INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	$:$	ADVANCED MECHANICS OF SOLIDS
Course Code	$:$	BCC206
Class	$:$	I M. Tech I Semester
Branch	$:$	CAD-CAM
Year	$:$	$2016-2017$
Course Coordinator	$:$	Prof. U. S. P Rao
Course Faculty	$:$	Prof. U. S. P. Rao

OBJECTIVES

The course should enable the students to:

1. Understand the theory of elasticity including stress, strain, displacement and Hooke's law and strain energy relationships.
2. Understand the shear force and bending moment diagrams of symmetrical beams.
3. Distinguish bending and shear stresses developed in beams of various sections.
4. Compare stresses in a shaft under torsion and in thin cylindrical members.

S No	QUESTION	Blooms taxonomy level	$\begin{gathered} \hline \text { Course } \\ \text { Outcome } \\ s \\ \hline \end{gathered}$
UNIT - I SHEAR CENTER			
Part - A (Short Answer Questions)			
1	Define neutral axis	Remember	1
2	Define symmetrical bending	Remember	1
3	Define unsymmetrical bending	Remember	1
4	Write about Un symmetrical beams.	Remember	1
5	Write about symmetrical beams.	Remember	1
6	Explain principal axes in case of unsymmetrical bending	Remember	1
7	Discuss about product of inertia	Remember	1
8	Indicate the axes for which Product of Inertia is zero.	Remember	1
9	Describe ellipse of Inertia	Understand	1
10	Discuss about momental ellipse	Remember	1
11	Write about middle third rule	Remember	1
12	State middle quarter rule	Remember	1
Part - B (Long Answer Questions)			
1	Compare symmetrical bending and unsymmetrical bending using examples with neat sketch.	Create	1

2	An area has momemts of interia $\mathrm{I}_{\mathrm{x}}=58.5 \mathrm{~cm}^{4}$ and $\mathrm{I}_{\mathrm{y}}=56 \mathrm{~cm}^{4}$ and $\mathrm{I}_{\mathrm{xy}}=54 \mathrm{~cm}^{4}$. Determine the momemts of interia and product of interia with respect to UV axes inclined at 30° anticlockwise to xy axes Also determine its principal axes of interia and principal moment of interia	Understand	1
3	Explain shear centre with the help of examples.	Understand	1
4	Determine $\mathrm{I}_{\mathrm{u}} \mathrm{I}_{\mathrm{v}}$ and I_{uv} for a rectangle 100 mmx 250 mm if uv axis are inclined at 30° anticlockwise to xy axes.	Understand	1
5	Determine the principal moments of interia for an unequal angle section $125 \mathrm{mmx} 75 \mathrm{mmx} 10 \mathrm{~mm} \mathrm{I}_{\mathrm{x}}=304 \mathrm{~mm}^{4} \mathrm{I}_{\mathrm{y}}=88 \mathrm{~mm}^{4}, \mathrm{C}_{\mathrm{x}}=17.8 \mathrm{~mm}, \mathrm{C}_{\mathrm{y}}=42.8 \mathrm{~mm}$.	Understand	1
6	An area has momemts of interia $\mathrm{I}_{\mathrm{x}}=60 \mathrm{~cm}^{4}$ and $\mathrm{I}_{\mathrm{y}}=65 \mathrm{~cm}^{4}$ and $\mathrm{I}_{\mathrm{xy}}=60 \mathrm{~cm}^{4}$. Determine the momemts of interia and product of interia with respect to UV axes inclined at 30° anticlockwise to xy axes also determine its principal axes of interia and principal moment of interia	Understand	1
7	Determine $\mathrm{I}_{\mathrm{u}, \mathrm{V}}$ and I_{uv} for a rectangle 120 mmx 280 mm if uv axis are inclined at 30° anticlockwise to xy axes.	Understand	1
8	OX and OY are two perpendicular axes through the centroid and ou and ov are principal axesprove $\mathrm{I}_{\mathrm{U}}+\mathrm{I}_{\mathrm{V}}=\mathrm{I}_{\mathrm{X}}+\mathrm{I}_{\mathrm{Y}}$.		
Part - C (Problem Solving and Critical Thinking Questions)			
1	Show that the shear centre for the section shown in fig. 1 is at $e=4 R / \pi$ measured from point O.		1
2	Determine the approximate positions of shear centre for a channel section of 60 mmx 60 mm and 5 mm thickness. When it is loaded by a vertical force with its web vertical.	Create	1
3	"A single channel when used as a beam with its web vertical and acted upon by vertical load will be in torsion unless the load is applied through a particular point outside the section". Justify the statement.	Create	1
4	Determine the position of the shear centre for an $80 \mathrm{~mm} \times 40 \mathrm{~mm} \times 5 \mathrm{~mm}$ thick channel when it is subjected to a vertical load F with the web in vertical position.	Create	1
5	Why shear force is zero in flanges when a vertical force is applied through shear centre in the case of a channel loaded with its web vertical? Explain with a neat sketch.	Create	1

