## AERONAUTICAL ENGINEERING

## TUTORIAL QUESTION BANK

| Course Name | $:$ | LOW SPEED AERODYNAMICS |
| :--- | :---: | :--- |
| Course Code | $:$ | AAE004 |
| Regulation | $:$ | IARE - R16 |
| Year | $:$ | $2018-2019$ |
| Class | $:$ | B. Tech IV Semester |
| Branch | $:$ | Aeronautical Engineering |
| Team of Instructors | $:$ | Dr. Maruthupandiyan K <br> Department of Aeronautical Engineering |

## COURSE OBJECTIVES (COs):

The course should enable the students to:

| The course should enable the students to: |  |
| :---: | :--- |
| I | Understand the basics of aerodynamics, aerofoil and wing characteristics |
| II | Calculate forces and moments acting on aero foils and wings under ideal flow conditions. |
| III | Design a propeller and determine aerodynamic interaction effects between different components of <br> aircraft. |

## COURSE LEARNING OUTCOMES (CLOs)

Students, who complete the course, will be able to demonstrate the ability to do the following:

| CLO Code | At the end of the course, the student will have the ability to: |
| :--- | :--- |
| CAAE004.01 | Apply knowledge and understand the essential facts, concepts and principles of <br> aerodynamics. |
| CAAE004.02 | Adapt the basic knowledge of mathematics, science and engineering for problem solving. |
| CAAE004.03 | Describe principles of physics and aerodynamics to study the wing-body interference <br> junction. |
| CAAE004.04 | Explain the concept of boundary layer flows to increase the performance of the body. |
| CAAE004.05 | Understand the concept of source, sink, doublet and vortex. |
| CAAE004.06 | Demonstrate importance of aerodynamics to develop effective aircraft design and operations. |
| CAAE004.07 | Apply the concept of lifting line theory to study potential flows over different aerofoils. |
| CAAE004.08 | Identify the elliptic load distribution for obtaining high lift performance on finite wings. |
| CAAE004.09 | Evaluate the source and vortex panel method for non-lifting and lifting aerofoils. |


| CAAE004.10 | Illustrate the propeller aerodynamics and the effects of propeller on the wing. |
| :--- | :--- |
| CAAE004.11 | Understand the concept of Prandtl's lifting line theory and eliptical lift distribution. |
| CAAE004.12 | Understand the lift augmentation techniques for high-lift devices and slats. |
| CAAE004.13 | Understand aerodynamic effect of taper and twist applied to wings. |
| CAAE004.14 | Apply temperature effects on boundary layer, transition and turbulent flow regimes. |
| CAAE004.15 | Understand the aerodynamic effect of vortex formation around wings. |
| CAAE004.16 | Evaluate flow past non lifting bodies and method of singularities |
| CAAE004.17 | Understand the effect of sweep in the context of delta wings. |
| CAAE004.18 | Understand the relation between circulation and lift. |
| CAAE004.19 | Understand the various sources of drag including induced drag and skin friction drag. |
| CAAE004.20 | Evaluate displacement thickness, momentum thickness, energy thickness. |

UNIT - I

| INTRODUCTORY TOPICS FOR AERODYNAMICS |  |  |  |
| :--- | :--- | :--- | :--- |
| PART - A (SHORT ANSWER QUESTIONS) |  |  |  |
| S No | QUESTIONS |  | Blooms <br> Taxonomy <br> Level |
|  | Course <br> Learning <br> Outcomes <br> (CLOs) |  |  |
| 1 | Define incompressible flow. | Remember | CAAE004:02 |
| 2 | What is D'Alemberts paradox | Understand | CAAE004:04 |
| 3 | Magnus effect creates the aerodynamic forces over spinning bodies. <br> Justify the statement. | Remember | CAAE004:04 |
| 4 | Describe stream and potential functions for doublet flow. | Understand | CAAE004:03 |
| 5 | Define streamline. | Understand | CAAE004:01 |
| 6 | Describe stream and potential functions for uniform flow. | Understand | CAAE004:03 |
| 7 | Explain stream and potential functions for source and sink flows. | Understand | CAAE004:03 |
| 8 | Explain stream and potential functions for vortex flow. | Understand | CAAE004:03 |
| 9 | Define doublet. | Understand | CAAE004:03 |
| 10 | Define Kutta-Joukowski theorem. | Remember | CAAE004:04 |
| 11 | Define potential flow | Remember | CAAE004:04 |


