

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER - II

First Year B.Tech I Semester End Examinations, December- 2019

Regulations: R18

WAVES AND OPTICS

(Common to ECE/AE/ME)

Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Module All Questions Carry Equal Marks All parts of the question must be answered in one place only

MODULE – I

1.	a)	Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.	[7M]
	b)	Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm.	[7M]
2.	a)	Assuming that a particle of mass <i>m</i> is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^{2} h^{2} / 8 m a^{2}$	[7M]
	b)	Calculate the wavelength of an electron raised to a potential 15kV.	[7M]
		MODULE – II	
3.	a) b)	Explain the origin of energy band formation in solids Using Kronig-Penny model show that the energy spectrum of an electron contains a	[7M]
	,	number of allowed energy bands separated by forbidden bands.	[7M]
4.	a) b)	Obtain an expression for carrier concentration of P- type semiconductor. Calculate the density of charge carriers of semiconductor, given the Hall efficient is	[7M] [7M]

MODULE – III

- 5. a) Explain the construction of a Ruby laser in detail, with the help of a neat suitable [7M] diagram.
 - b) Discuss the importance of lasers in various fields like industry, medicine, science, etc., by [7M] giving their applications.

- 6. a) Explain in detail, different types of optical fibers based on refractive index profile of core [7M] medium.
 - b) Calculate the refractive indices of core &cladding of an optical fiber with a numerical [7M] aperture of 0.33 and their fractional differences of refractive indices being 0.02.

MODULE-IV

- 7. a) Give the analytical treatment of interference of light and hence obtain the condition for **[7M]** maximum and minimum intensity by using Young's double slit experiment.
 - b) Two slits separated by a distance of 0.2 mm are illuminated by a monochromatic light of [7M] wavelength 550 nm. Calculate the fringe width on a screen at distance of 1 m from the slits.
- 8. a) Give the theory of Fraunhofer diffraction due to a single slit and hence obtain the [7M] condition for maxima and minima. Using this obtain intensity distribution curve.
 - b) A grating has 6000 lines per cm. Find the angular separation between two wavelengths [7M] 500 nm and 510 nm in the 3rd order.

MODULE – V

- 9. a) Define a simple harmonic motion. Derive a relation for acceleration of a particle [7M] executing S.H.M.
 - b) A body executing S.H.M has its velocity 16cm/s when passing through its centre mean [7M] position. If it goes 1 cm either side of mean position, calculate its time period.
- 10. a) Discuss the formation of stationary waves in a string. Deduce the formula for the [7M] frequency of these waves.
 - b) A string has mass of 0.002kg/m and tension of 20 N is applied on it. Compute he [7M] frequency of the fork.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

The course should enable the students to:

Ι	Enrich knowledge in principals of quantum mechanics and semiconductors.		
II	Correlateprinciples and applications of lasers and fiber optics.		
III	Meliorate the knowledge of light and optics.		
IV	Develop strongfundamentals of transfers, longitudinal waves and harmonic waves.		

COURSE OUTCOMES (COs):

CO 1	Describe the concept of Quantum mechanics, different types of semiconductors, and variations of Fermi level in Extrinsic semiconductors.
CO 2	Understanding the concepts of laser light and its properties, communication in optical fibbers.
CO 3	Understand the different concepts of light, interference, diffraction, polarization concepts.
CO 4	Explore the concept of waves and its propagation in air and water.
CO 5	Understand about waves and its propagation.

COURSE LEARNING OUTCOMES (CLOs):

AHSB12.01	Recall the basic principles of physics and apply these concepts of physics in solving the			
	real-time problems.			
AHSB12.02	Acquire knowledge about fundamental in quantum mechanics			
1110012.02	roquite and medge about randamental in quantum meenanes			
AHSB12.03	Interpretation of dual nature of matter wave concept using Davisson & Germer's experiment			
AHSB12.04	Estimate the energy of the particles using Schrödinger's wave equation and apply it to particle in			
1115212101	potential box.			
AHSB12.05	Recollect the conductivity mechanism involved in semiconductors and calculate carrier			
	concentrations.			
AHSB12.06	Understand the band structure of a solid and Classify materials as metals, insulators,			
	or semiconductors, and sketch a schematic band diagram for each one			
AHSB12.07	Understand the basic principles involved in the production of Laser light and also			
	real-time applications of lasers.			
AHSB12.08	08 Recollect basic principle, construction, types and attenuation of optical fibers.			
AHSB12.09	Understand the importance of optical fibers in real-time communication system.			
AHSB12.10	Apply different laws of radiation to understand the phenomenon behind production			
	of light.			
AHSB12.11	Apply the phenomenon of interference in thin films using Newton's rings experiment.			
AHSB12.12	Identify diffraction phenomenon due to slits			