6	A $90 \mathrm{~mm} \times 60 \mathrm{~mm} \times 10 \mathrm{~mm}$ unequal angle is placed with the larger leg vertical as shown in fig.1. It is subjected to a sagging bending moment of $700 \mathrm{~N}-\mathrm{m}$ on the horizontal axis. Determine the stresses induced at points P1 and P2.	Create	1
7	A simply supported beam of length 1.8 m carries a central load of $3.5 \mathrm{~K} . \mathrm{N}$ inclined at 30° to the vertical and passing through the centroid of the section as shown in fig.2. The thickness is 10 mm throughout the section. Determine a) Maximum tensile stress. b) Maximum compressive stress. All dimensions are in mm . Fig. 2	Create	1
	UNIT - II CURVED BEAMS		
	Part - A (Short Answer Questions)		
1	Write the equation for neutral axis distance of a curved beam.	Remember	2
2	Compare the stresses induced in a curved beam and straight beam.	Remember	2
3	Indicate the stresses induced in a curved beam.	Remember	2
4	Explain deflection of a curved beam.	Remember	2
5	"Is flexural stress distribution in a curved beam is linear", Explain.	Remember	2
6	Write an equation for p^{2} and explain the parameters.	Remember	2
7	Indicate the variation of boundary stress in a curved beam.	Remember	2
8	What is the shape of the cross section of a crane hook. Why	Remember	2

Part - B (Long Answer Questions)			
1	A frame has a 50mmx50mm square cross section. The load P located 100mm from the center of curvature of the curved portion of the frame. The radius of curvature of the inner surface of the curved beam is 30mm. For P=9.5KN, Determine the values for the maximum tensile and compressive stresses.	2	
2	A curved bar of square section 75mmx75mm and of mean radius of curvature 112.5mm is initially unstressed if a bending moment of 7500N-m is applied to the bar and tends to straighten it, find the stresses at the inner and outer faces.	Remember	2
3	A semi circular curved bar of trapezoidal cross section with a diametrical load 25KN. Calculate the minimum and maximum stress at the critical section.	Remember	2
	A hook has a isosceles triangular section with a base 40mm and height 50 mm. the load 10KN is applied along a line 40mm from the inner edge of the shank. The base of the triangle is inside of the hook. Radius of curvature of inside surface is 30mm. Compute the stresses on the inner and outer fibers.	Create	2
5	A curved bar of rectangular section initially unstressed is subjected to a bending moment of 900Nm, which tends to straighten the bar. The section is 30mm wide and 40mm deep in the plane of bending, Mean radius of curvature is 80mm. Find the bending stresses.	Remember	