| PART - B (LONG ANSWER QUESTIONS) |  |  |  |
| :---: | :---: | :---: | :---: |
| S No | QUESTIONS | $\begin{gathered} \text { Blooms } \\ \text { Taxonomy } \\ \text { Level } \end{gathered}$ | Course <br> Learning <br> Outcomes <br> (CLOs) |
| 1 | Derive the equation for relation between stream function and velocity. | Understand | CAAE004:03 |
| 2 | Derive the equation for relation between potential function and velocity. | Understand | CAAE004:03 |
| 3 | Prove that velocity potential and stream function are mutually perpendicular to each other. | Understand | CAAE004:03 |
| 4 | Derive the stream function and potential function for uniform flow. | Remember | CAAE004:03 |
| 5 | Derive the stream function and potential function for source flow. | Remember | CAAE004:03 |
| 6 | Derive the equation of dividing streamline for source and uniform flow combination and draw resulting flow field. | Remember | CAAE004:03 |
| 7 | Derive the equation of rankine oval and illustrate resulting flow field, | Remember | CAAE004:03 |
| 8 | Derive the stream function and potential function for doublet flow. | Remember | CAAE004:03 |
| 9 | Derive the equation for nonlifting flow over circular cylinder and plot the variation of pressure over the cylinder. | Remember | CAAE004:03 |
| 6 | Derive Kutta - Joukowski theorem and prove that lift is directly proportional to circulation. | Understand | CAAE004:03 |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS) |  |  |  |
| 1 | Derive the stream function and potential function for vortex flow | Remember | CAAE004:03 |
| 2 | Derive the equation for lifting flow over a cylinder and draw the flow field around it for different value of circulation. | Understand | CAAE004:04 |
| 3 | Prove that the velocity potential and the stream function for a uniform flow,, satisfy Laplace's equation. | Remember | CAAE004:03 |
| 4 | Explain in detail how combination of uniform flow, doublet flow and vortex flow produces lifting flow over a cylinder. | Remember | CAAE004:03 |
| 5 | Consider a uniform flow with velocity $\mathrm{V} \propto$. Show that this flow is a physically possible incompressible flow and that it is irrotational. | Remember | CAAE004:15 |
| 6 | Prove that the velocity potential and the stream function for a source flow,satisfy Laplace's equation. | Remember | CAAE004:03 |
| 7 | Consider the velocity field given by $u=y /\left(x^{2}+y^{2}\right)$ and $v=-x /\left(x^{2}+\right.$ $y^{2}$ ). Calculate the equation of the streamline passing through the point $(0,5)$. Calculate the vorticity. | Remember | CAAE004:04 |
| 8 | Consider the lifting flow over a circular cylinder with a diameter of 0.5 m . The freestream velocity is $25 \mathrm{~m} / \mathrm{s}$, and the maximum velocity on the surface of the cylinder is $75 \mathrm{~m} / \mathrm{s}$. The freestream conditions are those for a standard altitude of 3 km . Calculate the lift per unit span on the cylinder. | Remember | CAAE004:03 |
| 9 | Consider the lifting flow over a circular cylinder. The lift coefficient is 5 . Calculate the location of the stagnation points and the points on the cylinder where the pressure equals freestream static pressure. | Understand | CAAE004:03 |
| 10 | Consider the lifting flow over a circular cylinder. The lift coefficient is 5. Determine: <br> (a) the peak (negative) pressure coefficient <br> (b) the location of the stagnation points <br> (c) points on the cylinder where the pressure equals freestream static pressure | Understand | CAAE004:03 |

