

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER - II

B.Tech IV Semester End Examinations (Regular), April-2019

Regulations: IARE-R18

OPERATING SYSTEMS

(Common to CSE / IT)

Time:3hours

Max. Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

UNIT – I

1.	a)	Explain the following Computer-system architecture:	[7M]			
		i. Clusteredsystems				
		ii. Single processorsystems				
		iii. Multi-processorsystems				
	b)	Computer system architecture deals about how the component of a computer system may be organized? Discuss in detail about different architectures of a computer system?	[7M]			
2	``	Does an operating system generally need to keep about running processes in				
2.	a)	order to execute them? Explain in detail.				
	b)	List any five major activities of an operating system with regard to process [7 management and three major activities with regard to memory management?				
		UNIT – II				
3.	a)	Write short notes on the following with respect to process:				
		i. Process states with statediagramii. Process control block(PCB)				
	b)	Explain the FCFS, preemptive and non preemptive versions of Shortest-Job-First and Round Robin (time slice $= 2$) scheduling algorithms with Gantt Chart for the four processes given. Compare their average turn around and waiting time.	[7M]			
		Process ArrivalTime Burst Time				
		P1 0 10				
		P2 1 6				
		P3 2 12				
		P4 3 15				
4.	a) Describe dining-philosophers problem? Device an algorithm to solve the problem using semaphores?					
	b)	Show how wait() and signal() semaphore operations could be implemented in multiprocessor environments, using the Test and Set instruction. The solution should exhibit minimal busy waiting. Develop Pseudocode for implementing the operations.	[7M]			
		UNIT – III				

5. a) With a neat sketch, explain how logical address is translated into physical address [7M] using Paging mechanism.

	b)	 Consider the following page reference string 1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 4, 5, 3. List out the number of page faults for the following page replacement algorithms? Assume four frames and all frames are initially empty. i. LRUreplacement 	[7M]
		ii. FIFOreplacement iii. Optimalreplacement	
6.	a)	Discussthefollowing	[7M]
		a) Hierarchical paging b) Inverted pageTables	
	b)	Explain thefollowing:	[7M]
		i. Segmentation vs.paging	
		ii. Logical address space vs. physical addressspace	
		iii. Internal fragmentation vs. external fragmentation	
		UNIT – IV	
7.	a)	Describe the file system of UNIX? Explain different file operations and file	[7M]
		attributes?	
	b)	Writein detailabout theon-diskandin-memorystructures usedtoimplement afile system?	[7M]
8.	a) b)	With diagram explain tree structured directory and two leveldirectorystructures? Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The drive is currently serving a request at cylinder 143, and the previous request was at cylinder 125. The queue of pending requests in FIFO order is: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. Starting from the current head position, what is the total distance that the disk arm moves to satisfy the pending requests for each of the following disk schedulingalgorithm: i. FCFS ii. SSTF iii. C-SCAN	[7M] [7M]
		$\mathbf{UNIT} - \mathbf{V}$	
9.	a)	Discuss different methods of implementation of Access Matrix?	[7M]
		Describe how the access matrix facility and role-based access control facility are similar? how do they differ?	
	b)	Distinguish between system protection and system security?	[7M]
		Discuss about domain of protection?	

[7M]

[7M]

- 10. Define deadlock. List the necessary conditions for deadlock? a)
 - b) Consider the following snapshot of a system:

Process	Current Allocation			Maximum Allocation			Resources Available		
	Α	В	С	Α	В	С	А	В	C
P1	0	1	0	7	5	3			
P2	2	0	0	3	2	2			
P3	3	0	2	9	0	2	3	3	2
P4	2	2	1	2	2	2			
P5	0	0	2	4	3	3			

Using Banker's algorithm, find:

- i. Write is the content of the needmatrix?
- ii. Is the system in a safestate?
- iii. Is request from P1 = (1, 0, 2) and then request from P4 = (3, 3, 0) can be granted ornot?

COURSE OBJECTIVES: The course should enable the students to:

Ι	Understand the fundamental principles of the operating system, its services and functionalities.
II	Illustrate the concepts of processes, inter-process communication, synchronization and scheduling.
III	Understand different types of memory management viz. virtual memory, paging and segmentation.
IV	Identify the reasons for deadlock and understand the techniques for deadlock detection, prevention and recovery.
V	Understand the need of protection and security mechanisms in computer systems.