4	A ring of steel bar has a diameter of 22 mm and carries a pull of 5 KN . Determine the stresses along line of action of load and on a section perpendicular to line of action of load. The mean radius of the rim is 100 mm .		2
5	Indicate the formula for position of neutral axis as per Winker-Bach theory and explain each term with a suitable neat sketch.		2
6	A curved bar of rectangular section of 30 mm width, 40 mm depth and mean radius of curvature of 60 mm . is subjected to a bending moment 400 Nm . Determine the stresses at the inner and outer surfaces. Sketch the variations of stress across the section and find positions of neutral axis.	Remember	2
7	Find the load carrying capacity of a hook of rectangular cross section $100 \times 75 \mathrm{~mm}$. The thickness of hook is 75 mm , the radius of inner fiber is 150 mm while that of outer fiber is 250 mm . The line of action of force passes at a distance of 75 mm from the inner fibers. The allowable stress is 70 $\mathrm{N} / \mathrm{mm}^{2}$	Remember	2
8	A ring having a saw cut along the horizontal diameter is made from a circular cross section bar of 60 mm diameter. The inside diameter of the circular ring is 80 mm . It is subjected to a vertical compressive load of 15 KN . Find the stresses at the inside and the outside points along the horizontal sections opposite to the saw cut. Also find the position of the neutral axis.	Remember	2
UNIT-III TORSION			
Part - A (Short Answer Questions)			
1	Write an equation for the power transmitted by a shaft. Explain each term.	Remember	3
2	Write the power transmission equation for a hollow circular shaft.	Remember	3
3	Write an equation for angle of twist of a shaft.	Remember	3
4	What is torsional rigidity.	Remember	3
5	Distinguish between torsional moment of resistance and torsional rigidity.	Remember	3
6	A solid shaft transmits 100 KW at 150 rpm . Determine torque.	Remember	3
7	A shaft is required to transmit a torque $8 \mathrm{KN}-\mathrm{m}$. Find suitable diameter of shaft if allowable stress is 60 Mpa .	Remember	3
8	Find the maximum torque transmitted by a shaft 50 mm diameter at 150 rpm if the maximum permissible stress is $80 \mathrm{~N} / \mathrm{mm}^{2}$.	Remember	3
9	Derive the equations for applicable for composite shaft.	Remember	3
10	A stepped steel shaft made out of same metal has two diameter d_{1} and d_{2}. If $d_{1}>d_{2}$ write the equation for the maximum torque transmitted by the shaft.	Remember	3
11	Derive an equation for the principal stress induced in a shaft subjected to bending moment M and torque. T .	Remember	3
12	Indicate Bredt-Batho equation, for an angle of twist of thin tubular section.	Remember	3
13	Indicate the variation of shear stress from the centre of a circular solid shaft to the surface when it is subjected to a torque.	Remember	3
14	A solid shaft of same cross sectional area and of same material as that of hollow shaft can resist more torque, Explain.	Remember	3
15	The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M is $2 \mathrm{M} / \mathrm{T}$. Prove	Remember	3

	The Ratio of diameters of two shafts joined in series is 2 . If the two shaft have the same material and the same length find the ratio of angle of twist.	Remember	3
Part - B (Long Answer Questions)			
1.	A solid shaft transmits 100 KW at 150 rpm . Determine the suitable diameter of the shaft if the maximum torque transmitted exceeds the mean by 20%. The shear is not to exceed 60 MPa . Also find the maximum angle of twist in a length of 4 m of shaft. G=80GPa.	Understand	3
2.	A hollow shaft transmits 200 KW of power at 150 rpm . The total of twist in a length 5 m of the shaft is 3°. Find the inner and outer diameters of the shaft if the permissible shear stress is 60 MPa . Take $\mathrm{G}=80 \mathrm{GPa}$	Understand	3
3.	A shaft transmits 220 KW of power at 140 rpm . a. Determine the diameter of the solid shaft, b. The inner and outer diameter of a hollow circular shaft if the ratio of the inner to the outer diameter is $3 / 4$. c. The percentage saving in the material on using hollow shaft. Take the allowable stress as 90 MPa and density of a material is $84 \mathrm{KN} / \mathrm{m}^{3}$.	Understand	3
4.	A hollow shaft transmits 100 KW of power at 130 rpm . The total of twist in a length 4 m of the shaft is 3°. Find the inner and outer diameters of the shaft if the permissible shear stress is 60 MPa . Take G=80GPa.	Understand	3
5.	Give the procedure to analyse a thin rectangular member subjected to torque T .	Understand	3
6.	Discuss the Bredt-Batho theory as applicable	Understand	3
7.	In what way the shear stress and the angle of twist can be found in the case of a thin walled twin-celled section when a torque T is applied.	Understand	3
Part - C (Problem Solving and Critical Thinking)			
1	Derive an expression for the allowable twisting moment for a thin walledtube. Also derive an appropriate expression for strength-weight ratio of such a tube. Take τ_{s} as an allowable shear stress.	Create	3
2	The thickness of all walls of a thin-walled rectangular tube is 2 mm and it is subjected to a torque of 10 Nm . Determine the maximum shear stress and angular twist per m length take $\mathrm{G}=102 \mathrm{Gpa}$.Outside dimensions of tube are 40 x 80 mm .	Create	3
3	A thin uniform steel disc of radius 28 cm is rotating about its axis at 3200R.p.m.Draw the radial and circumferential stress distribution diagram along the radius of the disc. What are the maximum and minimum values of circumferential and radial stresses? weight density $\rho=0.078 \mathrm{~N} / \mathrm{cm}^{3}, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{sec}^{2}$, poison's ratio $=0.3$.	Understand	3
4	A thin walled rectangular tube $30 \times 60 \mathrm{~mm}$ is subjected to torque of 10 Nm . The thickness of all walls is 2 mm .Find the stress induced and angle of twist per metre. Take $\mathrm{G}=80 \mathrm{Gpa}$.	Create	3
5	Derive an equation for the torque transmitted by thin tubular section.	Create	3
6	Determine maximum torque a thin walled 800 mm long tube outside diameter 50 mm and inside diameter 46 mm can transmit if the maximum angle of twist is 4^{0}. Also find the maximum shear stress for the maximum torque.	Understand	3
UNIT-IVTHEORY OF PLATES			
Part - A (Short Answer Questions)			
1	Indicate bending equation and discuss the parameters of the equation,	Understand	4
2	What is flexural rigidity.	Understand	4
3	The line of action of the force must pass through the shear centre of a cross-section, otherwise the beam is subjected to both bending and torsion. Explain.	Understand	4

