INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	$:$	OPERATIONS RESEARCH
Course Code	$:$	AME021
Class	$:$	VI Semester
Branch	$:$	MECHANICAL ENGINEERING
Year	$:$	$2018-2019$
Course Coordinator	$:$	Dr. Paidi Raghavulu, Professor, ME
Team of Instructors	$:$	Dr. Paidi Raghavulu, Professor, ME

COURSE OBJECTIVES:

Operation Research is also called OR for short and it is a scientific approach to decision making which seeks to determine how best to design and operate a system under conditions requiring allocation of scarce resources. Operations research as a field, primarily has a set or collection of algorithms which act as tools for problems solving in chosen application areas. OR has extensive applications in engineering, business and public systems and is also used by manufacturing and service industries to solve their day to day problems. This course is titled in Fundamentals of Operations Research. This course facilitates to learn various models to optimize a problem.

S. No.	Question	Blooms Taxonomy Level	Course Learning Outcomes
Part A(Very Short Answer Questions)			
1	Explain scope of operations research.	Understand	AME021.01
2	State the applications of operations research.	Remember	AME021.01
3	List different characteristics of operations research	Understand	AME021.01
4	Write about physical model of operations research	Understand	AME021.01
5	Describe about simulation models of operations research	Remember	AME021.02
6	Discuss the importance of operations Research in the decision making Process.	Remember	AME021.02
7	List out the principles of modeling.	Understand	AME021.02
8	State the methods of solving OR models.	Understand	AME021.03
9	Define model and explain its importance.	Remember	AME021.03
10	Define feasible region.	Understand	AME021.03
11	Explain general representation of LPP.	Remember	AME021.03
12	Discuss objective function in brief.	Understand	AME021.03
13	Describe optimal solution?	Remember	AME021.04
14	Explain about decision variables.	Understand	AME021.04
15	Describe about non- negativity constraints.	Remember	AME021.04
16	Explain about constraints of a LPP.	Understand	AME021.04
17	Define slack variables with examples.	Remember	AME021.05
18	State surplus variables with examples.	Remember	AME021.05
19	Explain about artificial variables.		
20	Explain computational steps of Big-M method.		

Part B (Long Answer Questions)			
1	What are the phases of operations research and briefly explain them?	Understand	AME021.01
2	Explain the main characteristics of operations research.	Remember	AME021.01
3	What is a model? List out the various classification schemes of operations research models.	Remember	AME021.01
4	Describe the scope of operations research.	Understand	AME021.02
5	Explain general methods for solving OR models.	Understand	AME021.02
6	Describe the terminology involved in formulating a linear programming Problem.	Understand	AME021.03
7	Explain applications of LPP in production management.	Remember	AME021.03
8	Explain step by step procedure of graphical method of solving Linear Programming Problem.	Understand	AME021.03
9	What are the limitations of graphical method?	Understand	AME021.03
10	A firm manufactures two types of products A and B and sells them at a profit of Rs 2 on type A and Rs 3 on type B. Each product is processed on two machines G and H . Type A requires one minute of processing time on G and two minutes on H ; type B requires one minute on G and one minute on H . The machine G is available for not more than 6 hour 40 minutes while machine H is available for 10 hours during any working day. Formulate the problem as a linear programming problem and find the optimum solution graphically.	Understand	AME021.03
11	Explain the structure of an LPP with example.	Understand	AME021.04
12	Discuss the algorithm of simplex method to solve an LPP.	remember	AME021.04
13	Explain assumptions to solve LPP using simplex.	Understand	AME021.04
14	Solve the following problem by Simplex method Maximize $Z=5 \times 1+3 \times 2$ subject to constraints $\begin{array}{r} 3 \times 1+5 \times 2 \leq \quad 15 \\ 5 \times 1+2 \times 2 \leq \quad 10 \\ \text { and } \quad \times 1, \times 2 \geq 0 \\ \hline \end{array}$	Understand	AME021.04
15	$\begin{aligned} & \text { Solve the following problem by Simplex method } \\ & \text { Maximize } Z=x 1+3 x_{2}+2 \times 3 \text { subject to constraints } \\ & \qquad 3 x_{1}+x_{2}+3 x_{3} \leq 7 \\ & -2 x_{1}+4 x^{2} \leq 12 \\ & -4 x^{1}+3 x_{2}+8 x_{3} \leq 10 \\ & \text { and } \quad x 1, x 2 \geq 0 \end{aligned}$	Remember	AME021.04
16	Describe step-by-step procedure to solve LPP by BIG-M method.	Remember	AME021.05
17	Explain the term artificial variables? Why do we need them.	Remember	AME021.05
18	Describe Two-phase Simplex method.	Remember	AME021.05
19	Use big -M method to solve the following. Maximize $Z=8 \times 1+5 \times 2 \quad$ Subjective to constraints $\begin{aligned} & 2 \mathrm{x}_{1}+4 \mathrm{x}_{2} \leq 45 \\ & 3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 40 \\ & \mathrm{x}_{1}+\mathrm{x}_{2} \geq 30 \\ & \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 . \\ & \hline \end{aligned}$	Remember	AME021.05
20	Solve the following LP Problem by two phase method. Maximize $Z=5 \times 1-2 \times 2+3 \times 3$ Subject to constraints $\begin{aligned} 2 \mathrm{x} 1+2 \mathrm{x} 2-\mathrm{x} 3 & \geq 2, \\ 3 \mathrm{x} 1-4 \mathrm{x} 2 & \leq 3, \\ \mathrm{x} 2+3 \times 3 & \leq 5 \\ \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 & \geq 0 \end{aligned}$	Understand	AME021.05