COURSE OUTCOMES:

Ι	Describe the concept operating system and operating system design
II	Determine Process And CPU Scheduling, Process Coordination
III	An ability to identify and evaluate Memory Management And Virtual Memory
IV	To describe the File System Interface, Mass-Storage Structure
V	Understand Deadlocks, Protection and dead lock starvation.

COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the asking to do the following:

AITB04.01	Describe the structure of operating system and basic architectural components involved in operating
11120.001	system design.
AITB04.02	Describe how the computing resources are managed by the operating system.
AITB04.03	Understand the objectives and functions of modern operating systems.
AITB04.04	Analyze and design the applications to run in parallel either using process or thread models of different operating system
AITB04.05	Understand and analyze implementation of virtual memory
AITB04.06	Understand the various resource management techniques for timesharing and distributed systems.
AITB04.07	Describe the mutual exclusion, deadlock detection in operating system
AITB04.08	Describe the common algorithms used for both pre-emptive and non-pre-emptive scheduling of tasks in operating systems, such a priority and performance comparison
AITB04.09	Understand the difference between a process and a thread
AITB04.10	Explain the state diagram that describes the states and state transitions during the whole lifetime of a
	process; likewise, interpret such a state transition diagram
AITB04.11	Identify the mapping between virtual memory address into a physical address
AITB04.12	Explain how a shared memory area can be implemented using virtual memory addresses in different processes
AITB04.13	Identify the need of memory management in operating systems and understand the limits of fixed memory allocation schemes
AITB04.14	Understand the fragmentation in dynamic memory allocation, and identify dynamic allocation approaches
AITB04.15	Understand how program memory addresses relate to physical memory addresses, memory
	management in base-limit machines, and swapping
AITB04.16	Understand the mechanisms adopted for file distribution in applications
AITB04.17	Describe different Mass storage structure and I/O systems
AITB04.18	Understand issues related to file system interface and implementation, disk management
AITB04.19	Identify the mechanisms adopted for file sharing in distributed applications
AITB04.20	Understand the concepts of Storage Management, disk management and disk scheduling

SEE Blooms Course Ouestion Outcomes Taxonomy **COURSE LEARNING OUTCOME** Number Level CO 1 AITB04.01 Describe the structure of operating system and basic Understand а architectural components involved in operating system 1 design. CO 1 Describe how the computing resources are managed by the b AITB04.02 Understand operating system. CO 1 Understand the objectives and functions of modern operating AITB04.03 Remember а systems. 2 CO 1 b AITB04.02 Describe how the computing resources are managed by the Remember operating system. CO 2 Explain the state diagram that describes the states and state Understand а AITB04.10 transitions during the whole lifetime of a process; likewise, interpret such a state transition diagram 3 CO 2 Describe the common algorithms used for both pre-emptive Understand b AITB04.08 and non-pre- emptive scheduling of tasks in operating systems, such a priority and performance comparison CO 2 AITB04.06 Understand the various resource management techniques for Understand а timesharing and distributed systems. 4 CO 2 Understand the various resource management techniques for Understand AITB04.06 b timesharing and distributed systems. CO 3 Understand AITB04.15 Understand how program memory addresses relate to а physical memory addresses, memory management in base-5 limit machines, and swapping CO 3 Understand how program memory addresses relate to Understand b AITB04.15 physical memory addresses, memory management in baselimit machines, and swapping CO 3 Understand how program memory addresses relate to physical AITB04.15 Remember а memory 6 CO 3 Understand the fragmentation in dynamic memory allocation, AITB04.14 Remember b and identify dynamic allocation approaches. CO 4 AITB04.16 Understand the mechanisms adopted for file distribution in Understand а applications 7 CO₄ b AITB04.19 Identify the mechanisms adopted for file sharing in distributed Understand applications CO 4 Describe different Mass storage structure and I/O systems AITB04.17 Remember а 8 CO 4 AITB04.18 Understand issues related to file system interface and Understand b implementation, disk management Understand types of security risks in operating system and CO 5 9 AITB04.20 Remember а the role of operating system in establishing security Identify different protection and security mechanisms in CO 5 Understand AITB04.19 b operating system CO 5 AITB04.20 Understand the concept of deadlock in operating systems and Understand а how they can be implemented in multiprogramming system 10 CO 5 b AITB04.19 Identify how deadlock can occur and know how it can be Remember prevented or avoided

MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES: