

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	REFRIGERATION AND AIR CONDITIONING
Course Code	:	A60334
Class	:	III B. Tech II Semester
Branch	••	Mechanical Engineering
Year	:	2017 - 2018
Course Coordinator	:	Dr.CH V K N S N Moorthy, Professor, Department of Mechanical Engineering.
Team of Instructors		Dr. CH V K N S N Moorthy, Professor.
		Mr. A. Somaiah, Assistant Professor.

COURSE OVERVIEW:

Refrigeration and air conditioning continues to grow in importance in every segment of our day-to-day living. The course covers various conventional refrigeration systems like air, vapour compression, vapour absorption and steam jet refrigeration systems, also describes some unconventional refrigeration systems; thermoelectric refrigeration, Hilsch tube, etc.. The course introduces the psychometry, various air conditioning systems and heat pump circuits.

S. No	Question	Blooms Taxonomy Level	Course Outcome
	UNIT – I		
	PART - A (SHORT ANSWER QUESTIONS)	_	
1	Define Unit of refrigeration.	Remember	3
2	Define Coefficient of performance.	Understand	3
3	What is the effect of sub cooling of liquid on the COP?	Remember	3
4	What is the effect of super heating of vapor on the COP?	Understand	3
5	Define Wet compression	Remember	3
6	What is the effect of increase of suction pressure on COP?	Remember	3
7	Define Dry compression	Remember	3
8	What is the effect of decrease of delivery pressure on COP?	Understand	3
9	What is a heat pump?	Remember	3
10	A refrigerator operates between the temperatures of -23°C and 27 °C.	Understand	3
	Determine the minimum power required per ToR to operate the refrigerator.		
11	Draw the p-h diagram for sub cooling with dry compression.	Remember	3
12	Discuss the governing law of refrigeration.	Understand	3
13	Draw the T-S diagram for sub cooling with dry compression.	Remember	3
14	Define sub cooling.	Understand	3
15	What is superheat horn?	Remember	3
16	Give some applications of refrigerator.	Understand	3
17	Define refrigeration.	Remember	3
18	What are the disadvantages of wet compression?	Understand	3
19	Draw the p-h diagram for sub cooling with wet compression.	Remember	3
20	Classify the refrigerants and state physical properties.	Understand	3

S. No	Question	Blooms Taxonomy Level	Course Outcome
	PART - B (LONG ANSWER QUESTIONS)		
1	Describe the mechanism of a simple vapour compression refrigeration	Understand	3
2	What are the important types of vapour compression cycles? Explain with the help of P-h diagram.	Remember	3
3	The capacity of a refrigerator is 200 TR when working between -6° C and 25°	Understand	3
	C. determine the mass of ice produced per day from water at 25° C. Also find		
	the power required to drive the unit. Assume that the cycle operates on reversed Carnot cycle and latent heat of ice is 335 KJ/Kg.J	_	
4	An ammonia refrigerator produces 30 tonnes of ice from and at 0°C in 24 hours. The temperature range of the compressor is 25° C to -15° C. The vapour	Remember	3
	is dry saturated at the end of compression and an expression and an		
	expansion value is used. Assume a coefficient of performance to be 60% of		
	the theoretical value. Calculate the power required to drive the compressor.		
	Latent heat of ice = 335 kJ/kg. Properties of ammonia are;		
	Temperature Enthalpy kJ/kg Entropy kJ/kg		
	C Liquid Vapour Liquid Vapour		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	-13 112.34 1420.34 0.4372 3.3490		
5	Explain how you would detect whether a refrigerant is under charged or over charged.	Understand	3
6.	A R12 refrigerating machine works on a vapor compression cycle. The	Remember	3
	temperature of refrigerant in the evaporator is -20°C. The vapor is dry		
	condition. The condenser temperature is 30° C. Assuming Cp for R12 in the		
	superheated condition as 1.884 KJ/Kg K, determine: i) Condition of vapor at		
	the entrance to the condenser, ii) Condition of vapor at the entrance to the		
	evaporator and iii) COP_{th} of the machine. Properties of K12		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	30 64.59 199.62 0.2400 0.6843		
7	What is the effect of sub-cooling on COP? Explain.	Understand	3
8	A refrigeration system works on ammonia between pressure limits, 2.36 bar	Understand	3
	and 15.54 bar. If the refrigerant is sub cooled by 10k before throttling,		
0	determine the improvement in COP over simple vapor compression cycle.	Domomhor	2
9	An ammonia ice plant operates between condenser temperature of 35° C and an evaporator temperature of -15° C. It produces 5 toppes of	Remember	3
	ice per day from water at 25° C to ice at -5° C. The ammonia enters as		
	dry saturated vapor and leaves the condenser as saturated liquid.		
	Determine: a) The capacity of the refrigerating plant		
	b) Mass flow of the refrigerant		
	c) Discharge temperature of ammonia from the compressor d) Power of the		
	compressor motor if the isentropic efficiency of the compressor is 85%		
	and mechanical efficiency of the compressor is 90% e) Relative efficiency. The latent heat of formation of ice is 335 ki/kg and specific		
	heat of ice is 2.1 kj/kg-k.		
10	Distinguish between dry and wet compression. What are the advantages of	Understand	3
10	one over the other?	Domosta	2
12	A reingerator using CO_2 as reingerant works between the temperatures $17.5^{\circ}C$ and $-17.5^{\circ}C$. The CO_2 leaves the compressor at $30^{\circ}C$. The gas is	Kemember	5
	completely condensed but there is no under cooling. Calculate theoretical		
	COP.		
13	Explain how you would detect whether a refrigerant is under charged or over charged.	Understand	3

