TARE TO LIBERTY

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500 043

FRESHMAN ENGINEERING

TUTORIAL QUESTION BANK

Course Name	Mathematics-II
Course Code	A30006
Class	II-I B. Tech
Branch	Freshman Engineering
Year	2016 – 2017
Course Faculty	Dr. M. Anita, Professor, Freshman Engineering Mr.Ch.Kumara Swamy, Assistant Professor, Freshman Engineering Ms.K.Rama Jyothi, Assistant Professor, Freshman Engineering

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

1. Group - A (Short Answer Questions)

S. No	Question	Blooms Taxonomy Level	Course Outcome				
	UNIT-I VECTOR CALCULUS						
1	Define gradient?	Remember	1				
2	Define divergence?	Remember	1				
3	Define curl?	Remember	1				
4	Define laplacian operator?	Remember	1				
5	Find $\Delta(x^2yz)$	Apply	1				
6	Evaluate the angle between the normal to the surface $xy = z^2$ at the points $(4,1,2)$ and $(3,3,-3)$?	Understand	1				
7	Find a unit normal vector to the given surface $x^2y+2xz=4$ at the	Apply	1				

S. No	Question	Blooms	Course
5.110	Question	Taxonomy Level	Outcome
	point (2,-2,3)?		
8	If \bar{a} is a vector then prove that grad $(\bar{a}, \bar{r}) = \bar{a}$?	Understand	1
9	Define irrotational and solenoidal vectors?	Remember	1
10	Prove that $(\nabla f \times \nabla g)$ is solenoidal?	Analyze	1
11	Prove that F=yzi+zxj+xyk is irrotational?	Analyze	1
12	Show that $(x+3y)i+(y-2z)j+(x-2z)k$ is solenoidal?	Understand	1
13	Show that $\operatorname{curl}(\mathbf{r}^n \overline{r}) = 0$?	Understand	1
14	Prove that $curl(\emptyset \bar{a}) = (grad\emptyset) \times \bar{a} + \emptyset curl \bar{a}$?	Analyze	1
15	Prove that div curl \bar{f} =0?	Analyze	1
16	Define line integral?	Remember	2
17	Define surface integral?	Remember	2
18	Define volume integral?	Remember	2
19	State Green's theorem?	Understand	3
20	State Gauss divergence theorem?	Understand	3

S. No	Question	Blooms Taxonomy Level	Course Outcome				
UNIT-I VECTOR CALCULUS							
1	Find the constants a and b so that the Surface $ax^2 - byz = (a + z)x$	Apply	1				
	will be orthogonal to the Surface $4x^2y + z^3 = 4$ at the point (-1,1,2).						
2	Prove that $\nabla f(r) = \frac{\overline{r}}{r} \cdot f^{1}(r)$	Analyze	1				
3	Prove that if \bar{r} is the position vector of any point in the space then r^n . \bar{r} is irrotational and is solenoidal if $n = -3$.	Analyze	1				
4	Prove that $div(r^n, \overline{r}) = (n+3)r^n$. Hence Show that $\frac{\overline{r}}{r^3}$ is solenoidal Vector	Analyze	1				
5	If $\overline{F} = (5xy - 6x^2)\overline{i} + (2y - 4x)\overline{j}$ evaluate $\int_C \overline{F} . d\overline{r}$ along the curve C in xy plane $y=x^3$ from $(1,1)$ to $(2,8)$.	Understand	2				
6	Evaluate the line integral $\int_{c}^{c} (x^2 + xy)dx + (x^2 + y^2)dy$ where c is the square formed by the lines $y = \pm 1$ and $x = \pm 1$	Understand	2				
7	Evaluate $\iint_S \bar{A}.\bar{n}ds$ where $\bar{A} = Z\bar{i} + x\bar{j} - 3y^2z\bar{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between $Z=0$ and $Z=5$	Understand	2				
8	If $\overline{F} = (x^2 - 27)\overline{i} - 6yz\overline{j} + 8xz^2\overline{k}$ evaluate $\int_C \overline{F}.\overline{d}r$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the straight line from $(0,0,0)$ to $(1,0,0)$ then from $(1,0,0)$ to $(1,1,0)$ and then finally from $(1,1,0)$ to $(1,1,1)$	Understand	2				

S. No	Question	Blooms Taxonomy Level	Course Outcome	
9	Evaluate $\int_{C} \overline{f} . d\overline{r}$ where $f = 3xyi - y^2j$ and C is the parabola	Understand	2	
	$y=2x^2$ from (0,0) to (1,2).			
10	Evaluate $\iint_{S} \overline{F} \cdot d\overline{s}$ if $f = yzi + 2y^2j + xz^2k$ and S is the Surface	Understand	2	
	of the Cylinder $x^2+y^2=9$ contained in the first Octant between the planes $z=0$ and $z=2$.			
11	Evaluate $\oint_C (yz dx + xz dy + xy dz)$ over arc of a helix	Understand	2	
	$x = a \cos t$, $y = a \sin t$, $z = kt$ as t varies from 0 to 2π .			
12	Find the circulation of \bar{f} around the curve c Where	Apply	2	
	$\bar{f} = (e^x \sin y)i + (e^x \cos y)j$ and c is the rectangle whose vertices			
	are $(0,0),(1,0),(1,\frac{\pi}{2}),(0,\frac{\pi}{2})$			
13	Verify gauss divergence theorem for the vector point function $F=(x^3-yz)i-2yxj+2zk$ over the cube bounded by $x=y=z=0$ and	Apply	3	
	x=y=z=a			
14	Verify divergence theorem for $2x^2yi - y^2j + 4xz^2k$ taken over the	Apply	3	
	region of first octant of the cylinder $y^2 + z^2 = 9$ and $x = 2$			
15	Verify Green's theorem in the plane for	Apply	3	
	$\int_C (x^2 - xy^3) dx + (y^2 - 2xy) dy$ where C is a square with vertices			
	(0,0),(2,0),(2,2),(0,2).			
16	Applying Green's theorem evaluate $\int (y-\sin x)dx + \cos x dy$ where	Apply	3	
	C is the plane Δ^{le} enclosed by $y = 0$, $y = \frac{2x}{\pi}$, and $x = \frac{\pi}{2}$			
17	Verify Green's Theorem in the plane for	Apply	3	
	$\int_{C} (x^{2} - xy^{3}) dx + (y^{2} - 2xy) dy$ where C is a square with vertices			
	(0,0),(2,0),(2,2),(0,2)			
18	Verify Stokes theorem for $f = (2x - y)i - yz^2j - y^2zk$ where S is	Apply	3	
	the upper half surface $x^2+y^2+z^2=1$ of the sphere and C is its boundary			
19	Verify Stokes theorem for $f = (x^2 - y^2)i + 2xyj$ over the box	Apply	3	
	bounded by the planes x=0,x=a,y=0,y=b,z=c			
20	Evaluate by Stroke's Theorem $\iint_{S} Curl\vec{F}.\vec{n}ds$ where	Apply	3	
	$\vec{F} = y^2 \vec{i} + x^2 \vec{j} - (x + Z) / \overline{C}$ and S comprising the planes			
	x=0,y=0,y=4;z=-1			

S. No	Questions	Blooms Taxonomy Level	Program Outcome					
	UNIT-I							
	VECTOR CALCULUS							
1	If $\bar{r} = x\bar{t} + y\bar{j} + z\bar{k}$ then what is $\Delta^2(\frac{1}{r})$?	Understand	1					
2	If curl $\bar{f} = \bar{0}$ then what is \bar{f} ?	Understand	1					
3	If \bar{a} and \bar{b} are irrotational vectors then what is $\bar{a} X \bar{b}$?	Understand	1					
4	What is the physical interpretation of $ \Delta \phi $?	Understand	1					
5	If $\operatorname{div} \overline{A} = 0$ then what is called \overline{A} ?	Understand	1					
6	What is $\int f \circ g \cdot d \bar{r}$?	Understand	2					
7	What is the necessary and sufficient condition for the line integral $\int_c A dr = 0$ for every closed curve c ?	Understand	2					
8	What is $\int \bar{r} X \bar{n} dS$?	Understand	2					
9	If $\overline{F} = axi + byj + czk$ where a, b, c are constants then what is $\iint \overline{F} \cdot \overline{n} dS$ where s is the surface of the unit sphere?	Evaluate	2					
10	If $\bar{r} = x\bar{t} + y\bar{j} + z\bar{k}$ then what is $\oint_c \bar{r} \cdot d\bar{r}$?	Understand	2					