4.	Define neutral axis.	Understand	4
5	Sketch the variation of bending stresses in a beam from bottom to top.	Understand	4
6.	Why the bending stress variation in a beam is independent of the variation in width of a beam section	Understand	4
Part - B (Long Answer Questions)			
1.	A solid plate of 400 mm diameter and 20 mm thick is acted upon by a uniformly distributed load of $1000 \mathrm{KN} / \mathrm{m}^{2}$. Calculate the central deflection and the values of maximum stresses in the radial and tangential directions when 1. The edges are freely supported. 2. The edges are firmly supported Take $\mathrm{E}=205 \mathrm{Gpa}$ and poison's ratio $=0.3$.	Apply	4
2	A solid flat circular plate of 800 mm diameter and 15 mm thickness is acted upon by a concentrated load of 40 KN at the centre of the plate. Calculate the central deflections and the maximum radial stress at the edge when the plate is clamped at the edge $\mathrm{E}=$ 205 Gpa and poison's ratio=0.3.	Apply	4
3.	A solid plate of 600 mm diameter and 10 mm thickness is acted upon by a concentrated load 5 KN at the centre of the plate. Calculate the central deflection and the values of radial and tangential stresses at a radial distance of 5 mm from the centre. When the plate is simply supported at the edges. Take $\mathrm{E}=205 \mathrm{Gpa}$ Poison's ratio $=0.3$.	Apply	4
4.	A square structural steel trap door ($\mathrm{E}=200 \mathrm{Gpa}$, Poison's ratio $=0.29$ and Yield= 240 Mpa) has a side length of 1.5 m and thickness 15 mm . The plate is simply supported and subjected to uniform pressure. Determine yield pressure P_{r} and maximum deflection when the pressure is applied.	Apply	4
5.	A 10 mm thick plate covers a circular opening of diameter 200 mm . The plate is fixed at the edges and subjected to a pressure p. Determine yield pressure. Deflection at centre when yield pressure is applied. Take $\mathrm{E}=200 \mathrm{GPa}, \mu=0.29$, yield stress $=315 \mathrm{GPa}$. Factor of safety $=2$. Also calculate working pressure	Apply	4
6.	A square door has a side of 1.8 m and thickness of 15 mm . The plate is simply supported and subjected to a uniform pressure. Determine yield pressure. find out maximum deflection when this pressure is applied. Take $\mathrm{E}=200 \mathrm{GPa}, \mu=$ 0.29 , yield stress $=315 \mathrm{GPa}$.	Apply	4
7.	A square structural steel trap door (E= 200Gpa, Poison's ratio= 0.29 and Yield $=240 \mathrm{Mpa}$) has a side length of 1.5 m and thickness 15 mm . The plate is simply supported and subjected to uniform pressure. Determine yield pressure P_{r} and maximum deflection when the pressure is applied.	Apply	4
Part - C (Problem Solving and Critical Thinking)			
1	A water 3.6 m deep and 2.7 m in square is to be made of structural steel plate .The sides of the tank are divided into nine panels by two vertical stiffness and two horizontal support that is each panel is 0.9 m circle and 1.2 m high and the average head of water on a lower panel is 3 m . (a) Determine the required thickness of the plate for the lower panels, using a working stress limit of 124 mpa . (b) Calculate the maximum deflection of the panel.	Create	4
2	A plate made of mild steel ($\mathrm{E}=200 \mathrm{Gpa}, \mu=0.29$, yield stress $=315 \mathrm{Mpa}$) has a thickness 10 mm and covers a circular opening having a diameter of 200 mm . The plate is fixed at the edges and is subjected to a uniform pressure ' p '. (a) Determine the magnitude of the yield pressure P_{r} and deflection $y_{\text {max }}$ at the center of the plate when this pressure is applied. (b) Determine a working pressure based on a factor of safety of shear failure 2 relative to P_{γ}	Create	4
UNIT-VCONTACT STRESSES			

