| Hall Ticket No |  |  |  |  |  | Code No: ACS014 |
|----------------|--|--|--|--|--|-----------------|
|                |  |  |  |  |  |                 |



# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

## **MODEL QUESTION PAPER - II**

B.Tech VIII Semester End Examinations (Regular), May – 2020

Regulation: IARE – R16 MACHINE LEARNING

### COMPUTER SCIENCE AND ENGINEERING

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the question must be answered in one place only

### UNIT - I

1. (a) How is candidate elimination algorithm different from Find-S algorithm?

[7M]

(b) The following Table 1 containing student exam performance data

[7M]

### Table 1

| No. | Student | First last year? | Male? | Works hard? | Drinks? | First this year? |
|-----|---------|------------------|-------|-------------|---------|------------------|
| 1   | Richard | yes              | yes   | no          | yes     | yes              |
| 2   | Alan    | yes              | yes   | yes         | no      | yes              |
| 3   | Alison  | no               | no    | yes         | no      | yes              |
| 4   | Jeff    | no               | yes   | no          | yes     | no               |
| 5   | Gail    | yes              | no    | yes         | yes     | yes              |
| 6   | Simon   | no               | yes   | yes         | yes     | no               |

Calculate the entropy and construct a decision tree based on the minimal entropy.

**2.** (a) Identify the suitable problems and their characteristics for decision tree learning.

[7M]

(b). Analyze the use of entropy and information gain for constructing the decision tree and tabulate the ID3 algorithm.

[**7M**]

#### UNIT - II

**3.** (a) What is linearly inseparable problem? How to solve XOR function by using SVM.

[7M]

(b) What is a Perceptron? Design a two layer network of Perceptron to implement A XOR B.

[**7M**]

| 4. (a) Compare and contrast the following                                                                                                                                                             | [ <b>7M</b> ]   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| i. Sequential and bate                                                                                                                                                                                | ch training     |
| ii.Mini-batches and Stochastic Gradien                                                                                                                                                                | t Descent.      |
| (b) Suppose that the following are a set of points in two classes: class 1:11                                                                                                                         |                 |
| 21                                                                                                                                                                                                    |                 |
| class 2:00                                                                                                                                                                                            |                 |
| 10                                                                                                                                                                                                    |                 |
| 01                                                                                                                                                                                                    |                 |
| Plot them and find the optimal separating line.                                                                                                                                                       | [ <b>7M</b> ]   |
| $\mathbf{UNIT} - \mathbf{III}$                                                                                                                                                                        |                 |
| <ul><li>5. (a) Explain the concept of Bayes theorem with an example. Describe Bayesian networks in detail.</li><li>(b) Describe maximum likelihood hypothesis for predicting probabilities.</li></ul> | [7M]<br>[7M]    |
| <b>6.</b> (a) Describe variance.Explain the concept of Bias-Variance tradeoff.                                                                                                                        | [7M]            |
| (b) Differentiate variance and bias variance trade off. Discuss in detail about the Bayes optimal classifier.                                                                                         | [7M]            |
| $\mathbf{UNIT} - \mathbf{IV}$                                                                                                                                                                         |                 |
| 7. (a) What is genetic algorithm? Describe the evolutionary learning genetic algorithm.  (b) Elaborate the Boosting with a suitable example. Discuss in detail about Ensemble learning                | [7M]            |
| <b>8.</b> (a) What is the general principle of an ensemble method and what is bagging and boosting inensemble method?                                                                                 | [7M]            |
| (b) Differentiate LDA and PCA. Write a short note on linear discriminant analysis (LDA).                                                                                                              | [7M]            |
| $\mathbf{UNIT} - \mathbf{V}$                                                                                                                                                                          |                 |
| <b>9.</b> (a) A major problem with the single link algorithm is that clusters consisting of long chains may be created. Do and illustratethis concept.                                                | escribe<br>[7M] |
| (b) Write the algorithm for k means clustering and compute 2 clusters when given a dataset point as {2, 4, 10 20, 30, 11, 25}.                                                                        | , 12, 3, [7M]   |
| 10. (a) Discuss in detail about partitional algorithms and minimum spanning tree.                                                                                                                     | [7M]            |
| (b) The squared error clustering algorithm minimizes the squared error. Justify?                                                                                                                      | [7M]            |
|                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                       |                 |



# **INSTITUTE OF AERONAUTICAL ENGINEERING**

## (Autonomous) Dundigal, Hyderabad - 500 043

## **COURSE OBJECTIVES:**

| I.   | Apply knowledge of computing and mathematics appropriate to the discipline |
|------|----------------------------------------------------------------------------|
| II.  | Illustrate the concepts of machine learning and related algorithms         |
| III. | Understand the dimensionality problems using linear discriminates          |
| IV.  | Study various statistical models for analyzing the data                    |
| V.   | Learn clustering algorithms for unlabeled data.                            |

### **COURSE OUTCOMES:**

| CO 1 | Understand the concept of learning and candidate elimination algorithms.            |
|------|-------------------------------------------------------------------------------------|
| CO 2 | Understand the concept of perception and explore on forward and backward practices. |
| CO 3 | Explore on basic statistics like variance, covariance and averages.                 |
| CO 4 | Explore on Evolutionary learning techniques used in genetic algorithms.             |
| CO 5 | Explore on similarity concept and different distance measures.                      |

### **COURSE LEARNING OUTCOMES:**

| SI. No.   | Description                                                                            |
|-----------|----------------------------------------------------------------------------------------|
| ACS011.01 | Understand the concept of learning and candidate elimination algorithms                |
| ACS011.02 | Explore on different types of learning and explore On tree based learning.             |
| ACS011.03 | Understand the construction process of decision trees used for classification problem. |
| ACS011.04 | Understand the concept of perception and explore on forward and backward practices.    |
| ACS011.05 | Illustrate on kernel concept and optimal separation used in support vector machines    |
| ACS011.06 | Explore on basic statistics like variance, covariance and averages                     |
| ACS011.07 | Understand the concepts of Gaussian and bias-variance tradeoff                         |
| ACS011.08 | Understand the concepts of Bayes theorem and Bayes optimal classifiers                 |
| ACS011.09 | Explore on Bayesian networks and approximate inference on markov models                |
| ACS011.10 | Explore on Evolutionary learning techniques used in genetic algorithms                 |
| ACS011.11 | Illustrate the ensemble learning approaches used in bagging and boosting               |
| ACS011.12 | Explain the importance of principal component analysis and its applications            |
| ACS011.13 | Explore on similarity concept and different distance measures                          |
| ACS011.14 | Understand the outlier concept and explain about data objects                          |
| ACS011.15 | Understand the hierarchical algorithms and explain CART                                |
| ACS011.16 | Understand the partitioned algorithms and explain segmentation                         |

|            | Explore on clustering large database and explain K-means clustering algorithm               |
|------------|---------------------------------------------------------------------------------------------|
|            | Understand the clustering with categorical Attributes and comparison with other data types. |
| ACS011.19  | Understand the clustering large databases and explain clustering methods                    |
| ACS011. 20 | Describe clustering with categorical attributes and explain KNN                             |

## MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES:

| SEE<br>QUESTI<br>ON No |             |           | COURSE LEARNING OUTCOME                                                                     | Course<br>Outcomes | Blooms<br>Taxonomy<br>Level |
|------------------------|-------------|-----------|---------------------------------------------------------------------------------------------|--------------------|-----------------------------|
| 1                      | a           | ACS014.01 | Understand the concept of learning and candidate elimination algorithms                     | CO 1               | Understand                  |
| 1                      | b           | ACS014.02 | Explore on different types of learning and explore On tree based learning.                  | CO 1               | Remember                    |
| 2                      | a           | ACS014.03 | Understand the construction process of decision trees used for classification problem.      | CO 1               | Remember                    |
|                        | b           | ACS014.04 | Understand the concept of perception and explore on forward and backward practices.         | CO 1               | Understand                  |
| 3                      | a           | ACS014.08 | Understand the concepts of Bayes theorem and Bayes optimal classifiers                      | CO 2               | Remember                    |
|                        | b           | ACS014.07 | Understand the concepts of Gaussian and bias-variance tradeoff                              | CO 2               | Remember                    |
| 4                      | a ACS014.08 |           | optima classifiers                                                                          | CO 2               | Understand                  |
|                        | b           | ACS014.10 | **-8**                                                                                      | CO 2               | Remember                    |
| 5                      | a           | ACS014.11 | Illustrate the ensemble learning approaches used in bagging and boosting                    | CO 3               | Remember                    |
|                        | b           | ACS014.14 | Understand the outlier concept and explain about data objects                               | CO 3               | Understand                  |
|                        | a           | ACS014.15 | Understand the hierarchical algorithms and explain CART                                     | CO 3               | Remember                    |
| 6                      | b           | ACS014.13 | Explore on similarity concept and different distance measures                               | CO 3               | Understand                  |
|                        | a           | ACS014.16 | Understand the partitioned algorithms and explain segmentation                              | CO 4               | Remember                    |
| 7                      | b           | ACS0114.1 | Explore on clustering large database and explain K-means clustering algorithm               | CO 4               | Remember                    |
| 8                      | a           | ACS0114.1 | Explore on clustering large database and explain K-means clustering algorithm               | CO 4               | Understand                  |
|                        | b           | ACS014.18 | Understand the clustering with categorical Attributes and comparison with other data types. | CO 4               | Understand                  |
| 9                      | a           | ACS014.19 | Understand the clustering large databases and explain clustering methods                    | CO 5               | Understand                  |
| ,                      | b           | ACS014.20 | Describe clustering with categorical attributes and explain KNN                             | CO 5               | Remember                    |
| 10                     | a           | ACS014.19 | Understand the clustering large databases and explain clustering methods                    | CO 5               | Understand                  |
|                        | b           | ACS014.20 | Describe clustering with categorical attributes and explain KNN                             | CO 5               | Remember                    |