## THIN AEROFOIL THEORY

## PART - A (SHORT ANSWER QUESTIONS)

| S No | QUESTIONS | Blooms <br> Taxonomy <br> Level | Course Learning <br> Outcomes <br> (CLOs) |
| :--- | :--- | :---: | :--- |
| 1 | Describe center of pressure of an airfoil. | Understand | CAAE004:05 |
| 2 | Define airfoil. | Remember | CAAE004:13 |
| 3 | What is aerodynamic center? | Understand | CAAE004:13 |
| 4 | What are all the assumptions made for thin airfoil theory? | Understand | CAAE004:05 |
| 5 | Explain Kutta condition for the steady state flow at the trailing edge. | Understand | CAAE004:05 |
| 6 | What are high-lift airfoils? | Remember | CAAE004:10 |
| 7 | What are high-lift devices? Give examples. | Remember | CAAE004:10 |
| 8 | Define airfoil stall. | Remember | CAAE004:04 |
| 9 | Define zero-lift angle of attack of an airfoil. | Understand | CAAE004:06 |
| 10 | What is mean by camber line? | Remember | CAAE004:06 |

## PART - B (LONG ANSWER QUESTIONS)

| 1 | Draw neat skech of airfoil and explain its nomenclature. | Remember | CAAE004:06 |
| :--- | :--- | :--- | :--- |
| 2 | Describe the stalling of an airfoil and the related aerodynamic <br> phenomena. | Understand | CAAE004:04 |
| 3 | Prove that the local jump in tangential velocity across a vortex sheet <br> is equal to the local sheet strength. | Remember | CAAE004:06 |
| 4 | Explain Kutta condition and its significance for the case of steady <br> flow over an airfoil. | Remember | CAAE004:06 |
| 5 | Describe high-lift devices and why they are needed. | Remember | CAAE004:10 |
| 6 | Explain with sketch the thin aerofoil theory and prove that lift <br> coefficient is directly proportional to angle of attack. | Remember | CAAE004:06 |
| 7 | Explain in detail about how lift is generated by airfoil. | Remember | CAAE004:06 |
| 8 | What is the difference between aerodynamic characteristics of flow <br> over wing of finite aspect ratio and infinte aspect ratio. | Remember | CAAE004:06 |
| 9 | Explain why lift coefficient for airfoil is more than wing having <br> same airfoil in detail. | Remember | CAAE004:06 |
| 10 | Explain in detail about high lift airfoils. | Understand | CAAE004:06 |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING) | CAAE004:06 |  |  |
|  | Consider an NACA 2412 airfoil with a chord of 0.64 m in an <br> airstream at standard sea level conditions. The freestream velocity is <br> 70 m/s. The elift per unit span is 1254 N/m. calculate the strength <br> of the steady-state starting vortex. | Understand |  |