AHSB1213	Acquire knowledge of basic harmonic oscillators and discuss in detail different types of		
Alisb12.15	Acquire knowledge of basic narmonic oscillators and discuss in detail different types of		
	harmonic oscillators		
AHSB12.14	Describe the steady state motion of forced damped harmonic oscillator		
1116012.11	Describe the steady state motion of forced damped harmonic oscillator		
AHSB12 15	Acquire knowledge of reflection and transmission of wayes at a boundary of media		
Alisbi2.15	Acquire knowledge of reflection and transmission of waves at a boundary of media		

MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES

SEE Question No			Course Learning Outcomes	Course Outcomes	Blooms Taxonomy Level
1	a	AHSB12.02	Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.	CO 1	Understand
	b	AHSB12.03	Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm.	CO 1	Understand
2	а	AHSB12.03	Assuming that a particle of mass <i>m</i> is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^{2} h^{2} / 8 m a^{2}$.	CO 1	Understand
	b	AHSB12.03	Calculate the wavelength of an electron raised to a potential 15kV.	CO 1	Understand
	а	AHSB12.09	Explain the origin of energy band formation in solids	CO 2	Understand
3	b	AHSB12.05	Using Kronig-Penny model show that the energy spectrum of an electron contains a number of allowed energy bands separated by forbidden bands.	CO 2	Remember
	а	AHSB12.09	Obtain an expression for carrier concentration of n- type semiconductor.	CO 2	Understand
4	b	AHSB12.09	Calculate the density of charge carriers of semiconductor, given the Hall efficient is -6.85×10^{-5} m ³ /Coulomb.	CO 2	Understand
	а	AHSB12.15	Explain the construction of a Ruby laser in detail, with the help of a neat suitable diagram.	CO 3	Understand
5	b	AHSB12.11	Discuss the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications.	CO 3	Understand
	а	AHSB12.13	Define Numerical aperture. Derive an expression for numerical aperture of an optical fiber.	CO 3	Understand
6	b	AHSB12.13	Calculate the refractive indices of core &cladding of an optical fiber with a numerical aperture of 0.33 and their fractional differences of refractive indices being 0.02.	CO 3	Understand
	а	AHSB12.16	Describe and explain the formation of Newton's rings in reflected	CO 4	Understand
7	b	AHSB12.16	Two slits separated by a distance of 0.2 mm are illuminated by a monochromatic light of wavelength 550 nm. Calculate the fringe width on a screen at distance of 1 m from the slits.	CO 4	Understand
8	а	AHSB12.16	Give the theory of Fraunhofer diffraction due to a single slit and hence obtain the condition for maxima and minima. Using this obtain intensity distribution curve.	CO 4	Understand
	b	AHSB12.17	A grating has 6000 lines per cm. Find the angular separation between two wavelengths 500 nm and 510 nm in the 3rd order.	CO 4	Understand
	а	AHSB12.21	Define a simple harmonic motion . Derive a relation for acceleration of a particle executing S.H.M.	CO 5	Understand
9	b	AHSB12.21	A body executing S.H.M has its velocity 16cm/s when passing through its centre mean position. If it goes 1 cm either side of mean position, calculate its time period.	CO 5	Understand

10	а	AHSB12.22	Discuss the formation of stationary waves in a string. Deduce the formula for the frequency of these waves.	CO 5	Understand
	b	AHSB12.23	A string has mass of 0.002kg/m and tension of 20 N is applied on it. Compute he frequency of the fork.	CO 5	Understand

Signature of Course Coordinator

HOD, AE