

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	THERMODYNAMICS
Course Code	:	AME003
Regulation	:	IARE - R16
Year	:	2018 – 2019
Class	:	B. Tech IV Semester
Branch	:	Aeronautical Engineering
Team of Instructors	:	Mr. R Sabari Vihar, Assistant Professor
		Ms. Ch.Ragha Leena, Assistant Professor

COURSE OBJECTIVES (COs)

The course should enable the students to:

S.No	Description
I.	Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.
II.	Develop the concept of properties during various phases of pure substances, mixtures, usage of steam tables and Mollier chart, psychometric charts.
III.	Understand the direction law and concept of increase in entropy of universe
IV.	Knowledge of ideal air standard, vapor cycles and evaluate their performance in open systems like steam power plants engines, gas turbines etc.
V.	Solve problems of different types of cycles and their performance which emphasizes knowledge in ic engines and refrigeration cycles.

COURSE LEARNING OUTCOMES (CLOs)

Students, who complete the course, will be able to demonstrate the ability to do the following:

AME003.01	Understand the concepts of conservation of mass, conservation of energy.
AME003.02	Demonstrate knowledge of ability to identify & apply fundamentals to solve problems
AME003.02	like system properties, amount of work transfer and heat during various processes.
AME003.03	Explore knowledge & ability to design the thermal related components in various fields
AME003.03	of energy transfer equipment.
AME003.04	Derive the first law of Thermodynamics from the concept of conservation of energy.
AME003.05	Discuss the nature of steady and unsteady processes under the influence of time.
AME003.06	Develop the second law of thermodynamics from the limitations of first law.
AME003.07	Determine entropy changes in a wide range of processes and determine the reversibility
AME003.07	or irreversibility of a process from such calculations based on Carnot cycle.
AME003.08	Understand the inter relationship between thermodynamic functions and an ability to use
AMEUUS.U6	such relationships to solve practical problems

AME003.09	Knowledge of the Gibbs and Helmholtz free energies as equilibrium criteria, and the
AME003.09	statement of the equilibrium condition for closed and open systems.
	Determine the equilibrium states of a wide range of systems, ranging from mixtures of
AME003.10	gases, liquids, solids and pure condensed phases that can each include multiple
	components.
AME003.11	Discuss pressure-temperature, volume-temperature, pressure-volume phase diagrams and
AME003.11	the steam tables in the analysis of engineering devices and systems.
AME003.12	Develop the Third Law of Thermodynamics from the concept of absolute thermodynamic
AME003.12	scale and describe its significance.
AME003.13	Understand the process of psychrometry that are used in the analysis of engineering
AME003.13	devices like air conditioning systems.
AME003.14	Introduction to concepts of power and refrigeration cycles. Their efficiency and
AME003.14	coefficients of performance.
AME003.15	Ability to use modern engineering tools, software and equipment to analyze energy
AME003.13	transfer in required air-condition application.
AME003.16	Explore the use of modern engineering tools, software and equipment to prepare for
AME003.10	competitive exams, higher studies etc.

	UNIT - I		
	INTRODUCTON		
	PART - A (SHORT ANSWER QUESTION	NS)	
S No	QUESTIONS	Blooms	Course Learning
		Taxonomy	Outcomes
		Level	
1	Explain Zeroth law of Thermodynamics.	Understand	AME003.01
2	Define System, Surroundings and system boundary?	Remember	AME003.01
3	Distinguish between macroscopic and microscopic point of view?	Remember	AME003.01
4	Discuss Quasi Static process, what are its characteristics?	Understand	AME003.01
5	Distinguish between different types of systems with examples.	Remember	AME003.01
6	Explain the features of constant volume gas thermometer.	Understand	AME003.01
7	Discuss First law of thermodynamics. Explain Joule's	Understand	AME003.02
'	experiment.	Onderstand	AML003.02
8	Define PMM 1.	Understand	AME003.02
9	State the causes of irreversibility?	Remember	AME003.04
10	Define Specific heat capacity at constant pressure.	Remember	AME003.01
11	Derive Steady Flow Energy Equation for an air compressor	Remember	AME003.05
12	State thermodynamic system? How do you classify it?	Understand	AME003.01
13	State the closed system? Give an example	Remember	AME003.01
14	Define Intensive and Extensive properties.	Understand	AME003.01
15	Define equilibrium of a system?	Remember	AME003.01
16	Explain whether the heat and work are Intensive/Extensive	Remember	AME003.01
10	properties.	Remember	71112003.01
17	Differentiate closed and open system.	Understand	
18	Define Specific heat capacity at constant volume	Remember	AME003.01
19	Differentiate closed and open system.	Understand	AME003.01
20	Classify the properties of system?	Understand	AME003.01

	PART - B (LONG ANSWER QUESTION	IS)	
1	Differentiate the system, surroundings and boundary. Explain in detail.	Understand	AME003.01
2	Classify the types of systems; explain the energy exchange in them.	Remember	AME003.01
3	Explain with an example the macroscopic and microscopic study of thermodynamics?	Remember	AME003.01
4	Define and Explain the importance of concept of continuum in thermodynamic approach?	Understand	AME003.02
5	Describe the Isobaric process diagrammatically on P-V?	Understand	AME003.02
6	Explain thermodynamic equilibrium in detail?	Remember	AME003.03
7	Differentiate thermal equilibrium and thermodynamic equilibrium with and example.	Understand	AME003.03
8	Explain, the role of chemical equilibrium in thermodynamic equilibrium	Understand	AME003.03
9	Describe the Isochoric process and represent on P-V diagram.	Remember	AME003.02
10	Explain displacement work with neat diagram?	Understand	AME003.03
11	State Zeroth law and explain with a standard example?	Understand	AME003.04
12	Explain the Joule's experiment with a neat sketch?	Understand	AME003.03
13	Describe the isothermal process with P-V and T-S diagram.	Remember	AME003.02
14	Sketch the constant volume gas thermometer and explain?	Remember	AME003.01
15	List the scales of temperature and explain in detail?	Understand	AME003.01
16	Indicate the polytropic process on T-S diagram and explain.	Remember	AME003.02
17	Compare the first law of thermodynamics with its corollaries?	Remember	AME003.03
18	Explain how the first law of thermodynamics applied to a process?	Understand	AME003.04
19	Indicate the Isentropic process on P-V diagram and explain	Understand	AME003.02
20	Explain the Steady flow energy equation?	Understand	AME003.05
	PART - C (PROBLEM SOLVING AND CRITICAL THIN)	KING QUEST	TIONS)
1	When a stationary mass of gas was compressed without friction at constant pressure, its initial state of 0.4m3 and 0.105MPa was found to change to final state of 0.20m3 and 0.105MPa. There was a transfer of 42.5kJ of heat from the gas during the process. Determine the change in internal energy of the gas?	Understand	AME003.02
2	0.44kg of air at 180°C, expands adiabatically to 3times its original volume and during the process there is a fall in temperature to 15°C. The work done during the process is 52.5kJ. Calculate Cp and Cv?	Remember	AME003.03
2	Two thermometers one centigrade and other Fahrenheit are immersed in a fluid, after the thermometers reached equilibrium with the fluid, it is noted that both the thermometers indicate the same numerical values. Find that the identical numerical values	Remember	AME003.02
3	shown by the thermometers? Determine the corresponding temperature of the fluid, express in degrees Kelvin and degrees Rankine?		
4	temperature of the fluid, express in degrees Kelvin and degrees	Understand	AME003.05

	i) Isothermal Process		
	ii) Polytropic Process		
	A piston cylinder device operates 1kg of fluid at 20atm pressure		
	with initial volume is 0.04m3. Fluid is allowed to expand		
6	reversibly following pV1.45=C. So that the volume becomes	Remember	AME003.04
	double. The fluid is cooled at constant pressure until the piston		
	comes back. Determine the work done in each process?		
	A fluid contain in a horizontal cylinder with a frictionless leak		
	proof piston is continuously agitated by a stirrer passing through		
	the cylinder cover. The diameter of the cylinder is 50cm and the		
7	piston is held against the fluid due to atmospheric pressure equal	Understand	AME003.04
	to 100kPa. The stirrer turns 8000 revolutions with an average		
	torque of 1.5Nm. If the piston slowly moves outwards by 60cm.		
	Determine the network transfer to the system?		
	A Piston and cylinder machine contains a fluid system which		
	passes through a complete cycle of four processes. During a cycle		
8	the sum of all heat transfers is -170kJ. The system completes	Remember	AME003.04
	100cycles/minute. Complete the following table showing the		
	method for each item and compute net rate of work output in kW.		
	A fluid is confined in a cylinder by a spring loaded friction less		
	piston, so the pressure in the fluid is a linear function of volume		
	(p=a+bV). The internal energy of the fluid is given by the		
_	following equation U=34+3.15pV. Where U is in kJ, p in kPa and		
9	V is in m3. If the fluid changes from initial state of 170kPa,	Remember	AME003.03
	0.03m3 to a final state of 400kPa, 0.06m3 with no work other		
	than that done on the piston. Define the direction and magnitude		
	of work and heat transfer.		
	Air flows steadily at the rate of 0.5kg/sec through an air		
	compressor, entering at 7m/sec velocity, 100kPa pressure and		
	0.95m3/kg volume and leaving at 5m/sec, 700kpa and		
10	0.19m3/kg. The internal energy of air leaving is 90kJ/kg greater	Understand	AME003.04
	than that of air entering. Cooling water in the compressor jacket		
	absorbs heat from the air at the rate of 58kW.Compute the rate of		
	shaft work input to the air in KW.		
	UNIT - II		
	LIMITATIONS OF THE FIRST LAW		
	PART - A (SHORT ANSWER QUESTION	NS)	
1	State the limitations of first law of thermodynamics.	Understand	AME003.06
2	Define second law of thermodynamics.	Remember	AME003.06
3	State PMM 2.	Remember	AME003.07
4	State the Carnot Cycle.	Understand	AME003.06
5	State the Clausius inequality.	Remember	AME003.06
6	Define the absolute temperature scale.	Remember	AME003.07
7	State the property of entropy.	Understand	AME003.08
8	Define an inversion curve.	Remember	AME003.09
9	Solve one T -dS equation by using Maxwell's relations.	Remember	AME003.09
10	State the Third law of Thermodynamics.	Understand	AME003.09
	· · · · · · · · · · · · · · · · · · ·		

11	Define internal energy of a system.	Remember	AME003.06
12	Define the change in internal energy of a system.	Remember	AME003.06
13	Explain the available energy in a system.	Understand	AME003.06
14	State the unavailable energy in a system.	Remember	AME003.08
15	Explain the principle of entropy increase.	Knowledge	AME003.08
16	Explain the energy of a system.	Understand	AME003.09
17	Explain the Clausius statement.	Understand	AME003.06
18	State the Kelvin-Plank statement.	Remember	AME003.06
19	Sketch the PV and TS diagrams of Carnot cycle.	Remember	AME003.08
20	Classify the processes which constitute the cycle.	Understand	AME003.06
	PART - B (LONG ANSWER QUESTION	NS)	
	Explain the limitations of First law of thermodynamics in	,	
1	detail?	Understand	AME003.06
2	Explain about thermal reservoir with a neat sketch?	Remember	AME003.07
3	Explain the heat engine with a neat sketch?	Remember	AME003.06
4	Explain the heat pump with a neat sketch?	Understand	AME003.07
5	List the performance parameters of a system and explain in detail.	Remember	AME003.06
6	Compare the first law and second law of thermodynamics with suitable examples.	Remember	AME003.07
7	Explain the second law of thermodynamics with suitable sketches?	Understand	AME003.06
8	Write the Kelvin-Plank statement and explain with an example?	Understand	AME003.07
9	Write the Clausius statement and explain with an example?	Understand	AME003.06
10	Write the Kelvin-Planck and Clausius statements and explain with sketches?	Understand	AME003.07
11	State PMM1 and PMM2, are they different? How?	Remember	AME003.06
12	Compare the relation with process and cycle? Explain.	Remember	AME003.07
13	State the Carnot's principle? What is the importance of the principle?	Remember	AME003.06
14	State the Clausius inequality? Explain.	Understand	AME003.07
15	Explain the influence of entropy on various parameters?	Remember	AME003.08
16	Define Gibb's and Helmholtz's functions?	Remember	AME003.09
17	State the irreversibility and explain.	Understand	AME003.07
18	Explain the Availability in a thermodynamic system with example.	Remember	AME003.08
19	Discuss the importance of Maxwell relations?	Understand	AME003.09
20	State the Third law of thermodynamics? Explain the	Remember	AME003.09
	importance. PART – C (PROBLEM SOLVING AND CRITICAL)	, THINKING)
	A heat engine working on Carnot cycle converts 1/5th of the		,
1	heat input into work. When the temperature of the sink is reduced by 80°C, the efficiency gets doubled. Determine the temperature of sink?	Understand	AME003.06
2	Discuss the equivalent of Kelvin-Plank and Clausius statements?	Understand	AME003.07
3	1kg of ice at -5°C expose to the atmosphere which, is at 20°C.	Remember	AME003.06
	<u> </u>		

	The ice melts and comes into thermal equilibrium with the		
	atmosphere. Determine the entropy increase of Universe. Cp		
	for ice is 2.039 kJ/kgK, and the enthalpy of fusion of ice is		
	333.3kJ/kg.		
	A domestic food freezer maintains a temperature of -15°C, the		
4	ambient air temperature is 30°C, if heat leaks into the freezer at	Remember	AME003.07
	the continuous rate of 1.75kJ/sec. State the least power		
	necessary to pump this heat out continuous?		
	A heat engine is operating between two reservoirs 1000K and		
	300K is used to drive a heat pump which extracts heat from the		
	reservoir at 300K at a rate twice that at which the engine rejects		
	the heat to it. If the efficiency of the engine is 40% of the		
5	maximum possible and COP of heat pump is 50% of the	Understand	AME003.08
	maximum possible, then determine the temperature of the		
	reservoir to which the heat pump rejects heat. Also determine		
	the rate of heat rejection from the heat pump, if the rate of heat		
	supply to the heat engine is 50kW?		
	Three Carnot engine are arranged in series. The first engine		
	takes 4000kJ of heat from a source at 2000K and delivers		
		D 1	ANGE 002.12
6	1800kJ of work. The second and third engines deliver 1200kJ	Remember	AME003.12
	and 500kJ of work respectively. Compare the exhaust		
	temperature of second and third Carnot engines?		
	Two bodies of equal capacities C and T1 and T2 from an		
	adiabatically closed system. Determine the final temperature, if		
7	the system is brought to an equilibrium state. i) Freely, ii)	Remember	AME003.08
	reversibly, Proceed to calculate the maximum work which can		
	be obtained from the system?		
	A heat engine is supplied with 2512kJ/min of heat at 650°C.		
	Heat rejection takes place at 100°C. Distinguish which of the	XX 1 . 1	A N 455002 07
8	following heat rejection represent a reversible, irreversible or	Understand	AME003.07
	impossible result. i) 867 kJ/min ii) 1015 kJ/min iii) 1494 kJ/min		
	Heat flows from a hot reservoir at 800K to another reservoir at		
	250K.If the entropy change of overall process is 4.25kJ/K,		
9	Compare calculation for the heat flowing out of the high	Remember	AME003.08
	temperature reservoir?		
	Air expands through a turbine from 500kPa, 5200C to 100kPa,		
	and 3000C. During expansion 10kJ/kg of heat is lost to the		
10	surroundings, which is at 98kPa, 200C. Neglecting K.E and P.E	Remember	AME003.09
10	changes, determine per kg of air i) the decrease in availability	Remember	AIVIEUUS.UZ
	ii) the maximum work iii) irreversibility for air take		
	Cp=1.005kJ/kg k		
	UNIT-III		
	PURE SUBSTANCES		
	PART - A (SHORT ANSWER QUESTION	(S)	
1	Explain the equation of state?	Understand	AME003.10
	Derive the changes in internal energy during a process with		
2	variable specific heats.	Remember	AME003.11
	·		

3	Derive the changes in enthalpy during a process with variable specific	Remember	AME003.10
4	Explain the process of free expansion?	Understand	AME003.11
5	Explain the process of Throttling?	Remember	AME003.10
6	State the expression for Vander Wall's equation and determine the constants?	Remember	AME003.11
7	Explain on what coordinates compressibility charts can be drawn?	Understand	AME003.10
8	List the molar specific heats, explain?	Understand	AME003.11
9	Derive the expression for work done in a non-flow process, if the process is adiabatic?	Understand	AME003.10
10	Discuss briefly the reduced properties?	Remember	AME003.11
11	Define Pure Substance and what do you understand by a saturation	Remember	AME003.10
12	Draw the phase diagram on p-v diagrams with water as pure substance?	Understand	AME003.11
13	Explain the concept of p-v-T surface? Represent on p-T coordinates?	Remember	AME003.11
14	Explain the critical state of water?	Understand	AME003.11
15	Draw the phase equilibrium diagram for a pure substance on T-s plot with relevant constant property line?	Understand	AME003.10
16	Draw the phase equilibrium diagram for a pure substance on H-s plot with relevant constant property line?	Remember	AME003.11
17	Compare isobar on Mollier diagram diverse from one another?	Remember	AME003.11
18	Explain Mollier chart by representing all the properties on it?	Understand	AME003.11
19	State the degree of superheat and degree of sub cooling?	Remember	AME003.11
20	Define dryness fraction? What are the different methods of measurement of dryness fraction?	Remember	AME003.11
	PART – B (LONG ANSWER QUESTION)	S)	
1	Enumerate the Perfect Gas Laws and analyze from thermodynamics point of view?	Remember	AME003.10
2	Explain the equation of State with variations?	Understand	AME003.10
3	Explain, how the heat and work transfer observed in perfect gas?	Remember	AME003.10
4	Explain the change in internal energy in perfect gas?	Remember	AME003.10
5	State Vander Waals equation, what is the importance of it?	Understand	AME003.10
6	What is compressibility chart, explain the procedure of usage?	Remember	AME003.10
7	Explain the phase transformation process with a diagram?	Understand	AME003.11
8	Analyze the properties at Triple point and state properties?	Remember	AME003.11
9	Derive the Clausius Claperon equation?	Remember	AME003.10
10	Analyze the procedure adopted in Steam calorimetry?	Remember	AME003.10
11	Why can not a throttling calorimeter measure the quality, if the steam is wet? Explain how is the quality been measured?	Understand	AME003.11
12	Explain the saturation temperature, the changes in specific volume,	Understand	AME003.11

13	Compare the enthalpy, entropy and volume of steam at 1.4MPa, 380°C	Understand	AME003.11
14	A vessel of volume 0.04m3 contains a mixture of saturated water and saturated steam at a temperature of 250°C. The mass of the liquid present is 9kg.Find the pressure, mass, specific volume, enthalpy, entropy and internal energy?	Remember	AME003.11
15	Steam initially at 1.5MPa, 300°C expands reversibly and adiabatically in a steam turbine to 40°C. Determine the ideal work output of the Turbine per kg of steam?	Remember	AME003.11
16	Steam flows in a pipe line at 1.5MPa. After expanding to 0.1MPa in a throttling calorimeter, the temperature is found to be 120°C. Determine the quality of the steam in pipe line?	Understand	AME003.11
17	The following data were obtained with a separating and throttling calorimeter. Pressure in pipe line is 1.5MPa. Condition after throttling is at0.1MPa,110°C, During 5minutes moisture collected in the separator 0.15lt at 70°Csteam condense after throttling during 5 min3.24kg, Determine the quality of steam in the pipe line?	Remember	AME003.11
18	Determine the enthalpy and entropy of steam and the pressure is 2MPa and the specific volume is 0.09 m3/kg.	Remember	AME003.11
19	A large insulated vessel is divided in to two chambers. One is containing 5kg of dry saturated steam at 0.2MPa and other 10kg of steam, 0.8quality at 0.5MPa. If the partition between the chambers is removed and the steam is mixed thoroughly and allow to settle. Determine the final pressure steam quality and entropy change in the process?	Remember	AME003.11
20	Saturated steam has entropy of 6.76kJ/kg K. Determine the pressure, temperature, specific volume, enthalpy and internal energy?	Remember	AME003.11
	PART – C (PROBLEM SOLVING AND CRITICAL	THINKING)	
1	The volume of a high altitude chamber is 40m3. It is put into operation by reducing pressure from 1bar to 0.4bar and temperature from 25°C to 5°C. How many kg of air must be removed from the chamber during the process? Express this mass as a volume measured at 1bar and 25°C.	Understand	AME003.10
2	A fluid at 200kPa and 300°C has a volume of 0.8m3 in a frictionless process at constant volume, the pressure changes to 100kPa. Calculate the final temperature and heat transfer, if the fluid is air?	Remember	AME003.10
3	A fluid at 250°C and 300kPa is compressed reversibly and isothermally to 1/16th of its original volume. Calculate the final pressure, work done and change of internal energy per kg of fluid, if the fluid is air?	Remember	AME003.10
4	Solve that for an ideal gas the slope of the constant volume line on the T-S diagram is more than that of the constant pressure line.	Understand	AME003.10
5	At a temperature of 423K, 1 kg of nitrogen occupies volume	Understand	AME003.10

	of 200 liters. The gas undergoes constant expansion with fully resisted to a volume of 360 liters. Then the gas expanded		
	isothermally to a volume of 500 liters. Sketch the process on p-V and T-S diagram. Find out overall change n entropy.		
6	A reversible polytropic process begins with a fluid at p1=10bar, T1=200°C and at p2=1bar, the exponent n has the value 1.15. Find the final specific volume, the final	Remember	AME003.10
	temperature and the heat transfer per kg of fluid, if the fluid is air.		
7	A certain gas has Cp=1.968 and Cv=1.507kJ/kg K. Find its molecular weight and the gas constant?	Remember	AME003.10
8	A constant volume of 0.3m3capacity contains 2kg of this gas at 5°C. Heat is transferred to the gas until the temperature is 100°C. Find the work done, the heat transfer and changes in internal energy, enthalpy and entropy?	Understand	AME003.10
9	A reversible adiabatic process begins at p1=10bar, T1=300°C and ends with p2=1bar. Find the specific volume and the work done per kg of fluid, if the fluid is air?	Remember	AME003.10
10	Derive an expression for entropy change of an ideal gas from T dS equations?	Remember	AME003.10
	UNIT-IV		
	MIXTURE OF PERFECT GASES		
	DADE A GELORE ANGELIED OFFICERO	TO	
1	PART – A (SHORT ANSWER QUESTION	1	AME002 10
1	State Dalton's law of partial pressures?	VS) Understand	AME003.10
2	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture.	Understand Remember	AME003.10 AME003.10
	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy?	Understand	
3 4	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction?	Understand Remember	AME003.10
2 3	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy?	Understand Remember Remember	AME003.10 AME003.10
3 4	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction?	Understand Remember Remember Understand	AME003.10 AME003.10 AME003.10
2 3 4 5	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis?	Remember Remember Understand Remember	AME003.10 AME003.10 AME003.10
2 3 4 5 6	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity?	Understand Remember Remember Understand Remember Remember	AME003.10 AME003.10 AME003.10 AME003.13
2 3 4 5 6 7	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity? Define dry bulb temperature, wet bulb temperature, dew point Explain adiabatic saturation temperature? Explain Psychrometric charts while representing all the properties?	Remember Remember Understand Remember Remember Remember Remember	AME003.10 AME003.10 AME003.10 AME003.13 AME003.10
2 3 4 5 6 7 8 9	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity? Define dry bulb temperature, wet bulb temperature, dew point Explain adiabatic saturation temperature? Explain Psychrometric charts while representing all the properties? Locate i) sensible heating ii) sensible cooling iii) heating and iv) Heating and Dehumidification on Psychrometric chart?	Understand Remember Remember Understand Remember Remember Remember Understand Remember Understand Remember	AME003.10 AME003.10 AME003.10 AME003.13 AME003.13 AME003.13 AME003.13
2 3 4 5 6 7 8	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity? Define dry bulb temperature, wet bulb temperature, dew point Explain adiabatic saturation temperature? Explain Psychrometric charts while representing all the properties? Locate i) sensible heating ii) sensible cooling iii) heating and iv) Heating and Dehumidification on Psychrometric chart? State dry bulb temperature?	Understand Remember Remember Understand Remember Remember Remember Understand Remember	AME003.10 AME003.10 AME003.10 AME003.13 AME003.13 AME003.13 AME003.13
2 3 4 5 6 7 8 9	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity? Define dry bulb temperature, wet bulb temperature, dew point Explain adiabatic saturation temperature? Explain Psychrometric charts while representing all the properties? Locate i) sensible heating ii) sensible cooling iii) heating and iv) Heating and Dehumidification on Psychrometric chart?	Understand Remember Remember Understand Remember Remember Remember Understand Remember Understand Remember	AME003.10 AME003.10 AME003.10 AME003.13 AME003.13 AME003.13 AME003.13
2 3 4 5 6 7 8 9 10	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity? Define dry bulb temperature, wet bulb temperature, dew point Explain adiabatic saturation temperature? Explain Psychrometric charts while representing all the properties? Locate i) sensible heating ii) sensible cooling iii) heating and iv) Heating and Dehumidification on Psychrometric chart? State dry bulb temperature? Define bypass factors represent adiabatic mixing of two air	Understand Remember Remember Understand Remember Remember Remember Understand Remember Understand Remember	AME003.10 AME003.10 AME003.10 AME003.10 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13
2 3 4 5 6 7 8 9 10 11 12	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity? Define dry bulb temperature, wet bulb temperature, dew point Explain adiabatic saturation temperature? Explain Psychrometric charts while representing all the properties? Locate i) sensible heating ii) sensible cooling iii) heating and iv) Heating and Dehumidification on Psychrometric chart? State dry bulb temperature? Define bypass factors represent adiabatic mixing of two air streams on Psychrometric chart?	Understand Remember Remember Understand Remember Remember Remember Understand Remember Understand Remember Understand Remember Understand	AME003.10 AME003.10 AME003.10 AME003.10 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13
2 3 4 5 6 7 8 9 10 11 12 13	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity? Define dry bulb temperature, wet bulb temperature, dew point Explain adiabatic saturation temperature? Explain Psychrometric charts while representing all the properties? Locate i) sensible heating ii) sensible cooling iii) heating and iv) Heating and Dehumidification on Psychrometric chart? State dry bulb temperature? Define bypass factors represent adiabatic mixing of two air streams on Psychrometric chart?	Understand Remember Remember Understand Remember Remember Remember Understand Remember Understand Remember Understand Remember Remember	AME003.10 AME003.10 AME003.10 AME003.10 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13
2 3 4 5 6 7 8 9 10 11 12 13 14	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity? Define dry bulb temperature, wet bulb temperature, dew point Explain adiabatic saturation temperature? Explain Psychrometric charts while representing all the properties? Locate i) sensible heating ii) sensible cooling iii) heating and iv) Heating and Dehumidification on Psychrometric chart? State dry bulb temperature? Define bypass factors represent adiabatic mixing of two air streams on Psychrometric chart? State wet bulb temperature? Define specific humidity?	Understand Remember Remember Understand Remember Remember Remember Understand Remember Understand Remember Remember Remember Remember Remember	AME003.10 AME003.10 AME003.10 AME003.10 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13
2 3 4 5 6 7 8 9 10 11 12 13 14 15	State Dalton's law of partial pressures? Compute the characteristic gas constant and the molecular weight of the gas mixture. Derive the expression for internal energy? Define mole fraction? Explain about volumetric and gravimetric analysis? Define relative humidity? Define dry bulb temperature, wet bulb temperature, dew point Explain adiabatic saturation temperature? Explain Psychrometric charts while representing all the properties? Locate i) sensible heating ii) sensible cooling iii) heating and iv) Heating and Dehumidification on Psychrometric chart? State dry bulb temperature? Define bypass factors represent adiabatic mixing of two air streams on Psychrometric chart? State wet bulb temperature? Define specific humidity? Explain Psychrometric chart?	Understand Remember Remember Understand Remember Remember Remember Understand Remember Understand Remember Remember Understand Remember Understand	AME003.10 AME003.10 AME003.10 AME003.10 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13 AME003.13

19	Define mass fraction?	Remember	AME003.10
20	State the law of additive volumes?	Remember	AME003.10
	PART – B (LONG ANSWER QUESTIO	NS)	
1	Explain the Mole fraction and Mass fraction in the Mixture of Perfect gas?	Understand	AME003.10
2	Explain Gravimetric Analysis of mixtures?	Remember	AME003.10
3	Explain the Volumetric Analysis of mixtures?	Remember	AME003.10
4	Explain the Dalton's law of partial pressure with an example?	Understand	AME003.10
5	Explain the Avogadro's laws of additive volumes?	Remember	AME003.10
6	Compare the Volumetric and Gravimetric Analysis of mixtures?	Understand	AME003.10
7	Using definitions of mass and mole friction, derive a relation	Remember	AME003.10
8	Somebody claims that the mass and mole fraction for mixture of CO ₂ and N ₂ O are identical. Is it true? Why? Explain.	Remember	AME003.10
9	Explain Equivalent gas constant of a gas mixture?	Understand	AME003.10
10	Explain Molecular internal energy of a gas mixture?	Remember	AME003.10
11	Derive the expressions for enthalpy and entropy of a gas mixture?	Understand	AME003.10
12	Are the dry bulb temperature and dew point temperature are same? Explain when they are same.	Understand	AME003.10
13	Explain the various properties of Psychrometry?	Understand	AME003.13
14	Compare dry bulb temperature and wet bulb temperature with a sketch.	Understand	AME003.13
15	Explain the concept of dew point temperature?	Understand	AME003.13
16	Differentiate the Relation between specific humidity and relative humidity and derive the relation between them?	Understand	AME003.13
17	Explain the degree of saturation with an example?	Understand	AME003.13
18	Explain the adiabatic saturation. And compare with degree of saturation.	Understand	AME003.13
19	Enumerate different psychrometric processes that are taking place.	Remember	AME003.13
20	How will you construct psychrometric chart?	Understand	AME003.13
	PART – C (PROBLEM SOLVING AND CRITICA)	L THINKING	G)
1	The analysis by weight of a perfect gas mixture at 20°C and 1.3bar is 10%O2, 70% N2, 15%CO2 and 5%CO. For a reference state of 0°C and 1bar, determine partial pressure of the constituent and gas constant of mixture.	Remember	AME003.10
2	In an engine cylinder a gas has a volumetric analysis of 13%CO2, 12.5%O2 and 74.5% N2. The temperature at the beginning of expansion is 950°C and gas mixture expands reversibly through a volume ratio of 8:1. According to the law pV ^{1.2} =constant. Calculate per kg of gas, the work done and the heat flow. Take Cp for CO2=1.235kJ/kg K and O2=1.088kJ/kg K and N2 is 1.172kJ/kg K.	Remember	AME003.10
3	The following is the volumetric analysis of a producer gas: CO=28%, H2=13%, CH4=4%, CO2=4%, N2=51%. The values of Cp for the constituent CO, H2, CH4, CO2, N2 are	Remember	AME003.10