| S No | QUESTIONS | Blooms Taxonomy Level | Course Learning Outcomes (CLOs) |
| :---: | :---: | :---: | :---: |
| 5 | Explain Rankine's vortex. | Remember | CAAE004:07 |
|  |  |  |  |
| 6 | Explain free vortex. | Understand | CAAE004:07 |
| 7 | Describe the vortex filament statement of Helmholtz's vortex theorem. | Understand | CAAE004:07 |
| 8 | What is downwash? | Remember | CAAE004:10 |
| 9 | What is forced vortex? | Understand | CAAE004:10 |
| 10 | Define vortex line and vortex tube? | Remember | CAAE004:10 |
| PART - B (LONG ANSWER QUESTIONS) |  |  |  |
| 1 | Obtain the expression for induced drag and minimum induced drag for elliptic planform. | Remember | CAAE004:16 |
| 2 | Consider a vortex filament of strength $\Gamma$ in the shape of a closed circular loop of radius $R$. Obtain an expression for the velocity induced at the center of the loop in terms of $\Gamma$ and R. | Understand | CAAE004:07 |
| 3 | Explain the formation of trailing vortices and their influence on the lift generation of wing. | Remember | CAAE004:07 |
| 4 | The measured lift slope for the NACA 23012 airfoil is 0.1080 degree ${ }^{1}$, and $\alpha_{L 0}=-1.3^{\circ}$. Consider a finite wing using this airfoil, with $\mathrm{AR}=$ 8 and taper ratio $=0.8$. Assume that $\delta=\tau$. Calculate the lift and induced drag coefficients for this wing at a geometric angle of attack $=7^{\circ}$. | Remember | CAAE004:15 |
| 5 | Explain starting, bound and trailing vortices of wings. | Remember | CAAE004:07 |
|  |  |  |  |
| 6 | Explain in detail Prandtl's lifting line theory. | Remember | CAAE004:07 |
| 7 | Derive the equation for velocity induced by infinite vortex using Biot-Savart law.. | Understand | CAAE004:07 |
| 8 | Derive the equation for induced angle of attack and induced drag coefficient from Prandtls lifting line theory. | Understand | CAAE004:10 |
| 9 | Explain in detail about how downwash is created and what its effect on lift generation. | Remember | CAAE004:10 |
| 10 | Explain elliptic loading and wings of elliptic platform. | Understand | CAAE004:10 |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING) |  |  |  |
| 1 | Explain in detail vortex filament statement of Helmholtz's vortex theorems Biot-Savart Law. | Remember | CAAE004:16 |
| 2 | Explain in brief Lanchester's experiment and Prandtl's lifting line theory. | Understand | CAAE004:07 |
| 3 | Explain elliptic loading \& wings of elliptic platforms. Derive the expression for minimum induced drag for Elliptic platform. | Remember | CAAE004:07 |
| 4 | Explain in detail the use of quarter chord and three- quarter chord points in vortex panel method for wings. | Understand | CAAE004:15 |
| 5 | a) Lifting surface theory predicts better lift distribution on a wing with a low aspect ratio and of any type of given planform. Demonstrate the verification of the statement. <br> b) Compare the formulation in (a) above with that in the classical lifting line theory with details. | Remember | CAAE004:07 |


| S No | QUESTIONS | Blooms Taxonomy Level | Course Learning Outcomes (CLOs) |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 6 | The airfoil section is thin and symmetric. Calculate the lift and induced drag coefficients for the wing when it is at an angle of attack of $5^{\circ}$. Assume that $\delta=\tau=.055$ | Understand | CAAE004:07 |
| 7 | Consider an aircraft is at cruise condition having $\mathrm{C}_{\mathrm{L}}=0.21$. for this aircraft the zero lift angle of attack is -2 degree. The lift cure slope of airfoil section is $\mathrm{a}_{0}=0.1$ degree $^{-1}$. The lift slope factor $\tau=0.04$ and the wing aspect ratio is 7.96. Calculate geometric angle of attack. | Understand | CAAE004:07 |
| 8 | Consider an airfoil is having lift curve slope $\mathrm{a} 0=0.108$ degree -1 and $\alpha_{\mathrm{L}=0}=-1.3^{\circ}$. Consider a finite wing using this airfoil, with $\mathrm{AR}=8$ and taper ratio $=0.8$. Assume that $\delta=\tau$. Calculate the lift and induced drag coefficients for this wing at a geometric angle of attack $=7$ 。 | Understand | CAAE004:10 |
| 9 | Consider a rectangular wing with an aspect ratio of 6 , an induced drag factor $\delta=0.055$, and a zero-lift angle of attack of $-2^{\circ}$. At an angle of attack of $3.4^{\circ}$, the induced drag coefficient for this wing is 0.01. Calculate the induced drag coefficient for a similar wing (a rectangular wing with the same airfoil section) at the same angle of attack, but with an aspect ratio of 10 . Assume that the induced factors for drag and the lift slope, $\delta$ and $\tau$, respectively, are equal to each other (i.e., $\delta=\tau$ ). Also, for $\mathrm{AR}=10, \delta=0.105$. | Remember | CAAE004:10 |
| 10 | The Piper Cherokehoie (a light, single-engine general aviation aircraft) has a wing area of 170 ft 2 and a wing span of 32 ft . Its maximum gross weight is 2450 lb . The wing uses an NACA 65-415 airfoil, which has a lift slope of 0.1033 degree -1 and $\alpha \mathrm{L}=0=-3$. Assume $\tau=0.12$. If the airplane is cruising at $120 \mathrm{mi} / \mathrm{h}$ at standard sea level at its maximum gross weight and is in straight-and-level flight, calculate the geometric angle of attack of the wing. | Remember | CAAE004:10 |

