

INSTITUTEOF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER-II

Four Year B.Tech V Semester End Examinations (Regular), November – 2018

Regulation: IARE-R16 IMAGE PROCESSING (CSE)

Time: 3 hours Max. Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

UNIT - I

		UNIT - I	
1.	(a)	Illustrate the fundamental steps in digital image processing	[7M]
	(b)	Describe the elements of visual perception	
	(-)	rrrrrr	[7M]
2.	(a)	Discuss zooming and shrinking of digital images	[7M]
۷.	` '	Explain the components of image processing system	[7M]
	(b)	Explain the components of image processing system	[/1/1]
		UNIT – II	
3.	(a)	Describe various gray level transformations	[7M]
	(b)	Discuss about sharpening frequency domain filters	[7M]
	(0)	Discuss about sharpening frequency domain inters	[,1,2]
4.	(a)	Discuss about sharpening spatial filters	[7M]
т.	(b)	Explain histogram processing	[7M]
	(0)	Explain histogram processing	[/141]
		UNIT – III	
5.	(a)	Explain the method of restoration in the presence of noise	[7M]
	(b)	Discuss about the filtering in the frequency domain with properties of frequency and filters.	[7M]
	. ,		
6.	(a)	Explain about image histogram matching specification method.	[7M]
	(b)	Discuss periodic noise reduction by frequency domain filtering.	[7M]
	` /		. ,

UNIT – IV

7	(a) (b)	Discuss basics of full-color image processing techniques. What are the applications of wavelet transforms one dimension	[7M] [7M]
8	(a) (b)	Discuss about lossless image compression models Explain wavelet transform in two dimension	[7M] [7M]
		UNIT – V	
9	(a)	Discuss about detection of discontinuities	[7M]
	(b)	Describe thresholding	[7M]
10	(a) (b)	Explain the dilation in image morphology with examples. Explain region based segmentation.	[7M] [7M]

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

The course should enable the students to:

I	Understand the concepts of digital image processing methods and techniques.		
II	Study the image enhancement techniques in spatial and frequency domain for image quality improvement		
III	Learn the image restoration and compression techniques for optimization.		
IV	Explore on color image features and transformation techniques.		
IV	Illustrate the techniques of image segmentation to identify the objects in the image.		

COURSE OUTCOMES:

CO 1	To Understand the need for image transforms different types of image transforms and their properties				
CO 2	Learn different techniques employed for the enhancement of images.				
CO 3	Learn different causes for image degradation and overview of image restoration techniques.				
CO 4	Understand the need for image compression and to learn the spatial and frequency domain techniques of image compression.				
CO 5	Learn different morphological algorithms for image analysis and recognition.				

COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

CACS511.01	Understand the key concepts of Image Processing.		
CACS511.02	Identify the origins of the Digital image processing		
CACS511.03	Demonstrate the scope of the digital image processing in multiple fields		
CACS511.04	Explore on overview of the components contained in the general purpose image processing system and its use in real time applications		
CACS511.05	Describe the concept of elements of visual perception.		
CACS511.06	Use the concept of sampling and quantization in generating digital images		
CACS511.07	Explore on the basic relationships existed between the pixels in the image		
CACS511.08	Illustrate different mathematical tools used in image intensity transformations for quality enhancement		
CACS511.09	Use histogram processing techniques in image enhancement and noise reduction		

CACS511.10	Understand the impact of smoothing and sharpening filters in spatial domain.			
CACS511.11	Apply the Fourier transform concepts on image function in frequency domain filters(low pass/high pass).			
CACS511.12	Describe the concept of image degradation or restoration of images.			
CACS511.13	Understand the various kind of noise present in the image and how to restore the noisy image.			
CACS511.14	Understand the differences of inverse, least square and Wiener filtering in restoration process of images			
CACS511.15	Understand the color fundamentals and models in image processing			
CACS511.16	Memorize the transformation techniques in pseudo color image processing.			
CACS511.17	Use wavelet concepts in multi-resolution processing.			
CACS511.18	Understand the basic multi-resolution techniques and segmentation methods			
CACS511.19	Explore on lossy/lossless compression models using wavelets			
CACS511.20	Use morphological operations like dilation and erosion to represent and describe regions, boundaries etc. in identification of the components in images.			

MAPPING OF MODEL QUESTION PAPER QUESTIONS TO THE ACHIEVEMENT OF COURSE LEARNING OUTCOMES:

SEE QUESTION No.		CO	OURSE LEARNING OUTCOMES	COURSE OUTCOME S	BLOOM TAXONOMY LEVEL
1	a	ACS511.02	Identify the origins of the Digital image processing	CO 1	Remember
	b	ACS511.03	Demonstrate the scope of the digital image processing in multiple fields	CO 1	Understand
2	a	ACS511.01	Understand the key concepts of Image Processing.	CO 1	Remember
2	b	ACS511.01	Understand the key concepts of Image Processing.	CO 1	Understand
	a	ACS511.06	Use the concept of sampling and quantization in generating digital images	CO 2	Understand
3	b	ACS511.08	Illustrate different mathematical tools used in image intensity transformations for quality enhancement	CO 2	Remember
4	a	ACS511.09	Use histogram processing techniques in image enhancement and noise reduction	CO 2	Understand
4	b	ACS511.09	Use histogram processing techniques in image enhancement and noise reduction	CO 2	Remember
5	a	ACS511.11	Apply the Fourier transform concepts on image function in frequency domain filters(low pass/high pass).	CO 3	Understand
3	b	ACS511.11	Apply the Fourier transform concepts on image function in frequency domain filters(low pass/high pass).	CO 3	Remember
6	a	ACS511.10	Understand the impact of smoothing and sharpening filters in spatial domain.	CO 3	Understand

	b	ACS511.12	Describe the concept of image degradation or restoration of images.	CO 3	Remember
	a	ACS511.15	Understand the color fundamentals and models in image processing	CO 4	Understand
7	b	ACS511.17	Use wavelet concepts in multi-resolution processing.	CO 4	Understand
8	a	ACS511.16	Memorize the transformation techniques in pseudo color image processing	CO 4	Remember
0	b	ACS511.15	Understand the color fundamentals and models in image processing	CO 4	Remember
9	a	ACS511.20	Use morphological operations like dilation and erosion to represent and describe regions	CO 5	Remember
9	b	ACS511.20	Use morphological operations like dilation and erosion to represent and describe regions	CO 5	Understand
10	a	ACS511.20	Use morphological operations like dilation and erosion to represent and describe regions, boundaries etc. in identification of the components in images.	CO 5	Understand
	b	ACS511.18	Understand the basic multi-resolution techniques and segmentation methods	CO 5	Remember

Signature of Course Coordinator

HOD, CSE