c=0	Understand	CACE006.21

	also determine principal stress at failure.		
9	An unconfined compression test was conducted on an undisturbed	Remember	CACE006.21
	sample of clay. The sample had a diameter of 37.5 mm and 80 mm		
	long. The load at failure measured by proving ring was 28 N and the		
	axial deformation of the sample at failure was 13mm. Determine the		
	unconfined compressive strength and the undrained shear strength of		
	the clay.		
10	What is the shear strength of soil along a horizontal plane at a depth	Understand	CACE006.21
	4m in a deposit of sand having the following properties:		
	Angle of internal friction $=35^{\circ}$, Dry unit weight $=17$ kN/m ³ , Specific		
	gravity =2.7. Assume the ground water table is at a depth of 2.5m		
	from the ground surface. Also find the changes in shear strength when		
	the water table rises to ground surface.		
11	A vane 11.25cm long and 7.5cm in diameter was pressed into soft	Remember	CACE006.22
	clay at the bottom of a borehole. Torque was applied to cause failure		
	of soil. The shear strength of clay was found to be 37kN/m ² .		
	Determine the torque that was applied.		
12	Determine the shear strength in terms of effective stress on a plane	Understand	CACE006.22
	within a saturated soil mass at a point where the total stress is 200		
	kN/m^2 and the pore water pressure is 80 kN/m^2 . The effective stress		
	shear strength parameters for the soil are: $c' = 16 \text{ kN/m}^2$ and effective		
	angle of internal friction = 30° .		
13	The results obtained from a series of CU tests on a soil gave the	Remember	CACE006.23
	following results: $C_{CU} = C_{CU} = 0$, $\phi_{CU} = 15^{\circ}$, $\phi_{CU} = 30^{\circ}$. A sample of		
	this soil was tested in a CU test under a cell pressure of 150 kN/m^2 .		
	Determine (a) Deviator stress at failure (b) pore water pressure at		
	failure (c) minor principal effective stress at failure and (d) major		
	principal effective stress at failure.		
14	An unconfined compressive test was conducted on an undisturbed	Understand	CACE006.23
	sample of clay. The sample had a diameter of 37.5 mm and was 80		
	mm long. The load at failure measured by the proving ring was 28N		
	and the axial deformation of the sample at failure was 13mm.		
	Determine the unconfined compressive strength and the un-drained		
	shear strength of clay.		
15	A drained triaxial test on sand with $\sigma_3' = 150 \text{ kN/m}^2$ gave (σ_1'/σ_3')	Understand	CACE006.23
	=3.7. Compute (a) σ_{1f} (b) (σ_1 - σ_3) _f and ϕ '.	51100150010	
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$		

Prepared by: Mrs J. Hymavathi, Assistant Professor, Department of Civil Engineering MrY. Ravi Kumar, Assistant Professor, Department of Civil Engineering

HOD, CE