S. No			Question	l		Blooms Taxonomy Level	Course Outcome
14	An ammonia leaves the con	refrigerator w npressor in dry	vorks between and saturated	- 6.7° C and l condition. As	26 [°] C. The vapour suming there is no	Remember	3
15	An ammonia r dry at the end ammonia and t condenser. Sky refrigeration e with the help of	under cooling; calculate the theoretical COP of the system. An ammonia refrigerator works between -6.7° C and 26.7° C, the vapor being dry at the end of isentropic compression. There is no under cooling of liquid ammonia and the liquid is expanded through a throttle valve after leaving the condenser. Sketch the cycle on the T-S and P-h diagram and calculate the refrigeration effect per Kg of ammonia and the theoretical COP of the unit with the help of properties given below.				Understand	3
	Temp ⁰ C	h _f , KJ/Kg	h _g , KJ/Kg	S _f , KJ/Kg K	S _g , KJ/Kg K		
	-6.7	152.18	1437.03	0.6016	5.4308		
	26.7	307.18	1467.03	1.1515	5.0203		
16	Explain the effort	ffect of sub containce.	oling of liqui	d and superhea	at of vapor on the	Understand	3
17	An ammonia between the to the end of ise 30 ^o C. Assumi ice produced 335 KJ/Kg. ar	An ammonia refrigerating machine fitted with an expansion valve works between the temperature limits of -10° C and 30° C. The vapor is 95% dry at the end of isentropic compression and the fluid leaving the condenser is at 30° C. Assuming actual COP as 60% of the theoretical, calculate the Kgs of ice produced per KW hour at 0° C from water at 10° C. Latent heat of ice is 335 KJ/Kg. ammonia has the following properties				Understand	3
	Temp ⁰ C	h _f , KJ/Kg	h _{fg} , KJ/Kg	S _f ,KJ/Kg K	S _g , KJ/Kg K		
	30	323.08	1145.80	1.2037	4.9842		
	-10	135.37	1297.68	0.5443	5.4770	1	
18	Five hundred storage is ma temperature ir heat of fruit is	kgs of fruits a aintained at - n 10 hours. The s 1.256 kj/kg k.	re supplied to 5 ⁰ C and the e latent heat of Find the refrig	a cold storage fruits get cool freezing is 105 geration capacit	at 20° C. The cold led to the storage 6 kj/kg and specific by of the plant.	Understand	3
19	A machine we Determine the and a iii) a hea	orking on a Ca COP when it at engine	arnot cycle op is operated as	erates between s i) a refrigera	305 K and 260 K. tor ii) a heat pump	Understand	3
20	Derive an expr diagrams of the	ression for CO	P of Carnot ref	rigerator and pl	lot T-S and P-V	Understand	3
	0	PAR	Г-С (ANA	LYTICAL Q	UESTIONS)		
1	 A Carnot refrigeration cycle absorbs heat at 270K and rejects it at 300K. i. Calculate the COP of this refrigeration cycle. ii. If the cycle is absorbing 1130 KJ/min. At 270 K, how many KJ of work is required per second? iii. If the Carnot heat pump operates between the same temperatures as the above refrigeration cycle, what is the COP? iv. How many kj/min will the heat pump deliver at 300K if it absorbs 1130 KJ/min at 270K. 				Understand	3	
2	1.5kw per tonr -40°C in the re determine the i. COP of the c ii. temperature iii. heat rejecte iv. heat supplie	ne of refrigerat frigerator. If the following: cycle of the sink ed to the sink ped and EPR if the	ion is required ne refrigeration er tonne of ref the cycle is use	to maintain the a cycle works of rigeration ed as a heat pun	e temperature of n carnot cycle, np.	Understand	3

