

Question Paper Code: AECB08

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER –II

Four Year B.Tech III Semester End Examinations(Regular), November - 2019 Regulations: IARE-R18

PROBABILITY THEORY AND STOCHASTIC PROCESS

(ECE)

Max. Marks: 70

Time: 3 hours

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

UNIT – I

- 1a)How do you explain statistically independent events using Baye's rule?[7M]
 - b) Suppose that a laboratory test to detect a certain disease has the following statistics. Let A= [7M] event that the tested person has the disease B= event that the test result is positive it is known

that P(B/A) = 0.99 and P(B/A) = 0.005 and 0.1 percent of the population actually has the disease. What is the probability that a person has the disease given that the test result is positive?

- 2 a) A continuous random variable X that can assume any value between x=2 and x=3 has a [7M] density function given f(x) = k (1 + x). Find P (X < 4).
 - b) A fair die is tossed. Let X denotes twice the number appearing, and let Y denotes 1 or 3 according as an odd or an even number appears. Find the distribution, expectation, variance [7M] and standard deviation of (i) X (ii) Y (iii) X+ Y.

UNIT – II

- 3 a) Show that the variance of a weighted sum of uncorrelated random variables equals the [7M] weighted sum of the variances of the random variables.
 - b) The pdf of a random variable X is given by $f_X(x) = x/20$; $2 \le x \le 5$, find the pdf of Y=3X-5. [7M]
- 4 a) Define the joint Distribution function and explain the properties of joint Distribution [7M] function?
 - b) Consider the bivariate r.v. (X, Y)

$$f_{XY}(x,y) = \begin{cases} k(x+y), & 0 < x < 2, 0 < y < 2\\ 0, & otherwise \end{cases}$$

i. Find the conditional pdf's fY/X (y / x) and fX/Y,(x/y). ii. Find P(0 < Y < 1/2, X = 1). [7M]

UNIT – III

5	a)	Explain Linear Transformations of Gaussian Random Variables.			
	b)	The pdf of a random variable X is $f_X(x)=(1/2)\cos(x)$; $-\pi/2 \le x \le \pi/2$, find the mean, mean of the function $g(X)=4X^2$.	[7M]		
6	a)	Explain expected value of a function of multiple random variables and give the expression for joint moments and joint central moments.	[7M]		
	b)	Calculate the following	[7M]		
		i) The variance of the sum of X and Y			

ii) The variance of the difference of X and Y for two random variables X and Y have zero mean and variance $\sigma_X^2 = 16$ and $\sigma_Y^2 = 36$ and correlation coefficient is 0.5.

$\mathbf{UNIT} - \mathbf{IV}$

7	a)	A random process is defined as $X(t)=A.sin(\omega t+\theta)$ where A is a constant and ' θ ' is a random variable, uniformly distributed over($-\pi,\pi$). Check $X(t)$ for stationary.	[7M]
	b)	Define Ergodic process. State and explain various properties of autocorrelation function	[7M]
8	a)	Define random process and classify the random process with example.	[7M]
	b)	Consider a random variable process $X(t)=a \cos \omega t$, where ' ω ' is a constant and a is a random variable uniformly distribution over (0,1). Find the auto correlation and covariance of $X(t)$?	[7M]

$\mathbf{UNIT} - \mathbf{V}$

9	a)	State and explain various proper	ties power spectral density f	unction. [7M]
---	----	----------------------------------	-------------------------------	---------------

b) An ergodic random process is known to have an auto correlation function of the from [7M]

 $R_{XY}(\tau) = 1 - |\tau|, |\tau| \leq 1$

$$=0, |\tau|, > 1$$

$$S_{XY}(\omega) = \left[\frac{\sin \omega/2}{\omega/2}\right]^2.$$

Show the spectral density is given by

- 10 a) Briefly explain the concept of cross power density spectrum. [7M]
 - b) Find the auto correlation function of the process X(t) for which the power density specrum is [7M] given by

$$S_{XX}(w) = \begin{cases} 1 + w^2, \ |w| \le 1\\ 0, \qquad |w| > 1 \end{cases}$$

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

The course should enable the students to:

S.No	Description			
Ι	Understand the random experiments, sample space and event probabilities.			
Π	Study the random variables, density and distribution functions, moments and transformation of random variables.			
III	Understand the concept of random process and sample functions (signals)			
IV	Explore the temporal and spectral characteristics of random processes			

COURSE OUTCOMES (COs):

CO Code	Description					
CO 1	Appreciate the concept of the random experiments, event probabilities, random variables and their description, functions of random variables					
CO 2	Learn and understand the Single Random Variable Transformation- Multiple Random Variables					
CO 3	Understand the Operations multiple random variables and their expectations					
CO 4	Understand the concept of random processes and their time domain description					
CO 5	Explore the spectral characteristics of random processes, and filtered random processes					

COURSE LEARNING OUTCOMES:

Students who complete the course will have demonstrated the ability to do the following

CLO Code	Description			
AECB08.01	Describe the basic concepts of the random experiments, event probabilities, joint and conditional probabilities- Bayes theorem			
AECB08.02	Learn and understand the concept of random variables, continuous and discrete variables, the probability density functions (pdfs), Probability Distribution Functions (PDFs), different random variables and their properties			
AECB08.03	Learn and understand the functions of a random variable, standard and central moments, and their physical significance			
AECB08.04	Understand the Characteristic and Moment Generating Functions; Understand and apply the transformations on continuous and discrete random variables - Expectations			
AECB08.05	Learn and understanding of Vector random variables, joint, Marginal and Conditional distribution functions, joint, Marginal and Conditional density functions.			
AECB08.06	Learn and understand the Conditional distribution and density functions: point and interval conditioning			
AECB08.07	State and Explain the Central limit theorem ,Sum of several random variables			
AECB08.08	Learn and understanding of functions of vector random variables, Joint standard and central moments, joint characteristic functions			

AECB08.09	Learn and understanding of Jointly Gaussian random variables; and Transformations of			
	multiple random variables			
AECB08.10	Learn and understanding of Random Process, sample functions and time domain characteristics:			
	Stationary, Independence and Ergodicity			
AECB08.11	Contrasting of Correlation and Covariance functions, Gaussian and Poisson Random			
	Processes			
AECB08.12	Distinguish between Auto- and Cross- power density spectra, properties, relationship between			
	Correlation functions and Power density spectra			
AECB08.13	Understand and Discuss the linear time invariant (LTI) systems driven by random process, Input-			
	output Spectral relations, White and Colored noises			

MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES:

SEE		CLO		Blooms	
SEE Ouestion No		CLO	Course learning Outcomes	CO code	Taxonomy
		. Code		Level	
	а	AECB08.01	Describe the basic concepts of the random experiments,	CO 1	Understand
			event probabilities, joint and conditional probabilities-		
			Bayes theorem	~~ .	
1	b	AECB08.01	Describe the basic concepts of the random experiments,	CO 1	Understand
			event probabilities, joint and conditional probabilities-		
	9	AFCB08.02	Learn and understand the concept of random variables	CO 1	Understand
	a	ALCD00.02	continuous and discrete variables, the probability density	001	Chaeistana
			functions (pdfs). Probability Distribution Functions (PDFs).		
2			different random variables and their properties		
	b	AECB08.03	Learn and understand the functions of a random variable,	CO 1	Understand
			standard and central moments, and their physical		
	9	AECB08.04	Significance Understand the Characteristic and Moment Generating	CO^2	Understand
	a	ALCD00.04	Functions: Understand and apply the transformations on	02	Onderstand
3			continuous and discrete random variables – Expectations		
	b	AECB08.07	State and Explain the Central limit theorem .Sum of several	CO 2	Understand
			random variables		
	a	AECB08.05	Learn and understanding of Vector random variables, joint,	CO 2	Understand
			Marginal and Conditional distribution functions, joint,		
4	h	AECB08 04	Marginal and Conditional density functions.	CO^2	Understand
	U	ALCD00.04	Functions: Understand and apply the transformations on	002	Onderstand
			continuous and discrete random variables – Expectations		
	а	AECB08.08	Learn and understanding of Jointly Gaussian random	CO 3	Understand
			variables; and Transformations of multiple random		
5			variables		
5	b	AECB08.08	Learn and understanding of functions of vector random	CO 3	Understand
			variables, Joint standard and central moments, joint		
		A E C D 00 00	characteristic functions	<u> </u>	D 1
	a	AECB08.08	Learn and understanding of functions of vector random	CO 3	Remember
			variables, Joint standard and central moments, Joint		
6	h	AECB08.08	Learn and understanding of functions of vector random	CO 3	Understand
		11100000	variables, Joint standard and central moments. joint		Chaeistana
			characteristic functions		

SEE Question No		CLO Code	Course learning Outcomes	CO code	Blooms Taxonomy
Question 110.		Cour			Level
	а	AECB08.10	Learn and understanding of Random Process, sample	CO 4	Understand
			functions and time domain characteristics: Stationary,		
7			Independence and Ergodicity		
,	b	AECB08.10	Learn and understanding of Random Process, sample	CO 4	Understand
			functions and time domain characteristics: Stationary,		
			Independence and Ergodicity		
	а	AECB08.11	Contrasting of Correlation and Covariance functions,	CO 4	Understand
8			Gaussian and Poisson Random Processes		
0	b	AECB08.11	Contrasting of Correlation and Covariance functions,	CO 4	Understand
			Gaussian and Poisson Random Processes		
	а	AECB08.12	Distinguish between Auto- and Cross- power density	CO 5	Understand
			spectra, properties, relationship between Correlation		
0			functions and Power density spectra		
,	b	AECB08.12	Distinguish between Auto- and Cross- power density	CO 5	Understand
			spectra, properties, relationship between Correlation		
			functions and Power density spectra		
	а	AECB08.12	Distinguish between Auto- and Cross- power density	CO 5	Understand
			spectra, properties, relationship between Correlation		
10			functions and Power density spectra		
10	b	AECB08.13	Understand and Discuss the linear time invariant (LTI)	CO 5	Understand
			systems driven by random process, Input- output Spectral		
			relations, White and Colored noises		

Signature of Course Coordinator

HOD, ECE