et No

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER

B.Tech III Semester End Examinations, November - 2019

Regulations: R18

NETWORK ANALYSIS

(Common to EEE)

Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

MODULE – I

- 1. a) State and verify Thevenin's theorem with an example for DC excitation. [7M]
 - b) Determine the Norton's equivalent ant between the terminals AB shown in figure1 [7M] below?

- 2. a) State and explain compensation theorem with an example for DC excitation. [7M]
 - b) Verify Tellegen's theorem provide $V_1 = 8V$, $V_2 = 4V$, $V_4 = 2V$, $I_1 = 4A$, $I_2 = 2A$ and $I_3 = 1A$ [7M] for the circuit shown in figure 2 below?

Figure 2

MODULE-II

- 3. a) Derive the transient response for series RLC circuit for ac excitation using differential [7M] equation approach.
 - b) For the circuit given below in Figure.3, the applied voltage is V(t) = [7M] $10sin(200t+60^{\circ})$ Find the current through the circuit for $t \ge 0$. Assume zero initial Condition. Use time domain approach.

Figure 3

4. a) For the circuit shown in figure 4 determine the currents i_1 and i_2 when the switch is [7M] closed at t=0

b) Derive the transient response for parallel RLC circuit for DC excitation using differential [7M] equation approach.

MODULE – III

- 5. a) Define locus diagram? Draw the locus diagram of series RC circuit with variable R and [7M] constant C.
 - b) The transform voltage V(s) of a network is given by $V(s) = s/(s+2)(s^2+2s+2)$ plot its polezero diagram and hence obtain v(t) [7M]
- 6. a) What is a transfer function? Explain the necessary conditions for transfer functions. [7M]

b) For the two port network shown in figure 5 determine driving point impedance function [7M] Z_{11} (s),transfer impedance Z_{21} (s),and voltage transfer ratio G_{21} (s)

Figure 5

MODULE-IV

- 7. a) Obtain the expressions for ABCD parameters of when 2 two -port networks are [7M] connected in cascade.
 - b) Find the h parameters of the circuit shown in figure 6 below. [7M]

8. a) Give the condition for reciprocity for Z parameters .Explain image parameters with [7M] necessary expressions.

[7M]

b) For the following network shown in figure 7 determine ABCD parameters

Figure 7

MODULE-V

- 9. a) Define the term stop? Explain the design procedure for a constant-k low pass filter and its [7M] characteristics.
 - b) Determine the cut-off frequency for the given π -section of low pass filter as shown in [7M] figure 8 below?

- 10. a) Explain the design procedure for band stop filter and draw its characteristics. [7M]
 - b) Design a proto type section of band pass filter having cutoff frequencies of 1KHz [7M] and, 5KHz and a design impedance of 6000hm

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES:

The course should enable the students to:

Ι	Apply network theorems to obtain the equivalent circuit of electrical networks.			
II	Analyze the transient response of series and parallel RL, RC, RLC circuits for DC and AC			
	excitations.			
III	Understand the concept of locus diagram for series and parallel circuits and also network functio			
	for one port and two port networks.			
IV	Evaluate the two port network parameters and Discuss their interrelation and interconnection of			
	networks.			
V	Design different types of filters and study their characteristics.			

COURSE OUTCOMES (COs):

CO 1	Apply Thevenin's and Norton theorems to analyze and design for maximum power transfer and			
	the concept of linearity and the associated technique of superposition to circuits and network.			
CO 2	Analyze the transient response of series and parallel circuits with DC and AC excitation using			
	differential approach and Laplace transform approach.			
CO 3	Understand the locus diagram representation and various functions of network.			
CO 4	Understand the features of two port networks and to obtain their equivalent circuits			
CO 5	Design low pass, high pass, band pass and band elimination filter networks.			