Part - A (Short Answer Questions)			
1	When two bodies having curved surface are pressed together what is the shape of contact area. Explain with a diagram	Remember	5
2.	Define contact area problems encountered in engineering.	Understand	5
3.	What is the boundary line of the area of contact when two curved surfaces are pressed together. Explain with a diagram.	Understand	5
4.	Express with an equation for the boundary line of the area of contact when two curved surfaces are pressed together.	Understand	5
5.	Total distance between corresponding points of any two surfaces which are pressed together equal to $\mathrm{Ax}^{2}+\mathrm{By}^{2}$. Explain with a sketch.	Understand	5
6	When two curved surfaces are pressed together perpendicular distance from the tangent plane to any point at the surface of body near the point of contact is $\frac{u}{2} \tan \beta$. Explain with a sketch.	Understand	5
7.	Express the equation for octahedral shear stress.	Understand	5
Part - B (Long Answer Questions)			
1.	Find the contact stress area when a 10 mm sphere is in contact with an internal spherical surface diameter 10.01 mm and subjected to 5 KN force subjected to 5 KN for (a) Two cylinder of length 1 are in contact. (b) A cylinder of length 1 and plane. (c) A cylinder and an internal cylinder.	Understand	5
2.	Derive the expression for contact pressure on a single row ball bearing. If the ball diameter is 4 cm , the radius of the groove is 2.5 cm . The diameter of the outer race is 20 cm and the greatest compressive force on one ball is 5 KN . Calculate the contact pressure.	Understand	5
3.	A rail road uses steel rails $(\mathrm{E}=200 \mathrm{GPa})$ with a depth of 184 mm . The distance from the top of the rail to its centroid is 9.91 mm , and the moment of inertia of the rail is $36.9 \times 10^{6} \mathrm{~mm}^{4}$ rail is supported by ties, ballast and a road bed that together are assumed to act as an elastic foundation with spring constant $\mathrm{K}=14.0 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the maximum deflection, maximum bending moment.	Understand	5
4.	A feed roll consists of two circular cylindrical steel rollers, each 200 mm in diameter and arranged so that their longitudinal axes are parallel. A cylindrical steel shaft $(60 \mathrm{~mm}$ in diameter) is fed between the rollers in such a manner that its longitudinal axis is perpendicular to that of the rollers. The total load P between the shaft and rollers is 4.5 KN . Determine the values of the maximum principal stress.	Understand	5
Part - C (Problem Solving and Critical Thinking)			
1	Two semicircular disks are made of steel $\left(\mathrm{E}_{1}=\mathrm{E}_{2}=200 \mathrm{Gpa}, \mathrm{r}_{1}=\mathrm{r}_{2}=0.29\right)$. The radius of curvature of the two surfaces at the point of contact are $R_{1}=60 \mathrm{~mm}, \mathrm{R}_{1}{ }^{1}=130 \mathrm{~mm}$, $\mathrm{R}_{2}=80 \mathrm{~mm}, \mathrm{R}_{2}=200 \mathrm{~mm}$. The angle α between the planes of minimum curavature is 30°. Find the ratio B/A.	Create	5
2.	A 150 mm diameter cast iron wheel, 50 mm wide rolls on a flat surface carrying 3 KN (a) Find horizon stress $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}$ and shear stress. (b) What happens to the stresses at a point A that is 0.25 mm below the rim surface during one revolution.	Create	5
3.	In spherical ball bearing 10 mm diameter roll on the inside surface of the outer race. The balls are arranged in a pitch circle of 65 mm and the radius of contacting face of the outer race is 37.5 mm in the plane of bearing width. Assuming $\mathrm{E}=200 \mathrm{Gpa}$ and $\mathrm{r}=0.3$. Calculate the foot print area and the contact stresses. use load of 10 N .	Create	5

Prepared By:
Prof: U. S. P. Rao,
Professor
HOD, ME