1. Group - A (Short Answer Questions)

S. No	Questions	Blooms Taxonomy Level	Program Outcome				
UNIT-II FOURIER SERIES AND FOURIER TRANSFORMS							
1	Define periodic function and write examples	Remember	5				
2	Define even and odd function	Remember	5				
3	Express the function $f(x)$ as the sum of an even function and an odd function	Understand	5				
4	Find the functions are even or odd (i) x sinx+cosx+x ² coshx (ii)xcoshx+x ³ sinhx Apply						
5	If f and g are periodic functions with same period T show that (af+bg) are also periodic function of period T where a and b are real numbers	Understand	5				
6	Define Euler's formulae	Remember	5				
7	Write Dirichlet's conditions	Understand	4				
8	If $f(x) = x^2 - 2$ in (-2,2) then find b_2	Apply	5				
9	If $f(x) = x^2$ in (-2,2) then a_0	Apply	5				
10	If $f(x) = \sin^3 x$ in $(-\pi, \pi)$ then find a_n	Apply	5				
11	If $f(x) = x^4$ in (-1,1) then find b_n	Apply	5				
12	State Fourier integral theorem	Understand	6				
13	Write about Fourier sine and cosine integral	Understand	6				
14	Define Fourier transform and finite Fourier transform?	Remember	6				
15	Find the Fourier sine transform of xe^{-ax}	Apply	6				
16	Find the finite Fourier cosine transform of $f(x)=1$ in $0 < x < \pi$	Apply	6				
17	Find the finite Fourier sine transform of $f(x)=2x$ in $(0, \pi)$	Apply	6				

18	Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - cosn\pi}{n^2 \pi^2}$	Apply	6
19	Write the properties of Fourier transform	Understand	6
20	If finite Fourier sine transform of f is $\frac{2\pi}{n^3}(-1)^{n-1}$ find f(x)	Apply	6

S. No	Questions	Blooms	Program
		Taxonomy Level	Outcome
	UNIT-II FOURIER SERIES AND FOURIER TRANSFO	ORMS	
1	Obtain the Fourier series expansion of f(x) given that	Understand	5
	$f(x) = (\pi - x)^2$ in $0 < x < 2\pi$ and deduce the value of		
	$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$		
2	Obtain Fourier cosine series for $f(x) = x \sin x$ $0 < x < \pi$ and	Understand	5
	show that		
	$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots = \frac{\pi - 2}{4}.$		
3	Find the Fourier Series to represent the function $f(x) = \sin x $	Apply	5
	in $-\pi < x < \pi$.		
4	Find the Fourier series to represent $f(x) = x^2$ in $(0,2\pi)$.	Apply	5
5	Express $f(x) = x$ as a Fourier series in $(-\pi, \pi)$.	Understand	5
6	If $f(x)$ =coshax expand $f(x)$ as a Fourier Series in $(-\pi, \pi)$.	Understand	5
7	Expand the function $f(x) = x^2$ as a Fourier series in $(-\pi, \pi)$.	Understand	5
8		Apply	5
	If $f(x) = \begin{cases} x for 0 < x < \frac{\pi}{2} \\ \pi - x for \frac{\pi}{2} < x < \pi \end{cases}$. Then prove		
	$f(x) = \frac{4}{\pi} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x - \dots \right].$		
9	Find the Fourier series to represent the function f(x) given by:	Apply	5
	$f(x) = \begin{cases} 0 & \text{for } -\pi \le x \le 0 \\ x^2 & \text{for } 0 \le x < \pi \end{cases}$		
10	Find cosine and sine series for $f(x) = \pi - x$ in $[0, \pi]$	Apply	5
11	Expand f(x)=cosx for $0 < x < \pi$ in half range sine series	Understand	5
12	Using Fourier integral show that	Understand	6

