						_
Hall Ticket No						Question Paper Code: BAEB0

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER-II

M. Tech I Semester End Examinations, January - 2020

Regulations: R18

ADVANCED MATHEMATICS IN AEROSPACE ENGINEERING

(AEROSPACE ENGINEERING)

Time: 3 hours Max. Marks: 70

Answer ONE Question from each UNIT All Questions Carry Equal Marks All parts of the question must be answered in one place only

UNIT - I

1. a) A discrete random variable X has the following probability distribution

[7M]

X	1	2	3	4	5	6	7	8
P(X=x)	2k	4k	6k	8k	10k	12k	14k	4k

Find (i) k (ii) p(X<3) (iii) $p(X \ge 5)$

b) The probability that a man hitting a target is 1/3. If he fires 5 times, determine the probability that he fires (i) At most 3 times (ii) At least 2 times

[7M]

[7M]

[7M]

- 2. a) Pumpkins were grown under two experimental conditions. Two random samples of 11 and 9 pumpkins. the sample standard deviation of their weights as 0.8 and 0.5 respectively. Assuming that the weight distributions are normal, test hypothesis that the true variances are equal.
 - b) A survey of 240 families with 4 children each revealed the following distribution.

 Male Births
 4
 3
 2
 1
 0

 No of families
 10
 55
 105
 58
 12

Test whether the male and female births are equally popular.

UNIT – II

3. a) Three training methods were compared to see if they led to greater productivity after training. The productivity measures for individuals trained by different methods are as follows

[7M]

Method 1	36	26	31	20	34	25
Method 2	40	29	38	32	39	34
Method 3	32	18	100	21	33	27

At the 0.05 level of significance, do the three training methods lead to difference levels of productivity?

- b) In 64 randomly selected hour production mean and S.D of production are 1.038 and 0.146 [7M] At 0.05 level of significant does this enable to reject the null hypothesis $\mu = 1$ againist alternative hypothesis: $\mu > 1$.
- 4. a) It is claimed that a random sample of 49 tyres has a mean life of 15200 kms this sample was taken from population whose mean is 15150 kms and S.D is 1200 km test 0.05 level of significant.
 - b) A manufacturer claims that at least 95% of the equipment which he supplied to a factory conformed to specifications. An examination of sample of 200 pieces of equipments received 18 were faulty test the claim at 0.05 level.

UNIT - III

- 5. a) Find y(0.1), y(0.2), z(0.1), z(0.2) given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x y^2$ and y(0) = 2. [7M] z(0) = 1 by using Taylor's series method.
 - Find the solution of differential equation $\frac{dy}{dx} = x-y$, y(0)=1 at x = 0.1, 0.2, 0.3, 0.4 and 0.5 using modified Euler's method.
- 6. a) Apply the 4th order R-K method to find an approximate value of y when x = 1.2 in steps of h= 0.1 given the differential equation $y' = x^2 + y^2$, y(1)=1.5.
 - b) Solve the initial value problem $y' + y^2 = e^x$, y(0) = 1 from x = 0 at x = 0.5 taking h = 0.1 using Adams-Bashforth-Moulton method. Starting values may be taken from Runge-Kutta method.

UNIT - IV

- 7. a) Solve the partial differential equation $(x^2 y^2 yz)p + (x^2 y^2 zx)q = z(x y)$. [7M]
 - Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that u=0 when t=0 and $\frac{\partial u}{\partial t} = 0$ When x=0 show also that as t tends to ∞ , u tends to $\sin x$.
- 8. a) Solve the partial differential equation $\frac{x^2}{p} + \frac{y^2}{q} = z$ [7M]
 - b) A bar 100 cm long, with insulated sides, has its ends kept at $0^{\circ}C$ and $100^{\circ}C$ until steady state conditions prevail. The two ends are then suddenly insulated and kept so. Find the temperature distribution. [7M]

UNIT - V

- 9. a) Write an explicit formula to solve numerically the parabolic equation $u_{xx} au_t = 0$ and explain method to solve the equation. [7M]
 - b) Evaluate the pivotal values of the equation $u_{tt} = 16u_{xx}$, taking h = 1 upto t = 1.25. The boundary conditions are u(0,t) = u(5,t) = 0, $u_i(x,0) = 0$ and $u(x,0) = x^2(5-x)$.

- 10. a) State and explain Liebmann's iteration method for the solving the partial differential equations.
 - Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5, t \ge 0$ given that u(x,0) = 20, u(0,t) = 0, u(5,t) = 100.