S. No			Question				Blooms Taxonomy Level	Course Outcome
3	A vapour compression refrigerator works between the pressure limits of 60				limits of 60	Understand	3	
	there is no	under cooling o	f the liqu	id before	the expansion	sion valve.		
	Determine: 1.	. COP of the the cy	cle and 2.	Capacity of	the refrige	rator if the		
	fluid flow is a	at the rate to 5 Kg/i	nin. Enthaln	v Ki/Ka	Entropy	. Ki/Ka		
	bar	Sut remp.,ix		y, nj/ng		y, Kj/Kg		
	60	295	Liquid 151.96	vapor 293.29	0.554	vapor 1.0332		
	25	261	56.32	322.58	0.226	1.2464		
4	Establish with	a neat p-h and T-S	S diagrams.	how an act	ual cycle d	iffers from	Understand	3
	a theoretical v	apour compression	n cycle.				01100130110	U U
5	Sketch the T-S	S and p-h diagrams	for the var	oour compre	ession cycle	es when the	Understand	3
	i Dry satur	ompression is:						
	ii. Wet							
	iii. Super hea	ated and						
	iv. Wet befor	re compression	T					
		PART - A	(SHOR	$\frac{JNII - II}{T A NSWI}$	ER OUES	TIONS)		
1	What is the	e function of ac	cumulator	in a floo	ded type	evaporator	Remember	4
	refrigerator?					-		
2	What is the na	ame of bank of tub	es at the ba	ck of dome	stic refriger	rator?	Understand	4
3	What type of	the compressor is	used in don	nestic refrig	erator?		Remember	4
4	What type of	expansion devise i	s used in de	omestic refr	igerator?		Understand	4
5	Which compo the refrigerati	onent of the vapor ion effect.	compressi	on refrigera	ation system	m produces	Remember	4
6	For small ins condenser is t	tallations of refrigutes to the second se	eration syst	tems (up to	35kW) wh	ich type of	Understand	4
7	During which remains const	n component of the tant?	VCR syste	em, the enth	alpy of the	refrigerant	Remember	4
8	A capillary tu	ibe is used in a sm	all refrigera	ator to serve	the purport	se of which	Understand	4
	component of	f the refrigerating s	ystem?			/		
9	Why a throttle	e valve is used in r	efrigerating	g system in j	place of exp	pander?	Remember	4
10	Write the co system startin	orrect sequential on or from the Compro-	order of the essor.	e different	componen	ts in VCR	Understand	4
11	What do you i	mean by hermetica	lly sealed c	ompressor?			Remember	4
12	Give the class	ification of expans	ion devices		~ ~	×	Understand	4
13	What do you i	mean by open type	compresso	r?	100		Remember	4
14	What do you r	mean by bare tube	coil evanor	ator?			Remember	4
15	What do you i	mean by semi-hern	netically se	aled compre	essor?		Understand	4
17	Give the class	ification of evapor	ators.	alea compit			Remember	4
18	What do you	mean by underchar	ging?				Understand	4
19	Give the class	ification of conden	sers.				Remember	4
20	What do you r	mean by overcharg	ed?				Understand	4
1	Classify the	PART -]	<u>d ovelaie</u>	ANSWEI	<u> vuest</u>	TONS)	Understand	Λ
	disadvantages	s of reciprocating of	u explain	with neat s	nig, advai sketch	nages and	Understand	4
2	Classify the	compressors an	d explain	the work	ing, advar	ntages and	Understand	4
3	disadvantages Classify the	s of centrifugal cor compressors an	npressors w d explain	the work	etch. ing, advai	ntages and	Understand	4

S. No	Question	Blooms Taxonomy Level	Course Outcome		
	disadvantages of rotary compressors with neat sketch.				
4	Classify the compressors and explain the working, advantages and disadvantages of screw compressors with neat sketch.	Understand	4		
5	Describe the hermetically and semi hermetically sealed compressors, also give their merits and demerits.	Remember	4		
6	Describe the working principle of shell and tube type evaporator with neat sketch.	Understand	4		
7	Describe the working principle of shell and coil type evaporator with neat sketch.	Understand	4		
8	a) What problems do lubricating oil causes in the evaporator?b) With a neat diagram, explain the function of flooded type evaporator.	Remember	4		
9	Explain the working of a dry expansion type evaporator with a neat sketch.	Understand	4		
10	Describe the working principle of bare tube coil, finned tube coil and plate type evaporators with neat sketches.	Understand	4		
11	Explain the working of natural convection and forced convection type evaporator, also discuss their merits and demerits.	Understand	4		
12	How do you identify the frosting, non-frosting and defrosting evaporators, explain.	Remember	4		
13	Explain the working of an automatic expansion valve with the help of a neat sketch.	Understand	4		
14	With the help of a schematic diagram, explain the functioning of thermostatic expansion valve.	Understand	4		
15	Describe the working principle of low side float valve, with a neat sketch.	Remember	4		
16	Describe the working principle of high side float valve, with a neat sketch.	Understand	4		
17	With the help of a neat diagram, explain the working of fixed opening type expansion valve.	Understand	4		
18	With the help of a schematic diagram, explain the Working of air cooled condensers.	Understand	4		
19	With the help of a schematic diagram, explain the Working of water cooled condensers.	Understand	4		
20	With the help of a schematic diagram, explain the Working of evaporative condenser.	Remember	4		
	PART - C (ANALYTICAL QUESTIONS)				
1	How do you select the compressor for particular application and give some refrigerants and compressor pairs.	Remember	4		
2	How do you select the condenser for particular application and the differences between air cooled, water cooled and evaporative condensers?	Remember	4		
3	What are the differences between fixed opening type and varying opening type of expansion devices, also give some refrigerants and suitable materials pairs.	Remember	4		
4	How the length and diameter of the evaporator coils will affect the system performance, discuss?	Understand	4		
5	Give the advantages and disadvantages of hermetically sealed, semi hermetically sealed and open type compressors.	Understand	4		
	UNIT – III				
	PART - A (SHORT ANSWER OUESTIONS)				
1	Why the boiling point difference of absorbent-refrigerant should be high.	Remember	1		
2	What is the effect of latent heat of absorbent on performance of the absorption systems?	Understand	1		
3	What is the refrigerant in Li-Br and water absorption system?	Remember	1		
4	What is the refrigerant in Ammonia and water absorption system?	Understand	1		
5	What is the function of rectifier in Ammonia absorption system?	Remember	1		
6	What are the desirable requirements of a Refrigerant - Absorption pair?	Understand	1		
7	Name air refrigeration cycle and What are the processes of Air refrigeration cycle?	Remember	1		
8	If in an air refrigeration plant, the temperatures of air entering and leaving	Understand	1		

S. No	Question	Blooms Taxonomy Level	Course Outcome
	the expander are 300K and 200K respectively, determine the COP of the		
	plant assuming isentropic compression and expansion.		1
9	Which parts replace the function of compressor in absorption system?	Remember	1
10	What are the three fluids used in Electrolux refrigeration?	Understand	1
11	Define absorbent and adsorbent.	Remember	1
12	What do you mean by the product of COP of reingerator and neat engine?	Damamhar	1
15	What is the other name of an Electrolux refrigerator principle?	Understand	1
14	What is the role of hydrogen in Electrolux refrigerator?	Pomombor	1
15	What is the absorbant in lithium bromide absorption system?	Understand	1
10	What is the adsorbent in hithium bromide absorption system?	Remember	1
17	What is the reingerant in numum biomide absorption system:	Understand	1
10	system?	Onderstand	1
19	What is the difference between 2-shell and 4-shell Li-Br absorption system?	Understand	1
20	What is the function of absorber in the vapor absorption system?	Remember	1
21	What is the absorbent in Li-Br and water absorption system?	Understand	1
22	What is the absorbent in Ammonia and water absorption system?	Understand	1
23	What is the function of analyzer in Ammonia absorption system?	Remember	1
24	Write the expression for COP of aqua ammonia vapor absorption system	Understand	1
1	Name air refrigeration cycle and What are the processes of Air refrigeration cycle?	Remember	1
2	If in an air refrigeration plant, the temperatures of air entering and leaving	Understand	1
	the expander are 300K and 200K respectively, determine the COP of the		
	plant assuming isentropic compression and expansion.		
3	Which component in steam jet refrigeration system replaces the compressor	Remember	1
5	of VCR system?	Remember	1
4	List the major disadvantages of steam jet refrigeration system	Understand	1
5	Define absorbent and adsorbent	Remember	1
6	State the principle of steam jet refrigeration system	Understand	1
7	What is the nature of velocity of steam at the exit of nozzle in steam iet	Remember	1
,	refrigeration system?	Remember	-
8	Where the expansion of motive steam takes place in a steam jet refrigeration	Understand	1
-	system?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_
9	What is the other name of an Electrolux refrigerator?	Remember	1
10	What is the formula for the COP of an air refrigeration cycle?	Understand	1
11	What is the principle of dense air system?	Remember	1
12	What is the principle of open air system?	Understand	1
13	Define entrainment and state whether the process of entrainment is reversible	Remember	1
14	Of Intevensione?	Understand	1
14	Draw actual and theoritical Boll colomon cycle	Understand	1
15	State the expression for $C \cap P$ of Bell coleman cycle.	Remember	1
10	List the advantages of air refrigeration	Understand	1
18	Draw the diagram of steam ejector	Remember	1
10	List the disadvantages of air refrigeration	Understand	1
20	State the function of a steam ejector.	Remember	1
21	Define nozzle efficiency.	Understand	1
22	Write the expression for diffuser efficiency.	Remember	1
23	Compare air refrigeration with V.C.R.S	Understand	1
24	Compare air refrigeration with steam jet refrigeration system.	Understand	1
	PART - B (LONG ĂNSWER QUESTIONS)		•
1	Explain the working of a simple vapor absorption refrigeration system with a neat sketch.	Understand	1