	29.27kJ/mol.K, 28.89kJ/mol.K, 35.8kJ/mol.K, 37.22kJ/mol.K,		
	29.14kJ/ mol.K respectively. Calculate the values of Cp, Cv		
	for the mixture.		
	Find the relative humidity and specific humidity for air at		
4	30°C and having dew point temperature of 15°C.Represent on	Remember	AME003.10
4	psychrometric Chart.	Kemember	AME003.10
	1 1		
	A mixture of hydrogen and oxygen is to be made, so that the		
5	ratio of H_2 to O_2 is 2:1 by volume. If the pressure and	Remember	AME003.10
	temperature are 1bar and 250C, respectively. Calculate mass		
	of oxygen required and volume of the container?		
	Air at 10bar and a DBT of 40°C and WBT of 36°C. Compute		
6	degree of saturation, dew point temperature and enthalpy of	Understand	AME003.13
	the mixture?		
	Atmospheric air at 1.0132bar has DBT of 32 ^o C and a WBT of		
7	26°C. Compute partial pressure of the water vapor, specific	Understand	AME003.13
	humidity, dew point temperature and relative humidity?		
	Air at 20° C, 40% RH is mixed adiabatically with air at 40° C,		
8	40% RH in the ratio of 1kg of the former with 2kg of later (on	Understand	AME003.13
	dry basis). Find the final condition of air?		
	Saturated air at 21 ^o C is passed through a dryer, so that its final		
	relative humidity is 20%. The dryer uses silica gel absorbent.		
	The air is then pass through a cooler until its final temperature		
9	is 21°C without a change in specific humidity. Find out i)the	Remember	AME003.13
	temperature of air at the end of the drying process, ii) the		
	relative humidity at the end of the cooling process, iii)The		
	dew point temperature at the end of the drying process?		
	An air water vapor mixture enters an adiabatic saturator at		
	30°C and leaves at 20°C, which is the adiabatic saturation		
10	temperature? The pressure remains constant at 100kPa.	Remember	AME003.13
	Determine the relative humidity and humidity ratio of the inlet		
	mixture.		
	UNIT-V		
	POWER CYCLES		
	PART - A (SHORT ANSWER QUESTIC	ONS)	
	Classify the assumptions to be made for the analysis of all air		
1	standard cycles?	Understand	AME003.14
	State the Processes in Otto cycle and represent on P-V and		
2	T-S	Understand	AME003.14
	State the Processes in Constant pressure cycle and represent		
3	on P-V	Understand	AME003.14
1		Undonstand	AME002 14
4	What are the variable factors used for comparison of cycles?	Understand	AME003.14
5	Draw the modified Otto cycle? How it differs from Otto	Understand	AME003.14
	cycle?	TT 1	A A 677000 1 1
6	Derive the air standard efficiency of Diesel cycle?	Understand	AME003.14
7	Define mean effective pressure?	Understand	AME003.14
8	List functional parts of simple vapor compression system	Remember	AME003.15
	represent the processes on T-S diagram.		111.12.000.10

9	Represent Dual cycle on P-V and T-S diagram	Remember	AME003.14
	Sketch P-V and T-S diagrams of Bell-Coleman cycle while		
10	representing the process and hence deduce its COP.	Remember	AME003.15
	Discuss limited pressure cycle, represent the processes of it on	Understand	AME003.14
11	P-V		AME003.14
12	Compare Otto cycle with Diesel cycle?	Understand	AME003.14
13	Define the unit of refrigeration?	Understand	AME003.15
14	Define COP of refrigeration?	Understand	AME003.15
15	Represent Diesel cycle on P-V and T-S diagram	Remember	AME003.14
16	Write the processes involved in Brayton cycle.	Remember	AME003.15
17	Evaluate the performance of refrigeration cycle?	Understand	AME003.15
18	Represent Otto cycle on P-V and T-S diagram	Remember	AME003.14
19	Draw the PV and TS diagrams of dual combustion cycle?	Understand	AME003.14
20	Represent Brayton cycle on P-V and T-S diagram	Remember	AME003.14
	PART - B (LONG ANSWER QUESTIO	NS)	
	Define compression ratio. What is the range for (a) SI engines	Understand	AME003.14
1	(b) The CI engine? What factors limit the compression ratio in		
	each type of engine?		
	What is an air standard cycle? What are the limitations of air		
2	standard cycle? State the assumptions to be taken for its	Understand	AME003.14
	analysis		
	Obtain an expression for the air standard efficiency on a		
3	volume basis of an engine working on the Otto cycle. And	Understand	AME003.14
	represent the processes on p-V and T-S diagrams.		
4	State the characteristic of air cycles? And what is the use of	Understand	AME003.14
4	air standard cycle analysis	Understand	AMEUU5.14
5	Define air standard efficiency of an Otto cycle and show that	Remember	AME003.14
3	the efficiency of Otto cycle is lower than that of Carnot cycle.	Kemember	AME003.14
6	Derive an expression for mean effective pressure of the Otto	Remember	AME003.14
U	cycle?	Kememoer	AML003.14
7	Derive an expression for air standard efficiency of diesel	Remember	AME003.14
,	cycle	TCHICHIOCI	111111003.17
	What is the difference between Otto and Diesel cycle? Show		
8	that the efficiency of Diesel cycle is always lower than the	Understand	AME003.14
	efficiency of the Otto cycle for the same compression ratio.		
9	Show by graphs how the efficiency of Diesel cycle varies with	Understand	AME003.14
	compression ratio and cutoff ratio.	Chacistana	111111003.17
	Explain the dual combustion cycle? Why the cycle is also		
10	called limited pressure cycle? Represent on p-V and T-S	Understand	AME003.14
	diagrams.		
11	What are the processes involved in Otto cycle. Explain their	Understand	AME003.14
	standard efficiency of Otto cycle.	Chacistana	711111111111111
12	Compare the Otto and Diesel cycles for same constant	Understand	AME003.16
	maximum pressure and same heat input.		711111111111111111111111111111111111111