	$e^{-x}\cos x = \frac{2}{\pi} \int_0^\infty \frac{\lambda^2 + 2}{\lambda^4 + 4} \cos \lambda x dx$		
13	Find the Fourier transform of $f(x)$ defined by	Apply	6
13		Арргу	U
	$f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 1\\ 0 & \text{if } x > 1 \end{cases}$		
	0 if x > 1		
14	$\int a^2 - x^2 if x < a$	Apply	6
	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$		
	Hence show that		
	$\int_{0}^{\infty} \sin x - \cos x dx = \pi$		
	$\int_{0}^{\infty} \frac{\sin x - \cos x}{x^3} dx = \frac{\pi}{4}$		
	U U		
15	Find the Fourier sine transform for the function $f(x)$ given by	Apply	6
	$\int \sin x, \ 0 < x < a$		
	$f(x) = \begin{cases} \sin x, & 0 < x < a \\ 0 & x \ge a \end{cases}$		
16	Find the finite Fourier sine and cosine transforms of	Apply	6
	$f(x) = \sin x \text{ in } (0,\pi).$		
17	Find the finite Fourier sine and cosine transforms of $f(x) = \frac{-ax}{x} - \frac{-bx}{x}$	Apply	6
	$\frac{e^{-ax}-e^{-bx}}{x}$		
18	Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) =$	Apply	6
	$p^n e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_s(p) =$		
	$\frac{p}{1+p^2}$		
19	Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$	Apply	6
20	Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Evaluate using Parseval's identity $\int_0^\infty \frac{x^2}{(a^2+x^2)^2} dx$ $(a > 0)$	Understand	6

S. No	Questions	Blooms	Program					
		Taxonomy Level	Outcome					
	UNIT-II							
	FOURIER SERIES AND FOURIER TRANSF	ORMS						
1	If $f(x)$ is an even function in the interval $-(l, l)$ then what is	Understand	5					
	the value of b_n ?							
2	If $f(x) = x$ in $(-\pi, \pi)$ then what is the Fourier	Understand	5					
	coefficient a_2 ?							
3	What are the conditions for expansion of a function in Fourier	Understand	4					
	series?							
4	If $f(x)$ is an odd function in the interval $-(l, l)$ then what	Apply	5					
	are the value of a_0, a_n ?							
5	If $f(x) = x^2$ in $-(l, l)$ then what is b_1 ?	Understand	5					
6	What is the Fourier sine series for $f(x) = x$ in $(0, \pi)$?	Understand	5					
7	What is the half range sine series for $f(x) = e^x \text{ in } (0, \pi)$?	Understand	5					
8	What is the Fourier sine transform of $f(x) = x$?	Understand	6					
9	What is the Fourier cosine transform of $f(x)$?	Understand	6					
10	What is the $F_c \{e^{-at}\}$?	Understand	6					

1. Group - A (Short Answer Questions)

S. No	Questions								Blooms	Program
									Taxonomy Level	Outcome
			OT A		VIT-II			TOOTS	IO	
1	D-C - I-11-1	INTERP			AND	CUK	VE F	11111		7
2	Define Interpolati								Remember	7
3	Explain forward								Understand	7
4	Explain backward difference interpolation Explain central difference interpolation								Understand Understand	7
5	Define average of								Remember	7
6	Prove that $\Delta = E$		SIIII C	реган)1				Analyze	9
7	Prove that $\nabla = 1$								Analyze	9
8	Prove that $(1+\Delta)$								Analyze	8
9	Construct a forwar		oo tobl	a for f	$(\mathbf{v}) - \mathbf{v}^3$	5v 7	if		Analyze	9
	x=-1,0,1,2,3,4,5						11		,	
10	Prove that $\Delta[x(x-$		-3)]=4	(x+1)((x+2)(x+2)	(+3)			Analyze	9
11	Evaluate △ log f(Understand	9
12	Evaluate \triangle f(x)g(x)							Understand	9
13	Evaluate $\triangle \cos x$								Understand	9
14	Find the missing				ble				Apply	8
	X 0 1 Y 1 3		3	4 81						
15	What is the princi				anare				Understand	9
16	Solve the different								Understand	8
17	Derive the norma								Understand	8
18	Derive the norma					naraho	ola		Understand	8
19	Explain errors in	_		cona a	egree	puruoc	,1u		Understand	9
20	Write the normal			e curv	v = v = 0	ae ^{bx}			Understand	8
	p - B (Long Ansv	ver Ouesti	ons)						Onderstand	0
S. No	p b (Eong ims)		uestio	ns					Blooms	Program
5.110		~							Taxonomy Level	Outcome
				UN	NT-II	I			J J	
		INTERP	OLA'	TION	AND	CURV	VE F	ITTIN	VG	
1	Find the interpola	tion polyno	mial f	or the	follow	ing da	ta us	ing	Apply	8
	Newton's forward	l interpolati	on for	mula.						
	[X	2.4	3.2	4.0	4.8	5.	1		
		Α	2.4	3.2	1.0	4.0	6			
		f(x)	22	17.	14.	38.	51			
		1(11)		8	2	3	.7			
2	Use Newton's for	ward differ	ence f				-	1	Apply	8
	polynomial satisfied by (0,5), (1,12),(2,37) and (3,86).								11.7	
3	Find f(22), from the following data using Newton's Backward							ard	Apply	8
	x 20 25 30 35 40 45 formula.									
	y 354 332 291 260 231 204									
4	Given sin 45=0.70	071.sin 50=	0.7660	0.sin 5	5=0.8	192 an	d sin		Apply	8