S. No	Question	Blooms Taxonomy Level	Course Outcome
2	What are the different refrigerant - absorbent working pairs and what is the	Understand	1
2	effect of evaporator temperature on performance of absorption systems.	Remember	1
3	Discuss the advantages of vapor absorption refrigeration system over vapor compression refrigeration system.	Understand,	I
4	Describe with a neat sketch the working of lithium Bromide (two shell) water absorption system.	Understand,	1
5	Describe with a neat sketch the working of lithium Bromide (Four shell)	Remember	1
	water absorption system.		
6	Explain the working of a practical Ammonia-water vapour absorption	Understand	1
	refrigeration system with neat sketch.		
7	Explain with neat sketch Domestic Electrolux Refrigerator, with the	Remember	1
	functions of hydrogen, ammonia and water in the three fluid refrigeration		
	system.		
8	Explain the function of liquid-vapour heat exchanger between the generator and absorber and how it can improve the performance of the vapour absorption system	Understand	1
9	Derive an expression for the COP of vapor absorption refrigeration system.	Understand	1
10	Calculate the COP of vapour absorption refrigeration system has the	Remember	1
	generator temperature of 80° C, condenser temperature of 25° C and an evaporator temperature of -10° C.		
11	In an absorption refrigeration system heating, cooling and refrigeration takes	Understand	1
	place at the temperature of 150°C, 30°C and -20°C. Find the theoretical COP		
	refrigeration temperature is decreased to -40° C. Calculate the		
	percentage of change in theoretical COP.		
12	Derive an expression for the C.O.P of a Bell-Coleman cycle refrigeration system.	Understand	1
13	A refrigerator is working between the temperatures -30° C and 35° C. What is	Understand	1
	the maximum possible COP of the refrigerator? If the actual COP is 75% of	0	
1.4	maximum, determine the refrigerating effect per KW of power input.	XX 1 . 1	1
14	Show that the coefficient of performance of an air cycle system is only a function of pressure ratio	Understand	1
15	An air refrigeration system operates with a cooler pressure 10 bar and	Understand	1
	refrigerator pressure 2 bar. The temperature of the air leaving the cooler is	-	_
	25° C and the air leaving the room is 3° C. The compressor displacement is 30		
	cubic meter/min. Find		
	i. Power per ton.		
	iii. Expander displacement in cum/min.		
16	A Bell - Coleman cycle works between 1 and 6 bar pressure limits. The	Remember	1
	compression and expansion indices are 1.25 and 1.3 respectively. Obtain		
	clearance volume and take temperature at the beginning of compression and		
	expansion to be 7° C and 37° C, respectively.		
17	Refrigerator working on Bell-Coleman cycle operates between pressure	Understand	1
	limits of 1.05 bar and 8.5 bar. Air is drawn from the cold chamber at 10° C,		
	compressed and then is cooled to 30°C, before entering the expansion exhibiting the averaging and compression follows the law, $PV^{1.3}$ = constant		
	Determine the theoretical con of the system. $Pv = Constant$.		
18	In a Steam jet refrigeration system dry saturated steam at 7 bar abs. pressure	Remember	1
	is supplied. The flash chamber temperature is 5°C, the condenser		
	temperature is 40° C, make up water is supplied at 20° C. Assuming that		
1	quality of motive steam and flash vapour at the beginning of compression as		

