INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	$:$	OPERATIONS RESEARCH
Course Code	$:$	A70352-JNTUH R15
Class	$:$	IV B.TECH - I Semester
Branch	$:$	MECHANICAL ENGINEERING
Year	$:$	2018 - 2019
Course Coordinator	$:$	Mrs. T. Vanaja, Assistant Professor, Dept. of Mechanical Engineering
Team of Instructors	$:$	Mr. A. Somaiah, Assistant Professor, Dept. of Mechanical Engineering Mrs. T. Vanaja, Assistant Professor, Dept. of Mechanical Engineering

COURSE OBJECTIVES:

Operation Research is also called OR for short and it is a scientific approach to decision making which seeks to determine how best to design and operate a system under conditions requiring allocation of scarce resources. Operations research as a field, primarily has a set or collection of algorithms which act as tools for problems solving in chosen application areas. OR has extensive applications in engineering, business and public systems and is also used by manufacturing and service industries to solve their day to day problems. This course is titled in Fundamentals of Operations Research. This course facilitates to learn various models to optimize a problem.

S. No.	Question	Blooms Taxonomy Level	Course Outcomes
Part A(Very Short Answer Questions)	Understand	1	
1	Explain scope of operations Research?	Remember	1
2	State the applications of operations Research?	Understand	1
3	Brief the history of operations Research?	Remember	1
4	List different characteristics of operations Research?	Understand	1
5	Explain history of operations Research?	Remember	1
6	Define phases of operations Research?	Understand	1
7	Write about physical model of operations Research?	Remember	1
8	Illustrate about Symbolic models of operations Research?	Understand	1
9	Describe about deterministic models of operations Research?	Remember	1
10	Explain about probabilistic models of operations Research?	Understand	1
11	Describe about simulation models of operations Research?	Remember	1
12	Brief about analytical models of operations Research?	Understand	1
14	Explain applications of operations research in production management?	Remember	2
15	Discuss the importance of operations Research in the decision making process?	Understand	1
16	What is a purpose of mathematical model?	Remember	1
17	Explain general representation of LPP?	Understand	1
18	Discuss objective functions in brief?	Understand	1
19	Explain about decision variables?	Remember	1
20	Describe about non- negativity constraints?		

21	Explain about constraints of a LPP?	Understand	1
22	Define slack variables with examples?	Remember	1
23	State surplus variables with examples?	Understand	1
24	Explain about artificial variables?	Remember	2
25	Discuss basic feasible solution?	Understand	1
26	Describe optimal solution?	Remember	1
27	Define feasible region?	Understand	1
28	State basic and non basic variables?	Remember	1
Part B (Long Answer Questions)			
1	Discribe the terminology involved in formulating a linear programming problem?	Understand	1
2	Explain applications of LPP in production management?	Remember	1
3	Discuss the limitations of operations research?	Understand	1
4	Explain what is meant by degeneracy in LPP? How can this be solved?	Remember	1
5	A farmer has 100 acre farm. He can sell all tomatoes, lettuce, or radishes he can raise. The price he can obtain is Rs 1.00 per kg for tomatoes, Rs 0.75 a head for lettuce and Rs 2.00 per kg for radishes. The average yield per acre is 2000 kg of tomatoes, 3000 heads of lettuce and 1000 kgs of radishes. Fertilizer is available at Rs 0.50 per kg and the amount required per acre is 100 kgs each for tomatoes and lettuce, and 50 kgs for radishes. Labour required for sowing and harvesting per acre is 5 man-days for tomatoes and radishes, and 6 man-days for lettuce. A total of 400 mandays of labour are available at Rs 20.00 per man-day. Formulate this as a Linear-Programming model to maximize the farmers total profit.	Understand	2
6	Describe step-by-step procedure to solve LPP by BIG-M method?	Remember	1
7	Discuss the algorithm of simplex method to solve an LPP?	Understand	1
8	Explain the structure of an LPP with examples?	Remember	1
9	What is an unbounded solution? Explain.	Understand	1
10	Elaborate infeasibility solution?	Remember	1
11	Explain assumptions to solve LPP using simplex?	Understand	1
12	Describe alternate solution of a LPP with example?	Remember	1
13	What are the limitations of graphical method?	Understand	1
14	Explain the term artificial variables? Why do we need them?	Remember	1
15	Solve the below LPP Maximize $\mathrm{z}=18 \mathrm{x}_{1}+16 \mathrm{x}_{2}$ subject to $\begin{aligned} & 15 x_{1}+25 x_{2} \leq 375 \\ & 24 x_{1}+11 x_{2} \leq 264 \\ & \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \end{aligned}$	Understand	2
16	Use big -M method to solve the following Maximize $Z=8 \mathrm{x} 1+5 \mathrm{x} 2$ Subjected to $2 \mathrm{x} 1+4 \mathrm{x} 2 \leq 45$ $3 \times 1+2 \times 2 \leq 40$ $\mathrm{x} 1+\mathrm{x} 2 \geq 30$ $\mathrm{x} 1, \mathrm{x} 2 \geq 0$.	Remember	2
17	Solve the following LP Problem by two phase method Maximize $Z=5 \times 1-2 \times 2+3 \times 3$ Subject to $2 \mathrm{x} 1+2 \mathrm{x} 2-\mathrm{x} 3 \geq 2,3 \mathrm{x} 1-4 \mathrm{x} 2 \leq 3, \mathrm{x} 2+3 \mathrm{x} 3 \leq 5$ $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$	Understand	2
18	A firm produces three types of biscuits A,B,C it packs them in arrortments of two sizes 1 and 11 . The size 1 contains 20 biscuits of type A, 50 of type B and 10 of type C. the size 11 contains 10 biscuts of thpe A, 80 of type B and 60 of type C. A buyer intends to buy atleast 120 biscuits of type A, 740 of type B and 240 of type C. Determine the least number of packets he should buy.	Remember	2

