

Question Paper Code: AECB06

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER

B.Tech III Semester End Examinations, November - 2019

Regulations: IARE-R18

ELECTRONIC DEVICES AND CIRCUITS

(Common to ECE/EEE)

Time: 3 hours

4

Max. Marks: 70

[7M]

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

MODULE – I

- 1 a) Sketch the V-I characteristics of p-n junction diode for forward bias and reverse bias [7M] voltages. Distinguish between the static and dynamic resistance of the diode?
 - b) The reverse saturation current of a silicon p n function diode at an operating temperature [7M] of 270C is 50 nA. Estimate the dynamic forward and reverse resistances of the diode for applied voltages of 0.8 V and -0.4 V respectively?
- ² a) With the help of a neat circuit diagram explain the working of different diode clippers. ^[7M]
 - b) Determine Vo for the network shown in Figure for the given 16V P-P sin wave input. [7M] Also sketch the transfer characteristics. (Assume ideal diodes)

MODULE – II

- 3 a) With a neat diagram explain the various current components in an NPN bipolar junction [7M] transistor & hence derive general equation for collector current, I_C?
 - b) A certain transistor has α of 0.98 and a collector leakage current I_{C0} of 1 μ A. Calculate the [7M] collector and base currents, when $I_E=1$ mA.
 - a) Define h-parameters. Explain how do you determine h-parameters of a transistor from its [7M] characteristics?
 - b) A transistor has $I_B=105 \ \mu A$ and $I_C=2.05 \ m A$. Find
 - (a) β of the transistor
 - (b) α of the transistor
 - (c) emitter current I_E
 - (d) Now, if I_B changes by 27 μ A and I_C changes by 0.65mA,find the new value of β .

MODULE – III

- 5 a) Draw the frequency response of BJT amplifier and explain the effect of bypass capacitor on [7M] the frequency response in detail.
 - b) In a Silicon transistor circuit with a fixed bias, VCC=25V, RC=820 Ω , RB=180K Ω , β = 80, [7M] VBE=0.7V. Determine the values of base current, emitter current and the collector to emitter voltage.
- 6 a) Draw the circuit diagram of CE amplifier with emitter resistance and derive the expression [7M] for AI, AV, Ri and RO using hybrid model.
 - b) The hybrid parameters for a transistor used in CE configuration are hie = $5k\Omega$; hfe = 180; hre [7M] = 1.25×10 -4; hoe = 16×10 -6 ohms. The transistor has a load resistance of 20 K Ω in the collector and is supplied from a signal source of resistance 5 K Ω . Compute the value of input impedance, output impedance, current gain and voltage gain.

MODULE – IV

- a) Explain the operation of FET with its characteristics and explain the different regions in transfer characteristics?
 b) In an n-channel FET, the effective channel width is 3x 10⁻⁴cm and the donor impurity concentration is 10¹⁵ electrons/cm³. Find the pinch-off voltage?
 a) Explain the principle of MOSEET in deplation mode with past electrons and output [7M]
- 8 a) Explain the principle of MOSFET in depletion mode with neat sketches and output [7M] characteristics.
 - b) A self biased p channel JFET has a pinch off voltage of VP = 5 V and IDSS = 12 mA. [7M] The supply voltage is 12 V. Determine the values of RD and RS so that ID = 5 mA and VDS = 6V?

MODULE – V

- 9 a) Draw the small-signal model of common drain FET amplifier. Derive expressions for [7M] voltage gain and output resistance?
 - b) A Common Source FET amplifier circuit with un bypassed Rs has the following circuit [7M] parameters: Rd = 10K, RS = 0.8K, Rg = 1.2M, rd = 6K, gm= 15mS and VDD = 15 V. Determine AV& RO?
- 10 a) Explain the tunneling phenomenon. Explain the characteristics of tunnel diode with the help [7M] of necessary energy band diagrams?
 - b) A Zener voltage regulator circuit is to maintain constant voltage at 60 V, over a current range [7M] from 5 to 50 mA. The input supply voltage is 200 V. Determine the value of resistance R to be connected in the circuit, for voltage regulation from load current IL = 0 mA to IL max, the maximum possible value of IL. What is the value IL max?

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

I. COURSE OBJECTIVES

The course should enable the students to:

The course should enable the students to:			
Ι	Introduce components such as diodes, BJTs and FETs.		
II	Know the applications of components		
III	Know the switching characteristics of components.		
IV	Give understanding of various types of amplifier circuits.		