S. No	Question	Blooms Taxonomy Level	Course Outcome
	93% dry and efficiency of the nozzle, efficiency of entertainment and the		
	efficiency of the thermo-compressor as		
	90%, 65% and 91% respectively. Determine:		
	(a) Weight of steam required per hour per ton of refrigeration.		
	(b) The volume of vapour removed from the flash chamber per hour per ton		
19	Explain the principle and working of steam jet refrigeration system and the	Understand	1
- /	function of steam ejector with a neat sketch.	Charlethalla	-
20	Draw the temperature-entropy and enthalpy-entropy diagram of a steam jet	Remember	1
	refrigeration system and write the expressions for the following efficiencies;		
	1. Nozzle 11. Entrainment and 111. Compression		
1	PART-C (ANALYTICAL QUESTIONS)	I Indoneton d	1
1	explain the function of ammonia, water and hydrogen in Electrolux refrigerator?	Understand	1
2	Describe the working of steam jet refrigeration system with a neat sketch.	Remember	1
3	Derive the expression for COP of aqua ammonia vapour absorption system	Understand	1
	with a neat sketch of simple VAS.		
			1
4	A vapour compression cycle with ammonia as the refrigerant works between the limits of acturated sugging temperature of 20^{0} c and acturated conducting	Understand	1
	temperature 30° C. It is a simple saturated cycle and compression is		
	isentropic: determine the work of compression per kg of ammonia. Compare		
	the same, if ammonia vapour leaving the evaporator at -20°C is absorbed by		
	water so that the mass concentration in the solution reaches about 40%, and		
	its solution is pumped to the condenser pressure. The specific volume of the		
5	solution may be assumed as 0.001161m ⁻ /kg	Understand	1
5	efficiency, entrainment efficiency, compression efficiency and mass of	Understand	1
	motive steam required.		
	UNIT – IV		
	PART - A (SHORT ANSWER QUESTIONS)		1
1	Define Air-conditioning.	Remember	2
2	What is wet bulb temperature?	Understand	2
3	Define degree of saturation	Remember	2
4	Sketch the process of heating and humidification on psychometric chart.	Understand	2
5	Define Relative humidity	Remember	2
6	What is Apparatus Dew Point?	Understand	2
7	Give the expression for Sensible Hea Factor.	Remember	2
8	Define Dew Point Temperature.	Understand	2
9	Sketch the process of cooling and humidification on psychometric chart.	Remember	2
10	Define Dalton's Law.	Understand	2
11	Sketch the process of sensible heating on psychometric chart.	Remember	2
12	Define and plot cooling and dehumidification process on psychometric chart	Understand	2
13	Draw the process of humidification on psychometric chart.	Remember	2
14	Define and write the formula for BPF.	Understand	2
15	Sketch the process of sensible cooling on psychometric chart.	Remember	2
16	Draw the process of cooling and dehumidification on psychometric chart.	Understand	2
17	Write any two major requirements of human comfort	Remember	2
18	Sketch the process of heating and dehumidification on psychometric chart.	Understand	2
19	List any two requirements of industrial air conditioning	Remember	2
20	Sketch the process of dehumidification on psychometric chart.	Understand	2
	PART - B (LONG ANSWER QUESTIONS)		
1	Ten grams of moisture per kg of dry air is removed from atmospheric air	Understand	2

S. No	Question	Blooms Taxonomy Level	Course Outcome
	when it is passed through an air conditioning system and its temperature becomes 20 ^o C. The atmospheric conditions are 40 ^o C DBT and 60% RH. Calculate the following for the conditioned air. i. Relative humidity, ii. Wetbulb temperature, iii. Dew point temperature, iv. Enthalpy change for the air. Assume standard atmospheric pressure.		
2	 (a) When is dehumidification of air necessary and how it is achieved? (b) Represent the following process in a skeleton psychometric chart. i. Sensible cooling ii. Cooling and humidification iii. Adiabatic mixing of air streams. 	Understand	2
3	Explain the following with neat sketch i. Partial pressure of water vapour ii. Dew Point Temperature iii. Relative Humidity and Degree of saturation.	Remember	2
4	 a) Write a short note on the bypass factor of the cooling coils. b) The sensible heat factor of an air-conditioned room is 0.67. The condition of the air leaving the air-conditioned room is 27⁰C DBT and 52% RH. The maximum permissible temperature difference between the inlet air and outlet air is 11⁰C. If the quantity of air flow at the inlet of the room is 180m³/min, then determine the sensible and latent heat load of air conditioned room. 	Understand,	2
5	An air conditioned hall of 1100 m ³ volume is maintained at 22 ^o C DBT and 52% RH. When outdoor air conditions are 45 ^o C DBT and 26 ^o C WBT, the hall sensible heat load is 23kw. The fresh air is 22% of the total air supplied. The ADP of the cooling coil is 10 ^o C and its bypass factor is 0.12. Calculate a) The condition and flow rate of supply air b) The latent heat gain of the room c) The cooling capacity of the coil.	Understand	2
6	The following data refer to an air conditioning system for industrial process for hot and wet summer conditions: outdoor conditions = 33°C DBT and 78% RH, required conditions = 20°C DBT and 73% RH, amount of out-door air supplied = 220 m ³ /min, coil dew point temperature = 12°C. If the required condition is achieved by first cooling and dehumidifying and then by heating, determine; (a) The capacity of the cooling coil and its by-pass factor. (b) The capacity of the heating coil and surface temperature of the heating coil if the by-pass factor is 0.18	Understand	2
7	Derive the expression for the specific humidity and relative humidity.	Remember	2
8	List out different sources that contribute to the sensible heat load of the room to be air conditioned and Explain the procedure to construct the RSHF line on a psychrometric chart.	Understand	2
9	An air conditioned auditorium is to be maintained at 27° C DBT and 60% RH. The ambient condition is 40° C DBT and 30° C WBT. The total sensible heat load is 100000 KJ/h and total latent heat load is 40000 KJ/h. 60% of the return air is recirculated and mixed with 40% of make-up air after the cooling coil. The condition of air leaving the cooling coil is at 18° C. Determine: (i) Room Sensible Heat Factor (ii) The condition of air entering the auditorium; (iii) The amount of make-up air; Show the process on psychrometric chart.	Understand	2
10	Define the "human comfort", and explain the factors which affect the human comfort.	Understand	2
11	The air in a room is to be maintained at 19° C and 54 % R.H. by air supplied at a temperature of 14° C. The design out-door conditions are as follows: Sensible heat gain: 20000 kJ/hr, Latent heat gain: 4000 kJ/hr, Out-door conditions: 30° C DBT and 42% R.H. The ratio of recirculated air to fresh air is fixed at 2.8: 1 by weight .The plant consists of direct expansion cooling coil and after-heater and a constant speed fan. Calculate: (a) The quantity of air supplied per minute in cubic meters	Remember	2