Part C(Critical Analytical Questions)			
1	Solve the following LP problem graphically. $\begin{aligned} & \text { Maximize } \mathrm{Z}=2 \mathrm{x}_{1}+\mathrm{x}_{2} \quad \text { Subjective to constraints } \\ & \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 10 \\ & \mathrm{x}_{1}+\mathrm{x}_{2} \leq 6 \\ & \mathrm{x}_{1}-\mathrm{x}_{2} \leq 2 \\ & \mathrm{x}_{1}-2 \mathrm{x}_{2} \leq 1 \\ & \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \end{aligned}$	Understand	AME021.03
2	Solve the following LP problem using Simplex method. Maximize $Z=6 x_{1}+8 x_{2}$ subject to constraints $\begin{array}{rrr} \mathrm{x}_{1}+\mathrm{x}_{2} \leq 10 \\ 2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq & 25 \\ 2 \mathrm{x}_{1}+5 \mathrm{x}_{2} \leq & 35 \\ \text { and } \quad \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \end{array}$	Understand	AME021.04
3	Solve the following LPP by two-phase method $\begin{aligned} & \text { Minimize } Z=3 x_{1}+4 x_{2} \text { subject to constraints } \\ & 2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \geq 8 \\ & 5 \mathrm{x}_{1}+2 \mathrm{x}_{2} \geq 12 \\ & \text { and } \quad x_{1}, x_{2} \geq 0 \end{aligned}$	Remember	AME021.04
4	Solve the following LPP by Big-M (penalty) method Minimize $Z=5 x_{1}+3 x_{2}$ subject to constraints $\begin{array}{ll} 2 \mathrm{x}_{1}+4 \mathrm{x}_{2} \leq & 12 \\ 2 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq & 10 \\ 5 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq & 10 \end{array}$ and $\quad x_{1}, x_{2} \geq 0$	Remember	AME021.05
5	Solve the following LPP by Big-M method Maximize $Z=4 x_{1}+5 x_{2}+x 3$ subject to constraints $\begin{aligned} & \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=10 \\ & 2 \mathrm{x}_{1}-\mathrm{x}_{2} \geq 1 \\ & 2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x} 3 \leq 40 \\ & \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0 \\ & \hline \end{aligned}$	Understand	AME02.05
Part A (Short Answer Questions) \quad UNIT - II			
S. No.	Question	Blooms Taxonomy Level	Course Learning Outcomes
1	Explain mathematical model of a transportation problem.	Understand	AME021.06
2	What are different methods of solving transportation problems to get basic feasible solution?	Remember	AME021.06
3	Why is LCM is optimal than NWCR in solving transportation problem?	Understand	AME021.06
4	Why does Vogel's approximation method provide a good initial feasible solution?	Remember	AME021.06
5	What are the methods to test for optimality in transportation problem?	Understand	AME021.06
6	Describe balanced problem in transportation.	Understand	AME021.06
7	Explain MODI method in brief.	Understand	AME021.06
8	What is degeneracy in transportation problem?	Remember	AME021.07
9	Define unbalance problem in transportation.	Remember	AME021.07
10	Explain how the unbalanced problem is solved.	Remember	AME021.07
11	Explain constraints of a transportation problem.	Remember	AME021.07
12	What is assignment problem?	Understand	AME021.08
13	Explain applications of assignment problem.	Remember	AME021.08
14	Give the mathematical representation of an assignment problem.	Understand	AME021.08
15	Discuss the method of solving assignment problems.	Understand	AME021.08
16	Explain an algorithm to solve an assignment problem.	Understand	AME021.08
17	Describe Hungarian method.	Remember	AME021.08
18	Explain principle of dominance.	Remember	AME021.09