	60=0.8660 f	ind sin 52 us	ng new	ton's fo	rmula				
5	The population of a town in the decimal census was given					Understand	8		
	below. Estimate the population for the year 1895								
	Year	` '	1891	1901	1911	1921	1931		
		(7)		66	81	93	101	A 1	0
6	Find y(25) g using Gauss					s)=35, y	(32)=40,	Apply	8
7	Find by Cou	aa'a baaluwar	dintorn	alatina	farmay 1	a tha re	lua of v	A1	8
/	Find by Gau at $x = 1936$ u				IOHHUI	a me va	ilue of y	Apply	8
	$X = \frac{1550 \text{ K}}{X}$	1901 19	T		1931	1941	1951		
	Y	12 15	2		27	39	52		
8		ıss's backwa			formu	la the v	alue of y	Apply	8
	at $x = 8$ usin	g the followi							
	X	0 5	10		5	20	25		
0	у	7 11	<u>r</u> 14		8	24	32	A 1	0
9	Using Lagra	_	a find y	(6) give		1		Apply	8
		$\begin{array}{c cccc} 3 & 5 \\ \hline 6 & 24 \\ \end{array}$	58	108		4			
10	Find f (1.6) u						ng table	Apply	8
10								11991)	O
	X	1.2	2.		2.5		3.0		
1.1	f(x)	1.36	0.5		0.34		0.20	A 1	0
11	Find y(5) give using Lagrar	-		=3, y(3)	=13 ar	ia y(8) :	=123	Apply	8
	using Lagran	ige s ioiiliuid	l						
12	Find y(10), g	given that y(5	(1)=12, v	(6)=13,	y(9)=1	14, y(11)=16	Apply	8
	using Lagrar			,	3 \	, , ,	,	11 3	
13	A curve pas	ses through t	he noint	te (n. 18	2) (1.10)) (3 -1)	R) and	Apply	7
13	(6,90). Find	_	•)), (3,-1)	o) and	Арріу	/
	(0,50). 1 ma	the stope of	ne car v	c at A –	2.				
14	By the method	od of least so	uare, fir	nd the s	traight	line tha	t best fits	Apply	7
	the following	g data:							
		1	2	2	-	4	~		
	X	1 14	27	3 40		<u>4</u> 55	5 68		
15	Fit a straigh				win a		08	Understand	7
13	rit a straign	$\frac{1 \text{ nne } y=a+b}{0}$	1 110111 l	ne ronc	wing (3	4	Underställd	/
		-	1.8	3.3		4.5	6.3		
1.6	Fit a straight	line to the fe						Understand	7
16	Fit a straight	$\begin{array}{c c} \text{line to the 10} \\ \hline 0 & 5 \end{array}$	orm y=a		15	110wing 20	25	Understand	/
	X								
	, ,	12 15	17		22	24	30		
17	By the method				ond deg	gree pol	ynomial	Understand	7
	$y=a+bx+cx^2$		_		1		1		
	X	2		4		6	8		
	У	3.07	12	2.85	31	.47	57.38		

18	Fit a curve $y=a+bx+cx^2$ from the following data						Understand	7		
	X	1	2	3	4					
	Y	6	11	18	27					
19	Using the such that					nstants	a ar	nd b	Apply	7
	X	0	0.5	1	1.5	2	2	2.5		
	у	0.10	0.45	2.15	9.15	40.	35	180.7		
								5		
20	Obtain a	relation of	of the for	n y=ab ^x f	or the fo	llowing	g dat	a by	Understand	7
	the meth	od of leas	st squares							
		Х	2	3	4	5		6		
		У	8.3	15.4	33.1	65.	2	127.4		