S. No	Question	Blooms Taxonomy Level	Course Outcome
	(b) The load on refrigerating plant in tons of refrigeration assuming the bypass factor of the cooling coil 0.15(c) The load on after - heater in kW.		
12	Why ventilation is required? Explain why different ventilation standards for different purposes are recommended.	Understand	2
13	An air conditioned plant is to be designed for a small office for winter	Understand	2
	conditions: Outdoor conditions are 10^{0} C DBT and 8^{0} C WBT, required indoor conditions are 20^{0} C DBT and 60% RH, amount of air circulation is $0.3 \text{ m}^{3}/\text{min./person}$, seating capacity of the office is 50 persons. The required condition is achieved first by heating and then by adiabatic humidifying, determine; i. Heating capacity of the coil in KW and the surface temperature; if the by- pass factor of the coil is 0.32; and ii. Capacity of the humidifier.		
14	The atmospheric air at 180C DBT and 70% RH is supplied to the heating chamber at the rate of 120m ³ /min. The leaving air has a temperature of 24 ^o C without change in its moisture contents. Determine the heat added to the air per minute and final RH of the air.	Understand	2
15	What are the important considerations in the design of an air conditioning system?	Understand	2
16	Give the classification of the effects of heat on human body? Explain briefly.	Understand	2
17	Briefly explain the thermodynamics of human body.	Understand	2
18	800 m ³ /min. of recirculated air at 22 ^o C DBT and 10 ^o C DPT is to be mixed with 300 m ³ /min. of fresh air at 30 ^o C DBT and 50% RH. Determine the	Understand	2
	enthalpy, specific volume, humidity ratio and DPT of the mixture.		
19	The amount of air supplied to air conditioned hall is $300 \text{ m}^3/\text{min}$. The atmospheric conditions are 35°C DBT and 55% RH. The required conditions are 20°C DBT and 60% RH, determine, the sensible heat and latent heat removed from the air per minute. Also, find SHE for the system	Understand	2
20	120 m^3 of air per minute at 35°C DBT and 50% R.H is cooled to 20°C DBT	Understand	2
	by passing through a cooling coil Determine the following: i. R.H of out coming air and its WBT ii. Capacity of the cooling coil in tons of refrigeration iii. Amount of water vapor removed per hr. iy. ADP.	101	
	PART - C (ANALYTICAL OUESTIONS)	~	
1	The outdoor summer design condition for a bank for 100 persons at a place is $T_{db} = 310$ K and $T_{wb}=300$ K. The required inside conditions are $T_{db} = 295$ K and $\varphi = 60\%$. The room sensible heat 400,000kJ/h. The room latent heat 2,00,000kJ/h. Ventilation requirement per person 0.0047m ³ /h. The by-pass factor is 0.15. Evaluate (a) grand total heat (b) ESHF (c) apparatus dew-point (d) volume flow rate of dehumidified air.	Understand	2
2	Explain about Sensible Heat Factor and with neat sketch on psychometric chart explain the process of determination of SHF for a process.	Understand	2
3	Define Grand Sensible Heat Factor and Room Sensible Heat Factor and with neat sketch on psychometric chart explain the process of determination of GSHF and RSHF for a process.	Understand	2
4	Define ESHF and with neat sketch on psychometric chart explain the process of determination of ESHF for a process.	Remember	2
5	Explain in detail with neat sketch on psychometric chart the difference between Dew Point Temperature and Apparatus Due Point.	Understand	2
	UNIT – V		1
	PART - A (SHORT ANSWER QUESTIONS)		
1	State the function of grills in Air conditioning system.	Remember	5
2	Differentiate between grill and register used in air conditioning system.	Understand	5
3	What is the difference between fan and blower in air conditioning system?	Remember	5
4	State the function of a humidifier.	Understand	5