[7M]

[7M]

Compute u for the time-step with h = 1.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

The course should enable the students to:

I	Develop a basic understanding of a range of mathematics tools with emphasis on engineering
	applications.
II	Solve problems with techniques from advanced linear algebra, ordinary differential equations and multivariable differentiation.
III	Develop skills to think quantitatively and analyze problems critically.

COURSE OUTCOMES (COs):

CO 1	Describe the basic concepts of probability, discrete, continuous random variables and determine probability distribution, sampling distribution of statistics like t, F and chi-square.
CO 2	Understand the foundation for hypothesis testing to predict the significance difference in the sample means and the use of ANOVA technique.
CO 3	Determine Ordinary linear differential equations solvable by nonlinear ODE's.
CO 4	Explore First and second order partial differential equations.
CO 5	Analyze the methods for partial differential equations.

COURSE LEARNING OUTCOMES (CLOs):

COCIOD DELII	THIT O'C I COMES (CLOS):
BAEB01.01	Describe the basic concepts of probability, discrete and continuous random variables
BAEB01.02	Determine the probability distribution to find mean and variance.
BAEB01.03	Discuss the concept of sampling distribution of statistics like t, F and chi-square.
BAEB01.04	Understand the foundation for hypothesis testing.
BAEB01.05	Apply testing of hypothesis to predict the significance difference in the sample means.
BAEB01.06	Understand the assumptions involved in the use of ANOVA technique.
BAEB01.07	Solve differential equation using single step method.
BAEB01.08	Solve differential equation using multi step methods.
BAEB01.09	Understand the concept of non- linear ordinary differential equations.
BAEB01.10	Understand partial differential equation for solving linear equations.
BAEB01.11	Solving the first order ordinary differential equations subject to boundary conditions.
BAEB01.12	Solving the higher order ordinary differential equations subject to boundary conditions.
BAEB01.13	Understand the concept of methods for elliptic partial differential equations.
BAEB01.14	Understand the concept of Neumann and mixed problems.
BAEB01.15	Analyze the concept of parabolic and hyperbolic partial differential equations.
BAEB01.15	Analyze the concept of parabolic and hyperbolic partial differential equations.

MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES

Que	SEE Question No		Course Learning Outcomes	Course Outcomes	Blooms Taxonomy Level
1	a	BAEB01.01	Describe the basic concepts of probability, discrete and continuous random variables	CO 1	Understand
	b	BAEB01.02	Determine the probability distribution to find mean and variance.	CO 1	Understand
2	a	BAEB01.03	Discuss the concept of sampling distribution of statistics like t, F and chi-square.	CO 1	Understand
	b	BAEB01.03	Discuss the concept of sampling distribution of statistics like t, F and chi-square.	CO 1	Understand
3	a	BAEB01.06	Understand the assumptions involved in the use of ANOVA technique.	CO 2	Understand
	b	BAEB01.05	Apply testing of hypothesis to predict the significance difference in the sample means.	CO 2	Remember
4	a	BAEB01.05	Apply testing of hypothesis to predict the significance difference in the sample means.	CO 2	Understand
	b	BAEB01.05	Apply testing of hypothesis to predict the significance difference in the sample means.	CO 2	Understand
5	a	BAEB01.07	Solve differential equation using single step method.	CO 3	Understand
	b	BAEB01.08	Solve differential equation using multi step methods.	CO 3	Understand
6	a	BAEB01.08	Solve differential equation using multi step methods.	CO 3	Understand
	b	BAEB01.08	Solve differential equation using multi step methods.	CO 3	Understand
7	a	BAEB01.10	Understand partial differential equation for solving linear equations.	CO 4	Understand
	b	BAEB01.11	Solving the first order ordinary differential equations subject to boundary conditions.	CO 4	Understand
8	a	BAEB01.10	Understand partial differential equation for solving linear equations.	CO 4	Understand
	b	BAEB01.12	Solving the higher order ordinary differential equations subject to boundary conditions.	CO 4	Understand
9	a	BAEB01.15	Analyze the concept of parabolic and hyperbolic partial differential equations.	CO 5	Remember
	b	BAEB01.13	Understand the concept of methods for elliptic partial differential equations.	CO 5	Understand
10	a	BAEB01.14	Understand the concept of Neumann and mixed problems.	CO 5	Remember
	b	BAEB01.15	Analyze the concept of parabolic and hyperbolic partial differential equations.	CO 5	Understand