II. COURSE OUTCOMES

Students who complete the course will have demonstrated the ability to do the following

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe diode	CLO 1	Understand and analyze diodes operation and static and
	operation, transition		dynamic resistance in order to design basic circuits.
	capacitance, diffusion	CLO 2	Understand diffusion and transition capacitance of diode
	capacitance and the use		in forward and reverse bias conditions.
	of diode in various	CLO 3	Understand and analyze diode applications and
	electronic circuits.		how the diode acts as a switch.
		CLO 4	Design rectifier without and with capacitive filters for
			the given specifications.
		CLO 5	Understand the use of diodes in typical circuits like,
			clipping, clamping circuits and comparator circuits.
CO 2	Understand the principle	CLO 6	Understand the principle of operation and
	of operation of BJT in		characteristics of common emitter, common base and
	CE, CB, CC		common collector configurations.
	configuration and	CLO 7	Understand the concept of operating point, DC & AC
	analyze transistor hybrid		load lines.
	model.	CLO 8	Analyze transistor hybrid parameter model for CE, CB
			and CC configurations.
		CLO 9	Determine of h-parameters of BJT amplifier from
			transistor characteristics.
		CLO 10	Understand the use of conversion of h-parameters
			among CE, CB and CC configurations.
CO 3	Bias the transistors and	CLO 11	Identify the various transistor biasing circuits,
	analyze the low		compensation circuits and its usage in applications like
	frequency response of		amplifiers.
	BJT amplifiers.	CLO 12	Analyze various transistor configurations and asses
			merits and demerits for different applications.
		CLO 13	Analyze CE Amplifier with emitter resistance.

COs	Course Outcome	CLOs	Course Learning Outcome		
		CLO 14	Analyze low frequency response of BJT Amplifiers.		
		CLO 15	Understand the effect of coupling and bypass capacitors on CE Amplifier.		
CO 4	Study and analyze the behaviour of FET and	CLO 16	Explain construction and principle of operation of JFET.		
	MOSFET.	CLO 17	Understand the concept of pinch-off voltage and volt- ampere characteristic of JFET.		
		CLO 18	Distinguish the constructional features and operation of BJT and FET and their applications.		
		CLO 19	Understand biasing of FET and how it acts as voltage variable resistor.		
		CLO 20	Discuss the construction of MOSFET and steady the VI characteristics, as it is the prime component in VLSI technology.		
CO 5 Analyze FET amplifiers CLO 2 in CS,CG,CD modes using small signal model		CLO 21	Apply small-signal models to field effect transistors and determine the voltage gain and input and output impedances.		
	and study the behaviour of special purpose	CLO 22	Analyzes CS, CD, CG JFET amplifiers using small signal model.		
	diodes.	CLO 23	Understand basic concepts of MOSFET amplifiers.		
		CLO 24	Explain the operation of Zener diode and its usage in voltage regulating application.		
		CLO 25	Understand the principle of operation and characteristics of silicon controlled rectifier, tunnel diode, UJT and varactor diode.		

MAPPING OF SEMESTER END EXAMINATION TO COURSE OUTCOMES

SEE Question No.		СО	Course Outcomes	Blooms Taxonomy Level
	a	CO 1	Describe diode operation, transition capacitance, diffusion capacitance and the use of diode in various electronic circuits.	Understand
1	b	CO 1	Describe diode operation, transition capacitance, diffusion capacitance and the use of diode in various electronic circuits.	Understand
2	a	CO 1	Describe diode operation, transition capacitance, diffusion capacitance and the use of diode in various electronic circuits.	Remember
2	b	CO 1	Describe diode operation, transition capacitance, diffusion capacitance and the use of diode in various electronic circuits.	Understand
3	a	CO 2	Understand the principle of operation of BJT in CE, CB, CC configuration and analyze transistor hybrid model.	Understand
	b	CO 2	Understand the principle of operation of BJT in CE,	Understand

SE	E			
Question		CO	Course Outcomes	Blooms Taxonomy Level
			CB, CC configuration and analyze transistor hybrid model.	
4	а	CO 2	Understand the principle of operation of BJT in CE, CB, CC configuration and analyze transistor hybrid model.	Remember
4	b	CO 23	Understand the principle of operation of BJT in CE, CB, CC configuration and analyze transistor hybrid model.	Understand
5	a	CO 3	Bias the transistors and analyze the low frequency response of BJT amplifiers.	Remember
5	b	CO 3	Bias the transistors and analyze the low frequency response of BJT amplifiers.	Remember
6	a	CO 3	Bias the transistors and analyze the low frequency response of BJT amplifiers.	Understand
	b	CO 3	Bias the transistors and analyze the low frequency response of BJT amplifiers.	Remember
7	a	CO 4	Study and analyze the behaviour of FET and MOSFET.	Remember
	b	CO 4	Study and analyze the behaviour of FET and MOSFET.	Understand
8	a	CO 4	Study and analyze the behaviour of FET and MOSFET.	Remember
	b	CO 4	Study and analyze the behaviour of FET and MOSFET.	Understand
9	a	CO 5	Analyze FET amplifiers in CS,CG,CD modes using small signal model and study the behaviour of special purpose diodes.	Understand
	b	CO 5	Analyze FET amplifiers in CS,CG,CD modes using small signal model and study the behaviour of special purpose diodes.	Remember
10	a	CO 5	Analyze FET amplifiers in CS,CG,CD modes using small signal model and study the behaviour of special purpose diodes.	Understand
	b	CO 5	Analyze FET amplifiers in CS,CG,CD modes using small signal model and study the behaviour of special purpose diodes.	Understand

Signature of Course Coordinator

HOD, ECE