S. No	Question	Blooms Taxonomy Level	Course Outcome
5	What is the function of a dehumidifier.	Remember	5
6	State the disadvantages of axial flow fans?	Understand	5
7	How dehumidification process is achieved by reducing the air temperature?	Remember	5
8	What is the name of the process of drawing water in the form of fine mist for	Understand	5
	humidification process?		
9	What are the sources of heat for heat pumps?	Remember	5
10	Define the term 'Throw'?	Understand	5
11	Why do we use deodorants in Air conditioning?	Remember	5
12	What are the common units used for the pressure developed by fans? Write the reason for expressing the pressure in those units.	Understand	5
13	State principle of working of centrifugal fans?	Remember	5
14	What is the significance of classifying the fans into Class I, II and III?	Understand	5
15	State the principle of working of axial fans?	Remember	5
16	What is the disadvantage of humidification process by injecting steam?	Understand	5
17	How can the life of HEPA filters be improved?	Remember	5
18	What is the difference between screen filters and fine filters?	Understand	5
19	Define HEPA filters?	Remember	5
20	What is meant by AHU? Give one example	Understand	5
	PART - B (LONG ANSWER QUESTIONS)		
1	What are the sources of heat in nature which can be used for heat pumps? Discuss about the performance of Heat pump when used with the different	Remember	5
	sources of heat. State the advantages and disadvantages in each case.		
2	Describe the working of the heat pump by drawing the circuit for Water to air design.	Understand	5
3	Describe any two methods of humidification of air by atomizing the water into air, with simple line sketches.	Understand,	5
4	Briefly explain different methods used to remove the odours from the air?	Understand	5
5	Which type of air cleaner would be selected for removing very small dirt particles and smoke from the air? Explain its working principle.	Remember	5
6	Explain the principle of various dehumidification methods.	Understand	5
7	Explain the process of desalination of sea water by using a heat pump with neat diagram	Remember	5
8	Explain the following heat pump circuits with a neat sketch Fixed refrigerant circuit design	Understand	5
9	Explain the following heat pump circuits with a neat sketch Water –to- water design	Remember	5
10	Explain the working principle of forward curved and back ward curved fans with neat sketches	Understand	5
11	Describe the working of the heat pump by drawing the circuit for Air to water design	Remember	5
12	Describe the use of heat pump for heating and cooling cycle with a neat	Understand	5
13	What are the advantages and disadvantages of spray type dehumidifier over	Remember	5
14	Explain the advantages and disadvantages of viscous filters over dry filters	Understand	5
15	With the help of a neat diagram, explain the functioning of dry and wet	Remember	5
16	With the help of a diagram, explain the Air washer humidifier and state the	Understand	5
17	Explain the working principle of radial blade and propeller fans with neat	Remember	5
18	sketches. Explain the working principle of Tube-axial and vane axial fans with peat	Understand	5
10	sketches.	Chaerstand	5

S. No	Question	Blooms Taxonomy Level	Course Outcome
19	Explain briefly pre filters and fine filters with neat sketches.	Remember	5
20	Explain briefly Absolute filters and Electronic filters with neat sketches.	Understand	5
PART - C (ANALYTICAL QUESTIONS)			
1	The power required for heating a room with reverse cycle refrigeration is less	Understand	5
	than what is required for heating with electrical strip heaters. Explain how.		
2	The first row of a cooling coil in the air entry side may not sweat. Why?	Remember	5
3	Explain the important role of air filters in air conditioning.	Remember	5
4	Three way diverting valves are generally used, instead of two-way solenoid	Understand	5
	valves, in chilled water coils. Why?		
5	Why is balancing valve used in chilled water systems?	Remember	5

Prepared by:

Dr. CH V K N S N Moorthy, Professor. Mr. A. Somaiah, Assistant Professor.

HOD, MECHANICAL ENGINEERING