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT-III		
	INTERPOLATION AND CURVE FITTIN	<u>IG</u>	
1	For what values of <i>y</i> the Gauss backward interpolation formula is used to interpolate?	Evaluate	8
2	For what values of y the Gauss forward interpolation formula is used to interpolate?	Evaluate	8
3	What is the difference between interpolation and extrapolation	Understand	7
4	Write a short note on difference equation	Remember	7
5	Write about curve fitting	Remember	7
6	If $y = a + \frac{b}{x}$ is a curve then write it's normal equations	Analyze	7
7	If $y = a_0 + a_1 x + a_2 x^2$ then what is the third normal equation of $\sum x_i^2 y_i$ by least squares method?	Analyze	7
8	If $y = a_0 + a_1 x^2$, then what is the first normal equation of $\sum y_i$?	Analyze	7
9	If $y = ax^b$, then what is the first normal equation of $\sum \log y_i$?	Analyze	7
10	If $y = 2x + 5$ is the best fit for 6 pairs of values (x, y) by the best method of least-squares, find $\sum x_i$ if $\sum y_i = 120$?	Apply	7

1.Group - A (Short Answer Questions)

S. No	Questions	Blooms	Program
		Taxonomy Level	Outcome
	UNIT-IV		
	Numerical Techniques		

1	Define algebraic and transcendental equation and give example	Remember	10
2	Explain graphically the root of an equation	Understand	10
3	Write about bisection method	Understand	10
4	Write about false position method	Understand	10
5	Write a short note on iterative method	Understand	10
6	Explain iterative method approach in solving the problems	Understand	10
7	State the condition for convergence of the root by iterative	Understand	10
	method		
8	Derive Newton's Raphson formula	Understand	10
9	Show that Newton's Raphson method is quadratic convergence	Understand	10
10	Establish the formula to find the square root of a number N by	Analyze	10
	Newton's Raphson method		
11	Find the square root of a number 16 by using Newton's Raphson	Apply	10
12	Derive the formula to find the reciprocal of a number	Understand	10
13	Explain solving system of non-homogeneous equations	Understand	10
14	Explain LU decomposition method	Apply	11
15	Define Crout's and Doolittle's method	Remember	11
16	If A=LU and $A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$ then find L	Apply	11
17	Explain the procedure to find the inverse of the matrix by using LU decomposition method	Understand	11
18	Write a short note on Jacobi's method	Understand	11
19	Write a short note on Gauss Seidel iterative method	Understand	11
20	Write the difference between Jacobi's and Gauss Seidel iterative	Understand	11
20	method	Silderstand	11
L	1		

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT-IV		
	NUMERICAL TECHNIQUES		
1	Find the real root of the equation x^3 -x-4=0 by bisection method.	Apply	10
2	Find the real root of the equation $3x=e^x$ by bisection method.	Apply	10
3	Find the square root of 25 up to 2 decimal place s by using bisection method	Apply	10
4	Find a real root of the equation $e^x \sin x = 1$, using Regulafalsi method	Apply	10
5	Solve xe ^x =1 by iterative method	Understand	10
6	Solve 2x=cosx+3 by iterative method	Understand	10

7	Find a real root of the equation, $\log x = \cos x$ using Regulafalsi method	Apply	10
8	Use the method of false position to find the fourth root of 32 correct to three decimal places	Apply	10
9	Find a real root of the equation $3x$ - $\cos x$ - 1 = 0 using Newton Raphson method	Apply	10
10	Find a real root of the equation $e^x \sin x = 1$, using Newton Raphson method.	Apply	10
11	Using Newton's iterative method find the real root of $x log_{10}x = 1.2$ correct to four decimal places	Apply	10
12	Evaluate x tanx+1=0 by Newton Raphson method.	Understand	10
13	Find the square root of 28 by Newton Raphson method.	Apply	10
14	Solve x+3y+8z=4, x+4y+3z=-2, x+3y+4z=1 using LU decomposition	Understand	11
15	Solve by LU decomposition method x+y+z=9,2x-3y+4z=13,3x+4y+5z=40	Understand	11
16	Find the inverse of the matrix $\begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$ by LU decomposition method	Apply	11
17	Solve 5x-y+3z=10,3x+6y=18,x+y+5z=-10 with initial approximations (3,0,-2) by Jacobi's iteration method	Understand	11
18	Using Jacobi's iteration method solve the system of equation 10x+4y-2z=12, x-10y-z=-10,5x+2y-10z=-3	Understand	11
19	Solve 20x+y-2z=17,3x+20y-z=-18,2x-3y+20z=25 by Gauss-Seidel iterative method	Understand	11
20	Using Gauss-seidel iterative method solve the system of equations 5x+2y+z=12, x+4y+2z=15, x+2y+5z=20	Understand	11