## UNIT-IV

FLOW PAST NON-LIFTING BODIES AND INTERFERENCE EFFECTS

| PART - A (SHORT ANSWER QUESTIONS) |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 | What are the limitations of panel methods? | Remember | CAAE004:12 |
| 2 | Explain the meaning of wing-fuselage interference. | Understand | CAAE004:12 |
| 3 | Draw the upwash and downwash distribution on the fuselage as a result of the wing. | Remember | CAAE004:14 |
| 4 | Draw the upwash and downwash distribution on the wing as a result of the fuselage. | Understand | CAAE004:13 |
| 5 | Explain with the help of a diagram what is fuselage thickness ratio? | Remember | CAAE004:13 |
| 6 | Write short notes on the general effects of the propeller slipstream on the wing and tail. | Understand | CAAE004:15 |
| 7 | Write short notes on the general effects of the propeller slipstream on the wing and tail. | Understand | CAAE004:15 |
| 8 | Explain non-lifting and lifting bodies and give examples. | Understand | CAAE004:11 |
| 9 | Describe the method of singularities. How is it used to study potential flow over an arbitrary body? | Understand | CAAE004:13 |
| 10 | Describe the method of singularities. How is it used to study potential flow over an arbitrary body? | Understand | CAAE004:13 |


| PART - B (LONG ANSWER QUESTIONS) |  |  | QUESTIONS |
| :--- | :--- | :--- | :--- |
| S No | Blooms <br> Taxonomy <br> Level | Course <br> Learning <br> Outcomes <br> (CLOs) |  |
| 1 | Describe the upwash and downwash distribution on the fuselage as a <br> result of the wing. | Remember | CAAE004:12 |
| 2 | Draw the upwash and downwash distribution on the wing as a result <br> of the fuselage. | Remember | CAAE004:12 |
| 3 | Describe the asymmetric flow over a wing-fuselage system for a <br> high-wing airplane. How does this affect the rolling moment <br> compared to a wing? | Remember | CAAE004:14 |
| 4 | Explain in detail about wing-body interference | Understand | CAAE004:13 |
| 5 | What are nonlifting bodies? Explain in detail their importance in <br> aircraft. | Remember | CAAE004:13 |
| 6 | Describe the studies on general effects of the propeller slipstream on <br> the wing and tail. | Remember | CAAE004:11 |
| 7 | Demonstrate the methodology to study potential axisymmetric flow <br> past a slender body of revolution, using the method of singularities. | Understand | CAAE004:11 |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING) |  |  |  |