9	The company has three plants A, B and C and three warehouses X, Y and Z. Number of units available at plants is 60,70 and 80 respectively. Demand at X, Y and Z are 50,80 and 80 respectively. Unit costs of transportation are as follows: What would be your optimal transportation plan? Give minimum distribution cost.								Remember	AME021.07
10	A company has three plants at locations A, B and C which supply to warehouses located at D, E, F, G and H. monthly plant capacities are 800, 500 and 900 units respectively. Monthly warehouse requirements are 400, 500, 400 and 800 units respectively. Unit transportation costs in (Rs.)are as given below. Determine an optimum distribution for the company in order to minimize the total transportation cost.								Understand	AME021.07
11	Explain briefly the Steps involved in solving assignment Problem.. Explain the line drawing procedure that has to be adapted while solving assignment problem.								Remember	AME021.08
12									Understand	AME02.08
13	Solve the following assignment problem to minimize the total time of the operator;								Understand	AME021.08
14	Different machi profits resulting Find out maxim	es can m pro A 30 40 40 25 29	$\begin{aligned} & 0 \text { any } \\ & h \text { ass } \\ & \text { poss } \end{aligned}$	of the ignme B 37 24 32 38 62	requ show opt Cachi C 40 27 33 40 41	red n in mal	jobs, the a assig	th different sting table. ent.	Remember	AME021.088

	Part C (Critical Analyti	cal Qu	ons)						
1	We have five jobs each of order BA, processing tim Determine a sequence for time. Also compute idle t	f which es are the fiv imes for	must ven in 2 2 12 jobs each	throu he tab 3 18 14 at wil the m	two belo 4 6 16 inim hine	hine \square he	in the tal elapsed	Understand	AME021.10
2	Automobile repair center steps procedure viz. dent follows: Determine a sequence for time. Also compute idle chart	has six removi 16 15 the six	ars for and	repair 1 will the m	he re The \qquad nimiz hine		ists of two mates are as al elapsed are Gantt	Understand	AME021.10
3	Find the sequence that minimizes the total time required in forming the following jobs on three machine in the order ACB and also find idle time of each machine and idle time of each machine.							Understand	AME021.10
4	Explain step by step Procedure to solve by graphical method to minimize the time required to process the two jobs on ' n " machines							Remember	AME021.11
5	Using graphical method, job-1 and job-2 on five m the job which should be d complete both the jobs.	calcul achine done fir urs) \square	the 1,, BlsoA 6 B 5		time Be to B 4 A 3	ded m time D 12 D 2	process chine find needed to	Understand	AME021.11
Part A(Very Short Answer Questions); MID - III									
1	What is the need for a replacement?							Remember	AME021.13
2	Define individual replacement policy.							Remember	AME021.13
3	Write about 'replacement policy of items which deteriorate with time'.							Understand	AME021.13
4	What is replacement problem?							Understand	AME021.13
5	Give some examples for replacement situations.							Understand	AME021.13
6	Give the examples of group replacement concept.							Understand	AME021.14
7	Explain different types of replacement problems.							Understand	AME021.14
8	State the examples of group replacement concept.							Remember	AME021.14
9	Describe individual replacement policy.							Remember	AME021.14
10	What is group replacement policy?							Understand	AME021.14