COURSE LEARNING OUTCOMES (CLOs):

AEEB09.01	Verify the law of conservation of energy, Tellegen's, superposition principle, reciprocity and				
	maximum power transfer condition for the electrical network with DC excitation and AC				
	Excitation.				
AEEB09.02	Summarize the procedure of Thevenin's, Norton's and Milliman's, compensation theorems to				
	reduce complex network into simple equivalent network				
AEEB09.03	Estimate the transient response of series and parallel circuits with DC excitation.				
AEEB09.04	Analyze the transient response of series and parallel circuits with AC excitation.				
AEEB09.05	5 Evaluate the transient response of first and second order electric circuits using differential equation				
	approach.				
AEEB09.06	5 Determine the transient response of first and second order electric circuits using Laplace transform				
	technique.				
AEEB09.07	Explain the concept of locus diagram for series and parallel circuits.				
AEEB09.08	Generalize the concept of network functions for one port and two port networks				
AEEB09.09	Observe the Time Response From pole - zero plots.				
AEEB09.10	Examine the electric networks in time domain and frequency domain.				
AEEB09.11	Calculate Z, Y, ABCD, H and image parameters of two port network.				
AEEB09.12	Derive the condition for symmetry and reciprocity for different parameters of two port networks.				
AEEB09.13	Inter relationships between various two port networks them.				
AEEB09.14	Outline the concepts of interconnections of two port networks.				
AEEB09.15	Design of low pass, high pass, band pass, band elimination and study their characteristics.				
AEEB09.16	Apply the concept of network theorems, switching transient to solve real time world applications.				
AEEB09.17	7 Process the knowledge and skills for employability and to succeed national and international level				
	competitive examinations				

MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES

SEE		Course Learning Outcomes		Course	Blooms
Question				Outcomes	Taxonomy
N	0		1		Level
1	а	AEEB09.02	Summarize the procedure of Thevenin's, Norton's and	CO 1	Understand
			Milliman's, compensation theorems to reduce complex		
			network into simple equivalent network.		** 1 1
	b	AEEB09.02	Summarize the procedure of Thevenin's, Norton's and	CO 1	Understand
			Milliman's, compensation theorems to reduce complex		
		A EED 00 02	network into simple equivalent network	CO 1	TT. 1
2	а	AEEB09.02	Summarize the procedure of Thevenin's, Norton's and Millimon's componentiation theorems to reduce complex	01	Understand
			network into simple aquivalent network		
	h	AFEB09.01	Verify the law of conservation of energy Tellegen's	CO 1	Understand
	U	ALLD09.01	superposition principle reciprocity and maximum power	001	Onderstand
			transfer condition for the electrical network with DC		
			excitation and AC Excitation.		
3	а	AEEB09.04	Analyze the transient response of series and parallel	CO 2	Understand
			circuits with AC excitation.		
	b	AEEB09.05	Evaluate the transient response of first and second order	CO 2	Remember
			electric circuits using differential equation approach.		
4	а	AEEB09.03	Analyze the transient response of series and parallel	CO 2	Understand
			circuits with DC excitation.		
	b	AEEB09.05	Evaluate the transient response of first and second order	CO 2	Understand
			electric circuits using differential equation approach.		
5	а	AEEB09.07	Explain the concept of locus diagram for series and	CO 3	Understand
	1	A EED 00 07	parallel circuits	<u> </u>	TT. I
	b	AEEB09.07	Explain the concept of locus diagram for series and	CO 3	Understand
6	0	A EEB00 08	Concretize the concept of network functions for one port	CO 3	Understand
0	a	AEED09.00	and two port networks	003	Understand
	h	AFFB09.08	Generalize the concept of network functions for one port	CO 3	Understand
	U	7 122D 09.00	and two port networks.	005	Onderstand
7	а	AEEB09.14	Outline the concepts of interconnections of two port	CO 4	Understand
			networks.		
	b	AEEB09.11	Calculate Z, Y, ABCD, H and image parameters of two	CO 4	Understand
			port network.		
8	а	AEEB09.12	Derive the condition for symmetry and reciprocity for	CO 4	Understand
			different parameters of two port networks		
	b	AEEB09.11	Calculate Z, Y, ABCD, H and image parameters of two	CO 4	Understand
			port network.		
9	а	AEEB09.15	Design of low pass, high pass, band pass, band	CO 5	Remember
			elimination and study their characteristics.		
	b	AEEB09.15	Design of low pass, high pass, band pass, band	CO 5	Understand
10			elimination and study their characteristics.		р і
10	а	AEEB09.15	Design of low pass, high pass, band pass, band	CO 5	Remember
	Ŀ	AEED00.15	Design of low mass high mass hard may have	CO 5	Understand
	υ	AEED09.13	Design of low pass, fight pass, band bass, band alimination and study their characteristics	0.05	Understand
			elimination and study their characteristics.		

Signature of Course Coordinator

HOD, EEE