| S No | QUESTIONS | Blooms Taxonomy Level | Course Learning Outcomes (CLOs) |
| :---: | :---: | :---: | :---: |
| 6 | Define energy thickness. | Understand | CAAE004:18 |
| 7 | Define boundary layer. | Understand | CAAE004:17 |
| 8 | Describe laminar boundary layer. | Understand | CAAE004:17 |
| 9 | Describe turbulent boundary layer. | Understand | CAAE004:20 |
| 10 | Explain the boundary layer growth along a flat surface. | Remember | CAAE004:20 |
| PART - B (LONG ANSWER QUESTIONS) |  |  |  |
| 1 | Derive the equation for displacement thickness. | Remember | CAAE004:15 |
| 2 | Derive the equation for momentum thickness. | Understand | CAAE004:18 |
| 3 | Derive the equation for energy thickness. | Remember | CAAE004:16 |
| 4 | Derive Blasius equation for incompressible flow over flat plate. | Understand | CAAE004:20 |
| 5 | Explain in detail about the effect of curvature wit neat sketch. | Remember | CAAE004:19 |
| 6 | Explain in detail about laminar and turbulent boundary layer. | Remember | CAAE004:15 |
| 7 | Explain in detail about flow separation and separation bubble. | Understand | CAAE004:17 |
| PART - C (PROBLEM SOLVING AND CRITICAL THINKING) |  |  |  |
| 1 | Consider a flat plate at zero angle of attack in an airflow at standard sea level conditions ( $\mathrm{p} \infty=1.01 \times 105 \mathrm{~N} / \mathrm{m} 2$ and $\mathrm{T} \infty=288 \mathrm{~K}$ ). The chord length of the plate (distance from the leading edge to the trailing edge) is 2 m . The planform area of the plate is 40 m 2 . At standard sea level conditions, $\mu \infty=1.7894 \times 10-5 \mathrm{~kg} /(\mathrm{m})(\mathrm{s})$. Assume the wall temperature is the adiabatic wall temperature Taw. Calculate the friction drag on the plate when the freestream velocity is $100 \mathrm{~m} / \mathrm{s}$, | Understand | CAAE004:15 |
| 2 | Consider a flat plate at zero angle of attack in an airflow at standard sea level conditions ( $\mathrm{p} \infty=1.01 \times 105 \mathrm{~N} / \mathrm{m} 2$ and $\mathrm{T} \infty=288 \mathrm{~K}$ ). The chord length of the plate (distance from the leading edge to the trailing edge) is 2 m . The planform area of the plate is 40 m 2 . At standard sea level conditions, $\mu \infty=1.7894 \times 10-5 \mathrm{~kg} /(\mathrm{m})(\mathrm{s})$. Assume the wall temperature is the adiabatic wall temperature $\mathrm{T}_{\mathrm{aw}}$. Calculate the friction drag on the plate assuming a turbulent boundary layer for a freestream velocity of $100 \mathrm{~m} / \mathrm{s}$, | Understand | CAAE004:18 |
| 3 | The wing on a Piper Cherokee general aviation aircraft is rectangular, with a span of 9.75 m and a chord of 1.6 m . The aircraft is flying at cruising speed ( $141 \mathrm{mi} / \mathrm{h}$ ) at sea level. Assume that the skin-friction drag on the wing can be approximated by the drag on a flat plate of the same dimensions. Calculate the skin-friction drag: <br> a. If the flow were completely laminar (which is not the case in real life) <br> b. If the flow were completely turbulent (which is more realistic) Compare the two results. | Understand | CAAE004:18 |


| S No | QUESTIONS | Course <br> Learning <br> Outcomes <br> (CLOs) |  |
| :--- | :--- | :--- | :--- |
| 4 | The wing on a Piper Cherokee general aviation aircraft is rectangular, <br> Level <br> with a span of 9.75 m and a chord of 1.6 m. The aircraft is flying at <br> cruising speed (141 mi/h) at sea level. Assume that the skin-friction <br> drag on the wing can be approximated by the drag on a flat plate of <br> the same dimensions. the boundary-layer thickness at the <br> trailing edge for <br> a. Completely laminar flow <br> b. Completely turbulent flow | Understand | CAAE004:20 |
| The wing on a Piper Cherokee general aviation aircraft is rectangular, <br> with a span of 9.75 m and a chord of 1.6 m. The aircraft is flying at <br> cruising speed (141 mi/h) at sea level. Assume that the skin-friction <br> drag on the wing can be approximated by the drag on a flat plate of <br> the same dimensions. calculate the skin-friction drag accounting <br> for transition. Assume the transition Reynolds number $=5$ <br> 105. | Understand | CAAE004:19 |  |

Prepared By: Dr. Maruthupandiyan K,
Professor, Department of Aeronautical Engineering

HOD, AE