S. No	Questions	Blooms	Program
		Taxonomy	Outcome
		Level	
	UNIT-IV		
	NUMERICAL TECHNIQUES		
1	What is difference between polynomial and algebraic function?	Understand	10
		Understand	
2	What is Transcendental equation		
	-		10
3	Define root of an equation	Remember	
			10

4	What are the merits and demerits of Newton-Raphson Method	Understand	
			10
5	Explain about order of convergence?	Understand	10
6	Define linear, quadratic and cubic convergence?	Remember	10
7	Explain about False-position method	Understand	10
8	Explain about Regula-Falsi method	Understand	10
9	What is Crout's method in LU decomposition	Understand	11
10	What is Dolittle's method in LU decomposition	Understand	11

1.Group - A (Short Answer Questions)

S. No	Questions	Blooms Taxonomy	Program Outco			
	UNIT-V	Level	me			
	NUMERICAL INTEGRATION AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS					
			51,0			
1	Derive the Newton-cote's quadrature formula	Understand	12			
2	Explain Trapezoidal rule	Understand	12			
3	Explain Simpson's 1/3 and 3/8 rule	Understand	12			
4	Estimate $\int_{0}^{\Pi/2} e^{\sin x} dx$ taking h= $\Pi/6$ correct o four decimal places	Understand	12			
5	Explain two point and three point Gaussian quadrature	Understand	12			
6	Compute using Gauss integral $\int_{-1}^{1} \sqrt{1-x^2} dx$, $n=3$	Apply	12			
7	Compute using Gauss integral $\int_{0}^{1} x dx, n = 3$	Apply	12			
8	Define initial value problem	Remember	13			
9	Define boundary value problem	Remember	13			
10	Explain single step method and step by step method	Understand	13			
11	Explain Taylor's series method and limitations	Understand	13			
12	Explain Picard's method of successive approximation Write the second approximation for $y^1=x^2+y^2$, $y(0)=1$	Understand	13			
13	Explain Euler's method	Understand	13			
14	Explain Euler's modified method	Understand	13			
15	Give the difference between Euler's method and Euler's modified method	Analyze	13			
16	Find y(0.1) given $y^1=x^2-y$, y(0)=1 by Euler's method	Apply	13			
17	Explain Runge-Kutta second and classical fourth order	Understand	13			
18	Write any three properties of Eigen value problems	Understand	14			
19	Explain power method to find the largest Eigen value of a matrix	Understand	14			