13	Compare the thermal efficiency of Otto and dual and diesel cycles on the basis of same compression ratio and same heat input?	Understand	AME003.16
14	Derive an expression for air standard efficiency of dual cycle	Understand	AME003.14
15	In an Otto cycle, the pressure at the beginning of the compression is 1 bar and pressure at the end of compression is 15 bar. Calculate the pressure ratio and the air standard efficiency of engine.	Remember	AME003.14
16	Determine the air standard efficiency of the diesel engine having a cylinder with a bore of 250 mm and a stroke of 375mm and a clearance volume of 1500 cc. with fuel cutoff occurring at 5% of the stroke.	Remember	AME003.14
17	Describe the components of vapour compression system with the help of P-V and T-S diagram.	Remember	AME003.15
18	Explain the following (i)Wet Compression (ii)Dry compression (iii)sub cooling (iv)superheating	Understand	AME003.15
19	Derive cop of Bell-Coleman cycle with the help of processes representing on p-V and T-S diagram?	Understand	AME003.15
20	Derive the expression for air standard efficiency of Brayton cycle	Understand	AME003.14
	PART – C (PROBLEM SOLVING AND CRITICAL	L THINKING	G)
1	An air refrigeration open system operating between 1 M Pa and 100 k Pa is required to produce a cooling effect of 2000 kJ/min. Temperature of the air leaving the cold chamber is – 5°C and at leaving the cooler is 30°C. Neglect losses and clearance in the compressor and expander. Determine: (i) Mass of air circulated per min. (ii) Compressor work, expander work, and cycle work (iii) COP and power in kW required	Understand	AME003.15
2	An engine working on Otto cycle has a volume of 0.45m3 pressure 1bar and temperature 30°C at the beginning of the compression stroke. At the end of the compression stroke the pressure is 11bar. 210kJ of heat is added at constant volume. Determine efficiency and mean effective pressure.	Remember	AME003.14
3	An engine with 200mm cylinder diameter and 300mm stroke working on theoretical diesel cycle. The initial pressure and temperature of air used are 1bar and 270C. The cut of is 8% of the stroke. Determine air standard efficiency, mean effective pressure and power of the engine if the working cycles per minute are 300? Assume the compression ratio is 15 and the working fluid is air.	Remember	AME003.14
4	a) Determine the Compression ratio, if efficiency of an Otto cycle is 60% and $\gamma = 1.5$? b) An inventor claims that a new heat cycle will develop 0.4kw for a heat addition of 32.5kJ/min. The temperature of heat source is 1990K and that of sink is 850K. Is his claim possible?	Understand	AME003.15
5	A perfect gas undergoes a cycle which consists of following processes. i) heat rejection at constant pressure ii) adiabatic compression from 1bar and 27°C to 4 bar iii) heat addition at constant volume to a final pressure of 16bar iv) adiabatic	Remember	AME003.14

	expansion to 1bar. Calculate work done per kg of gas and		
	efficiency of the cycle. Take Cp = 0.92 and Cv=0.7.		
6	The stroke and cylinder diameter of Compression Ignition engine are 250mm and 150mm respectively. If the clearance volume is 0.0004m3 and fuel injection takes place at constant pressure for 5% of the stroke. Determine the efficiency of the engine. Assume the engine working on Diesel cycle?	Remember	AME003.14
7	An engine of 250mm bore and 375mm stroke works on Otto cycle. The clearance volume is 0.00263m3. The initial pressure and temperature are 1bar and 50°C. The maximum pressure is limited to 25 bar. Find the air standard efficiency and the mean effective pressure of the cycle? Assume ideal conditions?	Remember	AME003.14
8	28tonnes of ice from and at 0°C is produced per day in an Ammonia refrigerator. The temperature range in the compressor is from 25°C to - 15°C. The vapor is dry and saturated at the end of the compression and expansion valve is used. Assuming the C.O.P of 62% of the theoretical. Calculate power required to drive the compressor?	Remember	AME003.14
9	A Bell-Coleman refrigerator operates between pressure limits of 1bar and 8bar. Air is drawn from the cold chamber at 90C, compressed and then it is cooled to 290C before entering the expansion cylinder. Expansion and compression follow the law pV1.35=C. Calculate theoretical C.O.P of the system. Take γ of air is 1.4.	Remember	AME003.15
10	The swept volume of a Diesel engine working on Dual cycle is 0.0053m3 and clearance volume is 0.00035m3. The maximum pressure is 65bar. Fuel injection ends at 5% of stroke. The temperature and pressure of the start of the compression are 80°C and 0.9bar. Determine air standard efficiency of cycle? Take γ of air is 1.4.	Remember	AME003.14

Prepared By: Ms. Ch.Ragha Leena, Assistant Professor

HOD, AE