15	Define simulation	Understand	AME021.21
16	What are the types of simulation?	Remember	AME021.21
17	Explain the phases of simulation.	Understand	AME021.21
18	What are the major limitations of simulation?	Remember	AME02121
19	Explain the advantages of simulation?	Understand	AME021.22
20	What are the disadvantages of simulation?	Remember	AME021.22
Part B (Long Answer Questions)			
1	Define the terms Balking, Reneging, Jockeying.	Remember	AME021.20
2	Explain the terms single server, multiple server, queue length of finite and infinite queue.	Remember	AME021.20
3	Define simulation? Give one application area when this technique is used in practice with example.	Understand	AME021.22
4	Explain briefly what factors must be considered when designing simulation experiment.	Remember	AME021.21
5	Discuss briefly the types of simulations?	Remember	AME021.21
6	A road transport company has one reservation clerk on duty at a time. He handles information of bus schedules and makes reservations customers arrive at a rate of 8 per hour and the clerk can, on an average, service 12 customers per hour. After starting your assumptions determine. a. What is the average number of customer waiting for the service of the clerk b. What is the average time a customer has to wait before being used?	Remember	AME021.20
7	Consider a single semen queuing system with poisons input and exponential service times. Suppose that mean arrival rate is 3 calling units per hour, the expected service time is 0.25 hours and the maximum permissible calling units is the system is two. Derive the steady state probability distribution of the number of calling units in the system. And then calculate the expected number in the system.	Understand	AME021.20
8	A super market has two girls ringing up sales at the counters. If the service time for each customer is exponential with mean 4 minutes, and if people arrive 3 in a poison fashion at the 10/hour. a. What is the probability of having to wait for the service. b. What is the expected percentage of idle time for each girl? c. find the average length and average number of units in the system.	Understand	AME021.20
9	Explain the application of Queuing systems?	Remember	AME021.20
10	In a departmental store one cashier is there to serve the customers. And the customers pick up their needs by themselves the arrival rate is 9 customers for every 5 minutes and the cashier can serve 10 customers in 5 minutes. Assuming poisons arrival rate and exponential distribution for service rate. Find following: a. Average number of customers in the system b. Average number of customers in the queue of average queue length? c. Average time a customer spends in the systems d. Average time a customer waits before being served.	Understand	AME021. 20
11	A television repairman finds that the time spent on his jobs has an exponential distribution with a mean of 30 minutes. If he repairs the sets in the order in which they came in, and if the arrival of sets follows a Poisson distribution with an approximate average rate of 10 per 8hour day, what is the repairman's expected idle time each day? How many jobs are ahead of the average, set just brought in?	Remember	AME021. 20
12	Explain the advantages and disadvantages of simulation?	Understand	AME021.21
13	What is simulation? Write the uses of simulation.	Understand	AME021.21
14	Discuss the advantages and disadvantages of simulation.	Understand	AME021.21
15	Explain briefly steps of simulation process.	Remember	AME021.21
16	Explain types of simulation.	Understand	AME021 21
17	What is simulation and discuss the types of simulation?	Remember	AME021.21
18	Explain computer simulation?	Remember	AME021.21
19	Explain Monte Carlo simulation.	Remember	AME021.22
20	Write the applications of simulation.	Understand	AME021.22

Part C (Critical Analytical Questions)											
1	Customers arrive at box office windows being manned by a single individual, according to a Poisson input process with a mean rate of $20 / \mathrm{hr}$. the time required to serve a customer has an exponential distribution with a mean of 90 sec . Find the average waiting time of customers. Also determine the average number of customers in the system and average queue length.									Understand	AME021. 20
2	At a certain petrol pump, customers arrive according to a poisson process with an average time of 5 minutes between arrivals. The service time is exponentially distributed with mean time of minutes. On the basis of information find out a. What would be the average queue length? b. What would be the average number of customers in the queuing system? c. What is the average time spent by a car in the petrol pump? d. What is the average waiting time of a car before receiving petrol?									Remember	AME021. 20
3	A company manufactures around 200 mopeds. Depending upon the availability of raw materials and other conditions. The daily production has been varying from 196 mopeds to 204 mopeds. Whose probability distribution are given below: Finished mopeds are transported to a lorry that can accommodate only 200 mopeds. Random numbers are $82,89,78,24,53,61,18,45,04,23,50,77,54$ and 10 . Simulate the mopeds waiting.									Remember	AME021.22
4	A bakery keep show the daily given below: use the followin next 10days. Random numbe Also estimate th simulated data.	tock nand d \qquad \qquad seque 25,3 daily	of a p 0 0.01 ce of ,65,76 verage	pular for the 10 0.20 random ,12,05 dema	bran e item m nu ,73,8 and for	nd of m with	cake. P 30 0.50 to simu 49 cakes o	revious 40 0.12 late the the basi	experience abilities as demand for is of the	Understand	AME021.22
5	Explain in deta	plic	on of	imul	lation	for in	entor	models.		Under stand	AME021. 20

Prepared by:

