INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	DIGITAL AND PULSE CIRCUITS
Course Code	÷	AEC019
Class	:	B. Tech IV Semester
Branch	:	EEE
Year	:	2018–2019
Course Coordinator	•••	Dr.V.Vijay Kumar, Assistant Professor, ECE
Course Faculty	:	MS.V.Bindusree, Assistant Professor, ECE

COURSE OBJECTIVES:

The course should enable the students to

S. NO	DESCRIPTION	
Ι	Understand basics, different binary codes in digital electronic circuits and be able to convert between	
П	Implement minimization techniques and state machines using flip-flops	
- 11	Implement imminization teeninelies and state machines using imp-nops.	
III	Implement and design logical operations using large scale integration and medium scale integration	
	devices.	
IV	Discuss the concept of sequential circuits and analyze sequential systems.	
V	Interpret the concept of feedback and classify various types of feedback amplifiers	
VI	Understand the principle of oscillation and design different types of oscillators.	
VII	Design and analyse single stage and multi stage Amplifiers	

COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following.

S.NO	DESCRIPTION	
CAEC019.01	Understand number systems, binary addition and subtraction, 2's complement representation and	
	operations with this representation and understand the different binary codes.	
CAEC019.02	Illustrate the switching algebra theorems and apply them for reduction of Boolean function.	
CAEC019.03	Identify the importance of SOP and POS canonical forms in the minimization or other	
	optimization of Boolean formulas in general and digital circuits.	
CAEC019.04	Discuss about digital logic gates and their properties, and implement logic gates using universal	
	gates.	
CAEC019.05	Evaluate functions using various types of minimizing algorithms like Boolean algebra.	
CAEC019.06	Evaluate functions using various types of minimizing algorithms like Karnaugh map or	
	tabulation method	
CAEC019.07	Design Gate level minimization using K-Maps and realize the Boolean function using logic	
	gates.	
CAEC019.08	Analyze the design procedures of Combinational logic circuits like adder, binary adder, carry	
	look ahead adder.	
CAEC019.09	Understand bi-stable elements like latches, flip-flop and illustrate the excitation tables of	
	different flip flops.	
CAEC019.10	Analyze and apply the design procedures of small sequential circuits to build the gated latches.	
CAEC019.11	Understand the concept of Shift Registers and implement the bidirectional and universal shift	
	registers.	

CAEC019.12	Implement the synchronous counters using design procedure of sequential circuit and excitation
	tables of flip – flops.
CAEC019.13	Implement the Asynchronous counters using design procedure of sequential circuit and
	excitation tables of flip – flops.
CAEC019.14	Understand the design analysis of feedback amplifiers& types of feedback circuits
CAEC019.15	Design various sinusoidal Oscillators like RC Phase shift, Wien bridge, Hartley and Colpitts
	oscillator for various frequency ranges
CAEC019.16	Analyze the design of BJT as single stage and multistage amplifier circuits
CAEC019.17	Implement the design analysis of coupling amplifiers and types of coupling circuits

		Blooms	Course
S. No	QUESTION	Taxonomy	Learning
		Level	Outcome
	UNIT-I		
	BOOLEAN ALGEBRA AND SWITCHING FUNG	CTIONS	
	PART-A (SHORT ANSWER QUESTIONS	5)	
1	Write short notes on binary number systems.	Remember	CAEC019.01
2	Discuss 1's and 2's complement methods of subtraction.	Understand	CAEC019.01
3	Discuss octal number system.	Understand	CAEC019.01
4	Convert the octal numbers into binary numbers (47.5)8, (32.3)8.	Remember	CAEC019.01
5	Show an example to convert gray code to binary code.	Understand	CAEC019.01
6	Describe a short note on four bit BCD codes.	Remember	CAEC019.01
7	Illustrate about unit-distance code? State where they are used.	Understand	CAEC019.01
8	State error correcting codes.	Remember	CAEC019.01
9	Convert 10101101.0111 to octal equivalent and hexadecimal equivalent.	Understand	CAEC019.01
10	State about logic design and what do you mean by positive logic system.	Remember	CAEC019.01
11	Identify Y for a given problem is $(2.3)8 + (1.7)8 = (Y)8$.	Understand	CAEC019.01
12	Explain the specialty of unit –distance code.	Remember	CAEC019.01
13	Convert (4065)8 into base 5.	Understand	CAEC019.01
14	Convert (4065)8 into base 3.	Remember	CAEC019.01
15	Convert 11001 ₂ into decimal?	Remember	CAEC019.01
	PART-B (LONG ANSWER QUESTIONS)		
	Perform the subtraction with the following unsigned binary numbers by		
1	taking the 2's complement of the subtrahend.	Understand	CAEC019.01
	i. 100 – 110000 ii. 11010 - 1101.		
	a) Rewrite the decimal number (215)10 as an octal number	- N.	
2	b)Find (3250 - 72532)10 using 9's complement	Remember	CAEC019.01
	c) Change (1001011101)2 to a hexadecimal number?	0	
	a) Find (3250 - 72532)10 using 10's complement?	~	
3	b) Convert (B3D9)16 to a binary number.	Understand	CAEC019.01
	c) Convert (10110101)2 to decimal equivalent?		
4	a) Convert 4510 to binary number	Remember	CAEC019.01
	b) Convert 0.62510 to binary number?		011120017.01
5	(a) Add 01100100 by 00011001.	Understand	CAEC019.01
5	(b) Given that $(292)10 = (1204)b$ determine `b'.	Chicolotania	011120017.01
6	(a) What is the gray code equivalent of the Hex Number 3A7.	Remember	CAEC019.01
	(b) Find 9's complement of (25.639)10?	rememor	011120017.01
7	(a) Find (72532 - 03250) using 9's complement.	Understand	CAEC019.01
	(b) Express each number as an octal number. a. 101001001_2 b. 1234_{16}		<u> </u>
8	Explain Self complemented codes.	Understand	CAEC019.01
9	Convert (4085)10 into base-4 and obtain its 9's complement.	Remember	CAEC019.01
10	Convert the following Hexadecimal number to their Decimal equivalent	Remember	CAEC019.01
10	(EAF2)16.		

		Blooms	Course
S. No	QUESTION	Taxonomy	Learning
		Level	Outcome
	PART-C (PROBLEM SOLVING AND CRITICAL THINKI	NG OUESTIO	NS)
	Given the 8bit data word 01011011 generate the 12-bit composite word	-	
1	for the hamming code that corrects and detects single errors.	Remember	CAEC019.01
-	Express each number as an octal number. a. (101001001)2 b.	TT 1 . 1	G 4 E G010 01
2	(1001010000100010)2 c. (B78)16 d. (1234)16	Understand	CAEC019.01
2	A device transmits the binary data using even parity, the message is	Damaanhan	CAEC010.01
3	1011001. Identify the receiver receives the correct data or not.	Remember	CAEC019.01
4	Subtract the following binary numbers using 1's complement.	Remember	CAEC019.01
-	i) 1011-101 ii) 10110-1011	Remember	CALC017.01
5	Differentiate between BCD code and 2421 code and XS-3.	Understand	CAEC019.01
6	Find 7-bit hamming code for given message 1010 by using odd parity.	Understand	CAEC019.01
	The message below coded in the seven-bit hamming code is transmitted		
7	through a noisy channel. Decode the message assuming the at most a	Remember	CAEC019.01
	single error occurred in each code word.		
8	Generate an 11-bit hamming code for a given data 1011010 using odd	Remember	CAEC019.01
	parity.		
9	Express each number as a hexadecimal number.	Understand	CAEC019.01
	a. $(1010101010)_2$ b. $(2526)_8$		
10	a. Convert 0.35_{10} to octal number.	Understand	CAEC019.01
10	b. Convert $9F2_{(16)}$ to its binary equivalent	Chieffstand	012001)101
	UNIT-II		
	MINIMIZATION TECHNIQUES AND DESIGN	OF MSI	
	PART-A (SHORT ANSWER OUESTIONS	5)	
1	Define K-map.	Remember	CAEC019.06
2	Define Implicant, Prime Implicant and Essential Prime Implicant.	Understand	CAEC019.06
3	Define Consensus Theorem.	Remember	CAEC019.05
4	Solve AB+BC+CA=AB+BC.	Remember	CAEC019.02
5	Simplify the Boolean function A'BC +A'BC' + AB'C' + AB'C using K-	II. denotes d	
5	map.	Understand	CAEC019.06
6	Simplify the Boolean function $x'yz + x'yz' + xy'z' + xy'z$ without using K-	Understand	CAEC010.05
0	Map.	Understand	CAEC019.05
7	Sketch and implement following logic function using k-map for given	Remember	CAEC019.03
/	$Y(A, B,C,D) = \sum m(0,1,2,3,4,7,8,9,10,11,12,14).$	Remember	CALCOID.05
8	Design a logic circuit to convert BCD and gray code.	Understand	CAEC019.08
9	Design Full adder using Logic Gates.	Understand	CAEC019.08
10	Design Half subtractor using NAND Gates.	Remember	CAEC019.08
11	Design a Full adder using NAND Gates.	Understand	CAEC019.08
12	Design a Full adder using NOR Gates.	Remember	CAEC019.08
13	Design Half subtractor using NOR Gates.	Remember	CAEC019.08
14	Design a Full subtractor using NAND Gates.	Understand	CAEC019.08
15	Design a Full subtractor using NOR Gates.	Remember	CAEC019.08
16	Design a full adder using two half adders.	Remember	CAEC019.08
	PART-B (LONG ANSWER QUESTIONS)		
1	Minimize the following function using K-map.	Remember	CAEC019.06
	$F(A, B, C, D) = \sum m(1, 3, 5, 7, 9, 10, 11, 12, 15).$	Dama 1	CAECO10.01
2	Minimize the following function using K-map $f = \sum m (1, 2, 3, 5, 12, 13)$.	Remember	CAEC019.06
	Simplify the following Boolean expressions using K-map and implement them using logic states (a) $E(A, B, C, D) = AB^2C^2 + AC + A^2CD^2$		
3	unem using logic gates. (a) Γ (A, B, C, D) = AB C + AC + A CD'. (b) Γ (W X V Z) = W/YYYZ + WYYZZ + W/YZZ + W/YZZ	Understand	CAEC019.05
	(0) = (11, A, 1, L) WATL WATL WATL WATL.		

		Blooms	Course
S. No	QUESTION	Taxonomy	Learning
		Level	Outcome
4	Minimize the following function using K-map.	I la denotore d	
4	F (A, B, C, D, E) = $\sum m (1,3,5,7,9,10,11,12,15,19,21,22,27) + \sum d (0,4,8).$	Understand	CAEC019.00
5	Minimize the Boolean function F (w, x, y, z) = $\Sigma m (1, 3, 7, 11, 15) + \Sigma d$	Pomomhor	CAEC019.06
5	(0, 2, 5), obtain its POS Expression.	Kentenber	
6	Reduce the following expression using Karnaugh map (B $A + AB +$	Understand	CAEC019.06
0	AB').	onderstand	erificor).oo
7	Show that $AB+AB'C+BC' = AC+BC'$.	Remember	CAEC019.02
8	Convert (A+B) (A+B+C)(B+C) Expression into canonical POS.	Understand	CAEC019.04
9	Expand A $(A'+B)(A'+B+C')$ to maxterms and minterms.	Remember	CAEC019.04
10	Identify all the prime implicants and essential prime implicants for a	Describes	
10	given function using k-map. F (A, B, C, D) = $2m$	Remember	CAEC019.06
	(0,1,2,5,0,7,8,9,10,15,14,15).		
1	PART-C (PROBLEM SOLVING AND CRITICAL THINKI	NG QUESTIC	
1	Implement the Boolean function $F = AB + CD + E$ using NAND gates ?	Understand	CAEC019.04
2	Simplify the Boolean function F (w, x, y, z) = $2m(1, 3, 7, 11, 15) + 2d$ (0, 2, 5).	Remember	CAEC019.06
3	Design all logic gates using NAND	Understand	CAEC019.04
4	Design all logic gates using NOR.	Understand	CAEC019.04
	A function having three data inputs to implement the logic for the		
5	function $F = \Sigma m (0, 1, 2, 3, 4, 7)$.	Remember	CAEC019.06
6	Construct and explain the working of decimal adder.	Understand	CAEC019.08
7	Realize the Boolean expression for half subtractor.	Understand	CAEC019.08
8	Simplify the Boolean function $F = \Sigma m$ (0, 1, 2, 3, 4, 7, 9, 10, 14, 15) using	Understand	CAEC019.06
0	tabular method.	TT. da nata n d	CAEC010.02
9	Convert (A, B, C+A, D expression into standard SOP form.	Understand	CAEC019.02
10		Understand	CAEC019.05
	UNIT-III		-
	SEQUENTIAL CIRCUITS DESIGN		
	PART-A (SHORT ANSWER QUESTIONS	5)	
1	Define stable state?	Remember	CAEC019.09
2	Define Flip-Flop?	Understand	CAEC019.09
3	List the applications of Flip-Flops?	Remember	CAEC019.09
4	Express your view about synchronous latch?	Understand	CAEC019.09
5	How do you build a latch using universal gates?	Remember	CAEC019.09
6	Explain about flip-flop memory characteristic?	Remember	CAEC019.09
7	Distinguish between synchronous and asynchronous latch?	Understand	CAEC019.09
8	Define clocked flip-flop?	Remember	CAEC019.09
9	Why a gated D latch is called a transparent latch?	Understand	CAEC019.09
10	List the two types of flip-flops?	Understand	CAEC019.09
11	Explain about Different types of Latches in detail	Remember	CAEC019.09
12	Explain about S-R (NOR gates) Latch?	Remember	CAEC019.09
13	Explain about S-R (NAND gates) Latch?	Remember	CAEC019.09
14	Draw The truth table of gated D-Latch?	Dec. 1	CAEC019.09
15	Distinguish between Latch and Flip Flop?	Remember	CAEC019.09
10	Draw The block diagram of sequential circuit?	Remember	CAEC019.09
1/	Determine the output state of S-R latch (active low) for S=1, R=0, Qn =1	Understand	CAEC019.09
18	Denne Asynchronous sequential Circuit?	Remember	CAEC019.09
19	Draw use galed 5-K faich Logic Diagram?	Keinember	CAEC019.09
20	Determine the output state of S-K fatch (active fow) for S=0, K=0, Qn =1 Define binery coll?	Dinderstand	CAEC019.09
21	Draw The gated D Latch logic diagram?	Domombor	CAEC019.09
22	Draw The galed D-Laten logic diagram ?	Kennennber	CAEC019.09

		Blooms	Course
S. No	QUESTION	Taxonomy	Learning
		Level	Outcome
23	Determine the output state of gated D-latch for $D=1$, $Qn = 0$, enable=0.	Remember	CAEC019.09
24	Draw the S-R Latch(NAND) Truth Table ?	Remember	CAEC019.09
25	Why flip flops are edge triggered?	Remember	CAEC019.09
			L
1	List Shift registers?	Remember	CAEC019.12
2	List the types of Shift registers.	Remember	CAEC019.12
3	Explain basic difference between a shift register and counter?	Remember	CAEC019.11
4	Classify the basic types of counters?	Understand	CAEC019.11
5	Differentiate the advantages and disadvantages of ripple counters?	Remember	CAEC019.11
6	Sketch mod 10 asynchronous counter?	Understand	CAEC019.11
7	Sketch mod 6 asynchronous counter?	Understand	CAEC019.11
8	How does a binary counter work?	Remember	CAEC019.09
9	Sketch mod 5 asynchronous counter?	Remember	CAEC019.12
10	State the use of clock pulse?	Remember	CAEC019.12
11	Define race around condition?	Understand	CAEC019.12
12	Explain function of the clock?	Understand	CAEC019.12
13	Define level triggering?	Understand	CAEC019.12
13	Draw the master-slave IK FE?	Remember	CAEC019.12
15	Define synchronous counter?	Remember	CAEC019.12
16	Define counter	Remember	CAEC019.12
10	Sketch MOD 6 counter?	Remember	CAEC019.12
17	List the advantages of synchronous counters over asynchronous counters?	Remember	CAEC019.12
10	Skotch Johnson counter using D Flip Flop?	Remember	CAEC019.12
20	Dafine Asymphronous counter?	Remember	CAEC019.12
20	BADT B(LONC ANSWED OUESTIONS)	Kemember	CAEC019.12
1	Explain the working principle of IK Elip Elop in detail	Understand	CAEC010.00
2	Define Latch Explain about Different types of Latches in detail	Remember	CAEC019.09
3	Differentiate combinational and sequential circuits.	Understand	CAEC019.10
4	Describe about $T - Flip-flop$ with the help of a logic diagram and	Understand	CAEC019.09
	characteristic table. Derive a T-flip-flop from JK and D flip-flops.		
5	Explain with the help of a block diagram, the basic components of a	Remember	CAEC019.12
	Sequential Circuit?	0	G + E G 0 1 0 1 0
6	Explain about RS and JK flip-flops?	Remember	CAEC019.12
7	Define $T - Flip-flop$ with the help of a logic diagram and characteristic	Remember	CAEC019.12
8	Define Latch Explain about Different types of Latches in detail?	Remember	CAEC019 12
0	Define IK – Flin-flon with the help of a logic diagram and characteristic	Remember	CAEC019.12
9	table?	Remember	CILCOI).12
10	List the characteristic equations for all Flip-Flops?	Remember	CAEC019.12
1	Explain Serial Transfer in 4-bit shift Registers.	Remember	CAEC019.11
2	Explain about Binary Ripple Counter.	Understand	CAEC019.13
3	Explain the Ripple counter design. Also a decade counter design.	Remember	CAEC019.13
4	write short notes on shift register / Mention its applications.	Understand	CAEC019.11
6	Differentiate Synchronous and Asynchronous counters?	Remember	CAEC019.11 CAEC019.12
7	Explain about Binary Ripple Counter? What is MOD counter?	Remember	CAEC019.12
8	Define BCD Counter and Draw its State table for BCD Counter?	Remember	CAEC019.12

		Blooms	Course
S. No	QUESTION	Taxonomy	Learning
		Level	Outcome
9	Explain about Binary Ripple Counter? What is MOD counter?	Remember	CAEC019.12
10	Explain the Ripple counter design. Also the decade counters design?	Remember	CAEC019.12
	PART-C (PROBLEM SOLVING AND CRITICAL THINKI	NG QUESTIC	NS)
1	Convert a JK Flip Flop to i) SR Flip Flop ii) T Flip Flop iii) D Flip Flop	Understand	CAEC019.09
2	Design mod 10 synchronous counter.	Remember	CAEC019.12
3	Explain the operation of SR Flip-Flop using asynchronous inputs with truth table.	Remember	CAEC019.09
4	Explain the Flip-Flop operating characteristics in detail	Remember	CAEC019.09
5	Draw the schematic circuit of an edge triggered flip-flop with "active low preset" and "active low clear" using NAND gats and explain its operation.	Understand	CAEC019.09
6	Give the transition table for the following flip-flops i) SR FF ii) D FF.	Understand	CAEC019.09
7	Give the transition table for the following flip-flops i) JK FF ii) T FF.	Remember	CAEC019.09
8	Explain the JK and Master slave Flipflop? Give its timing waveform?	Remember	CAEC019.12
9	Explain the design of Synchronous Sequential circuit with an example?	Remember	CAEC019.09
10	Write short notes on shift register? Mention its application along with the Serial Transfer in 4-bit shift Registers?	Remember	CAEC019.09
1	Design Johnson counter using JK flip flops.	Understand	CAEC019.12
2	Design 3 bit asynchronous counter using SR flip flop.	Remember	CAEC019.13
3	Design 4 bit synchronous counter using t flip flop.	Remember	CAEC019.12
4	Design and implement 4-bit binary counter (using D flip flops) which	Remember	CAEC019.12
	counts all possible odd numbers only?		G + E G + 1 0
5	Design a Ring counter using JK flipflop?	Remember	CAEC019.12
0	Design MOD5 up and Down counter?	Remember	CAEC019.13
7	Also draw the timing diagram?	Remember	CAEC019.13
8	Design a Twisted Ring counter using JK flipflop?	Remember	CAEC019.12
9	Design a Modulo-12 up Synchronous counter using T-Flip Flops and draw the Circuit diagram.	Remember	CAEC019.09
10	Design Johnson counters and state its advantages and disadvantages?	Remember	CAEC019.12
	UNIT-IV	~	
	FEEDBACK AMPLIFIERS AND OSCILLAT	ORS	
	PART-A (SHORT ANSWER QUESTIONS	5)	
1	Define feedback and what are feedback amplifiers	Remember	CAEC019.14
2	Define positive and negative feedback	Remember	CAEC019.15
3	List the advantages and disadvantages of negative feedback	Understand	CAEC019.14
4	Differentiate between voltage and current feedback in amplifiers	Understand	CAEC019.15
5	Define Oscillator circuit	Understand	CAEC019.14
6	List the classifications of Oscillators	Understand	CAEC019.15
7	List the types of feedback oscillators	Understand	CAEC019.14
8	State the frequency for RC phase shift oscillator	Remember	CAEC019.15
9	Give the topology of current amplifier with current shunt feedback	Remember	CAEC019.14
10	Define gain margin and phase margin	Remember	CAEC019.15
11	Define LC oscillator	Remember	CAEC019.14
12	Draw the circuit of Clapp oscillator	Remember	CAEC019.15
13	How does an oscillator differ from an amplifier	Understand	CAEC019.14
14	Define Barkhausen stability?	Remember	CAEC019.15
15	mame two low frequency oscillators	Kemember	CAEC019.14

C N-	OUESTION	Blooms	Course
5. NO	QUESTION	Taxonomy Level	Learning Outcome
	PART-B (LONG ANSWER QUESTIONS))	
_	Explain the concept of feedback as applied to electronic amplifier circuits.	Understand	CAEC019.14
1	What are the advantages and disadvantages of positive and negative feedback		
	Explain the concept of feedback as applied to electronic amplifier circuits.	Understand	CAEC019.15
2	What are the advantages and disadvantages of positive and negative feedback		
	Explain the basic principle of generation of oscillations in LC tank	Understand	CAEC019.14
3	circuits. What are the considerations to be made in the case of practical L.C. Oscillator Circuits?		
4	Draw the circuit for Voltage series amplifier and justify the type of feedback.	Remember	CAEC019.15
5	Draw the circuit and explain the principle of operation of RC phase-shift oscillator circuit. What is the frequency range of generation of	Remember	CAEC019.14
5	oscillations? Derive the expression for the frequency of oscillations.		
6	Draw the circuit for Current series amplifier and justify the type of	Remember	CAEC019.15
	The dback. Derive the expressions for Av, Ri and Ro for the circuit.	Understand	CAEC010.14
7	oscillations. How are the oscillations initiated?	Understand	CAEC019.14
8	Derive the expression for the frequency of Wein Bridge Oscillators.	Underst and	CAEC019.15
9	Draw the circuit for Voltage shunt amplifier and justify the type of	Understand	CAEC019.14
	feedback. Derive the expressions for Av, Ri and Ro for the circuit.		<u></u>
10	Reason out the need for three identical R-C sections in R-C phase-shift oscillator circuits?	Understand	CAEC019.15
	PART-C (PROBLEM SOLVING AND CRITICAL THINKI	NG QUESTIC	DNS)
	An amplifier has a voltage gain of 400, f150hz, f2=200KHz, and a	Understand	CAEC019.15
1	distortion of 10% without feedback. Determine the amplifier voltage gain flf for and of when a we feedback is emplied with feedback ration of 0.012		1. C
	An amplifier has a mid hand gain of 125 and handwidth of 250 kHz. If	Understand	CAEC010.15
2	4% negative feedback is introduced, find the new bandwidth of 250 kHz. If	Onderstand	CALC019.15
3	For a current series feedback amplifier Rs=1K, gmf=-2mA/V. Avf=-8 D=60 hfe=300. Find Re RL Rif Ic Q at room temperature	Remember	CAEC019.14
4	An amplifier with $Av = -500$, produces 5% harmonic distortion at full output. What value of β is required to reduce the distortion to 0.1 % 2	Remember	CAEC019.15
т 	What is the overall gain?	1	
5	'For a voltage series feedback amplifier Find D, Avf, Rif, Rof.	Remember	CAEC019.14
6	For a voltage shunt feedback amplifier Rs=8K,Rc=3K, RB=30K,. Find D, Avf, Rif, R', Rmf. hie=1K,hre=0,hfe=50,hoe=0.	Understand	CAEC019.14
L	FOR		

S. No	QUESTION	Blooms Taxonomy Level	Course Learning Outcome
7	A voltage-series -ve feedback amplifier has a voltage gain without feedback of A=500, $R_i=3K\Omega$, $Ro=20K\Omega$ and feedback ratio	Understand	CAEC019.15
	$p=0.01$. Calculate the voltage gain A_f , R_{if} and output resistance R_{of} of amplifier with feedback?		
8	A Hartley oscillator is designed with $L = 20\mu$ H and a variable capacitance. Find the Range of capacitance values if the frequency of oscillation is varied between 950 KHz to 2050 KHz.	Understand	CAEC019.16
9	Find the capacitor C and hfe for the transistor to provide a resonating frequency of 10KHZ of a phase-shift oscillator. Assume R1=25k, R2=60k,Rc=40k, R=7.1k and hie=1.8k?	Remember	CAEC019.16
10	A crystal has L=0.1H, C=0.01PF, R=10k and CM=1PF. Find the series resonance and Q-factor?	Remember	CAEC019.16
	UNIT-V		
	SINGLE STAGE AMPLIFIERS AND MULTI STAGE	AMPLIFIERS	
	PART-A(SHORT ANSWER QUESTIONS)	
1	List the classification of amplifiers.	Remember	CAEC019.16
2	List the classification of amplifiers based on frequency of operation	Remember	CAEC019.17
3	State Miller's theorem. Specify its relevance in the analysis of a BJT amplifier.	Remember	CAEC019.16
4	Discuss various possibilities of inter-stage coupling of amplifiers.	Understand	CAEC019.17
5	List out the special features of Darlington pair and cascode amplifiers. State the areas where these amplifiers are used?	Remember	CAEC019.16
6	Write the expression for lower $3 - dB$ frequency of an $n - stage$ amplifier with non – interacting stages.	Remember	CAEC019.17
7	Two stages of amplifier are connected in cascade. If the first stage has a decibel gain of 40 and second stage has an absolute gain of 20 then what is the overall gain in decibels.	Remember	CAEC019.16
8	Why the overall gain of multistage amplifier is less than the product of gains of individual stages.	Understand	CAEC019.17
9	List the main characteristics of a Darlington amplifier?	Understand	CAEC019.16
10	Why direct coupling is not suitable for amplification of high frequency	Understand	CAEC019.17
	PART-B(LONG ANSWER QUESTIONS)	-	
1	Analyze general transistor amplifier circuit using h parameter model. Derive the expressions for AI, AV, Ri, R0, AIs, AVs.	Remember	CAEC019.16
2	Draw the circuit of an emitter follower(simplified model), and derive the expressions for AI, Av, Ri, R0 in terms of CE parameters.	Remember	CAEC019.17
3	Write the analysis of a CB amplifier circuit using h parameters. Derive the expressions for AI, AV, Ri, R0.(simplified model)?	Remember	CAEC019.16
4	Write the analysis of a CE amplifier circuit using h parameters. Derive the expressions for AI, AV, Ri, R0.	Understand	CAEC019.17
5	Compare the different types of coupling methods used in multistage amplifiers.	Remember	CAEC019.16
6	Sketch two RC-coupled CE transistor stages. Show the middle and low frequency model for one stage. Write the expressions for current gains	Remember	CAEC019.17
7	Draw the circuit diagram of cascode amplifier with and without biasing circuit. What is the advantages of this circuit	Remember	CAEC019.16
8	Explain about different methods of Inter stage coupling in amplifiers. When 2- stages of identical amplifiers are cascaded, obtain the expressions for overall voltage gain, current gain and power gain	Understand	CAEC019.17
9	Analysis for CE amplifier with emitter resistance?	Remember	CAEC019.16
10	Draw the low frequency parameter equivalent circuit of a CE amplifier and explain the significance of each parameter.	Remember	CAEC019.17

S No	OUESTION	Blooms	Course
5.110	QUESTION	Level	Outcome
	PART-C (PROBLEM SOLVING AND CRITICAL THINKI	NG QUESTIC	NS)
	A CE amplifier is driven by voltage source with internal resistance	Remember	CAEC019.16
1	Rs=800 Ω . The load impedance RL=2k Ω . The h-parameters are		
1.	hie=1.1K,hre=2.5*10-4,hfe=50,hoe=25µA/V. Compute AI,AV, AIs, Ri,		
	Zo & Ap.		
	A CB amplifier is driven by voltage source with internal resistance	Remember	CAEC019.17
2	Rs=800 Ω . The load impedance RL=2k Ω . The h-parameters are hib=22		
	Ω , hrb=3*10-4, hfb=-0.98, hoe=0.5 μ A/V. Compute AI, AV, AIs, Ri, Zo &		
	Ap.		
2	A CC amplifier is driven by voltage source with internal resistance $D = 2000$ The last line along $D = 2100$ The last line	Understand	CAEC019.16
5	Rs=80002. The load impedance $RL=2K$ 32. The n-parameters are mc=1.1K		
	A CE amplifier is driven by voltage source with internal resistance	Understand	CAEC019.17
4	$Rs=500\Omega$ The load impedance $RI=1k \Omega$. The h-parameters are	Circeistand	CALCOIDIT
	hie=1.1K,hre= $2.5*10-4$,hfe= 50 ,hoe= 25μ A/V. Compute AI,AV, Ri, Zo?		
	A CE-CC Amplifier uses $RS=1K\Omega$, $RC1=RE2=4K\Omega$. The h-	Understand	CAEC019.16
5	parameters hie=1.2K, hre=5*10-4, hfe=50, hoe=25 μ A/V, hic=1.2 Ω		
3	,hrc=1,hfc=- 51,hoc=25µA/V. Compute individual & overall A I & AV,		
	Ri, Ro & Rot .		
6	A CE-CB (cascode) Amplifier uses RS=1K Ω , . RC1=25K Ω , RE=100 Ω	Remember	CAEC019.17
	$R^{3}=200$ K Ω R $^{4}=10$ K Ω The h-parameters hie=2K, hre=0, hfe=100, hoe=0.		
7	A CE amplifier is driven by voltage source with internal resistance	Remember	CAEC019.16
	$K_{s}=600\Omega_{r}K_{L}=1200\Omega_{s}$ Ine n-parameters are nie=1.1K, nre=2.5x10- 4 hfg=50 hgg=25 uA/V_Compute ALAV_AIg Bi 7g & Bgt2		
	4, III = 50, IIO = 25 µA/V. Compute AI, AV, AIS, KI, ZO & KOL?	Domombor	CAEC010.17
	equivalent circuit using Approximate model Calculate ALAV Ri Zo &	Kellieliidei	CAEC019.17
8	Rot if Rs=6000 RL=10000 RE=8000 The h-parameters are		
	hie=1.2K, hre=3*10-4, hfe=50, hoe=25µA/V.		
	Draw the circuit of CB amplifier. Draw it's equivalent circuit using	Understand	CAEC019.16
9	Approximate model. Calculate AI,AV, Ri, Zo & Rot if Rs=900Ω,	J 1	- · · · · · · · · · · · · · · · · · · ·
	RL= 2000Ω . The h-parameters are hie= 1.1 K,hre= 2.5 *10-		J
	$4, hfe=50, hoe=24 \mu A/V.$	1	
	Draw the circuit of CC amplifier. Draw it's equivalent circuit using	Understand	CAEC019.17
10	Approximate model. Calculate AI,AV, Ri, Zo & Rot if Rs=500Ω,		
_	$RL=2000\Omega$. The h-parameters are hie=1.1K,hre=2.6*10-	- N	
1	$4,n1e=34,n0e=20\mu A/V.$		1

LIB

Prepared by: Dr.Vijay Vallabhuni, Professor, ECE MS.V.Bindusree, Assistant Professor, ECE

HOD, EEE