20	Write the finite difference formula for $y^{1}(x)$, $y^{11}(x)$	Understand	14

2. Group - B (Long Answer Questions)							
S. No	Questions	Blooms	Program				
		Taxonomy Level	Outcome				
	UNIT-V NUMERICAL INTEGRATION AND NUMERICAL SOLUTIONS OF DIFI	FERENTIAL EQUATION	ONS				
1	Use the trapezoidal rule with n=4 to estimate $\int_0^1 \frac{dx}{1+x^2}$ correct	Understand	12				
	to four decimal places						
2	Estimate $\int_0^6 \frac{dx}{1+x^2}$ correct to four decimal places	Understand	12				
	$\int_0^1 1 + x^2$ correct to rotal decimal places						
3	Evaluate $\int_{0}^{\pi} \left(\frac{\sin x}{x} \right) dx$ by using i) Trapezoidal rule	Understand	12				
	ii) Simpson's $\frac{1}{3}$ rule taking n=6						
4	Using Taylor's series method, find an approximate value of y at	Apply	13				
	x=0.2 for the differential equation $y'-2y = 3e^x$ for y(0)=0.						
5	Find y(0.1), y(0.2), z(0.1), z(0.2), given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and y(0)=2, z(0)=1 by using Taylor's series method	Apply	13				
	and y(0) 2, z(0) 1 by using rayior s series incurou						
6	Given $y^1 = 1 + xy$, $y(0) = 1$ compute y (0.1), y (0.2) using Picard's method	Understand	13				
7	Find an approximation value of for x=0.1, 0.2 if $\frac{dy}{dx} = x + y$ and y(0)=1 using Picard's method and check your answer with	Apply	13				
	exact particular solution						
8	Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2).	Understand	13				
9	Using Euler's method, solve for y at x=2 from $\frac{dy}{dx} = 3x^2 + 1$,	Understand	13				
	y(1)=2 taking step size: h=0.5 and h=0.25 dx						
10	Given $\frac{dy}{dx} = xy$ and y(0)=1. Find y(0.1) using Euler's	Apply	13				
	method						
11	Find y(0.5), y(1) and y(1.5) given that $\frac{dy}{dx} = 4 - 2x$ and y(0)=2	Apply	13				
	1	l					

	with h=0.5 using modified Euler's method		
12	Find $y(0.1)$ and $y(0.2)$ using Euler's modified formula given	Apply	13
	that $\frac{dy}{dx} = x^2 - y$ and $y(0)=1$		
13	Given y^1 =4-2x,y(0)=2 then find y(0.5),y(1),y(1.5)using Euler's modified formula	Apply	13
14	Find y(0.1) and y(0.2) using Runge Kutta fourth order formula given that $\frac{dy}{dx} = x + x^2 y$ and y(0)=1.	Apply	13
15	Obtain the values y at x=0.1,0.2 using Runge Kutta method of second and fourth order for $y^1+y=0,y(0)=1$	Understand	13
16	using Runge Kutta method of order 4 find y(0.2) for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1, h = 0.2$	Apply	13
17	Use power method find numerically largest Eigen value $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and corresponding Eigen vector and other Eigen value	Apply	14
18	Use power method find numerically largest Eigen value [1 6 1] [1 2 0] [0 0 3]	Apply	14
19	Write the largest Eigen value of the matrix $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$	Understand	14
20	Solve the boundary value problem y^{11} -2y(x)/ x^2 =-5/x,1 <x<2,y(1)=1;y(2)=2;with 0.5<="" h="" of="" td="" value=""><td>Understand</td><td>14</td></x<2,y(1)=1;y(2)=2;with>	Understand	14

S. No	Questions	Blooms	Program			
		Taxonomy Level	Outcome			
UNIT-V						
NUMERICAL INTEGRATION AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS						
1	How many number of subintervals are required to get accuracy, while evaluating a definite integral by trapezoidal rule?	Analyze	12			
2	What is the interval h for closer application, in Simpson's $\frac{1}{3}$ rule?	Analyze	12			
3	What is the disadvantage of picard's method?	Understand	13			
4	What is the method of Runge-Kutta method?	Understand	13			
5	If $y_0 = 1$, $h = 0.2$, $f(x_0, y_0) = 1$ then by using Euler's method what is the value of y_1 ?	Understand	13			
6	If $y_1 = 1.2$, $h = 0.2$, $f(x_1, y_1) = 1.4$ then by using Euler's	Understand	13			

S. No	Questions	Blooms Taxonomy Level	Program Outcome			
UNIT-V NUMERICAL INTEGRATION AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS						
	method what is the value of y_2 ?					
7	what is the iterative formula of Euler's method for solving $\frac{dy}{dx} = f(x, y) \text{ with } y(x_0) = y_0?$	Understand	13			
8	What is the n^{th} difference of a polynomial of degree n ?	Understand	13			
9	If $\frac{dy}{dx} = x - y$ and y(0)=1 then by picards method what is the value of $y^{(1)}(x)$?	Understand	13			
10	What is the disadvantage of Euler's method over Modefied Euler method?	Understand	13			

Prepared By:

Dr. M. Anita, Professor, Freshman Engineering

Mr.Ch. Kumara Swamy, Assistant Professor, Freshman Engineering

Ms.K.Rama Jyothi, Assistant Professor, Freshman Engineering

Date : 13 June, 2016

HOD, FRESHMAN ENGINEERING