19	Solve the following LP problem by two phase method. $\begin{aligned} & \text { Maximize } z=5 x_{1}+8 x_{2} \\ & \text { S.T } 3 x_{1}+2 x_{2} \geq 3 \\ & x_{1}+4 x_{2} \geq 4 \\ & x_{1}+x_{2} \leq 5 \\ & x_{1}+x_{2} \geq 0 \end{aligned}$	Understand	2
20	Solve the following LP problem graphically $\text { Maximize } z=-x_{1}+2 x_{2}$ S.T $x_{1}-x_{2} \leq-1,-0.5 x_{1}-x_{2} \leq 2, x_{1}, x_{2} \geq 0$	Remember	2
Part C(Critical Analytical Questions)			
1	Let us consider a company making single product. The estimated demand for the product for the next four months are 1000, 800, 1200, 900 respectively. The company has a regular time capacity of 800 per month and an overtime capacity of 200 per month. The cost of regular time production is Rs. 20 per unit and the cost of overtime production is Rs. 25 per unit. The company can carry inventory to the next month and the holding cost is Rs.3/unit/month the demand has to be met every month. Formulate a linear programming problem for the above situation	Understand	2
2	Solve the following LP problem graphically. $\begin{aligned} & \text { Maximize } z=2 x_{1}+x_{2} \\ & \text { S.T } x_{1}+2 x_{2} \leq 10, x_{1}+x_{2} \leq 6, x_{1}-x_{2} \leq 2, x_{1}-2 x_{2} \leq 1 \\ & x_{1}, x_{2} \geq 0 \end{aligned}$	Remember	2
3	Solve the following LP problem using simplex method. Maximize $6 x_{1}+8 x_{2}$ $\begin{aligned} & \text { S.T } x_{1}+x_{2} \leq 10,2 x_{1}+3 x_{2} \leq 25, x_{1}+5 x_{2} \leq 35 \\ & x_{1}, x_{2} \geq 0 \end{aligned}$	Understand	2
4	Solve the following LPP by Big-M penalty method Minimize $z=5 x_{1}+3 x_{2}$ S.T $2 x_{1}+4 x_{2} \leq 12,2 x_{1}+2 x_{2}=10,5 x_{1}+2 x_{2} \geq 10$ and $x_{1}, x_{2} \geq 0$	Remember	1
5	Solve the following LPP by two phase method Minimize $z=3 x_{1}+4 x_{2}$ S.T $2 x_{1}+3 x_{2} \geq 8,5 x_{1}+2 x_{2} \geq 12, x_{1}, x_{2} \geq 0$	Understand	1
UNIT - IIPart A(Very Short Answer Questions)			
S. No.	Question	$\begin{gathered} \text { Blooms } \\ \text { Taxonomy } \\ \text { Level } \end{gathered}$	Course Outcomes
1	Explain mathematical model of a transportation problem?	Understand	3
2	What are different methods of solving transportation problems to get basic feasible solution?	Remember	3
3	Why is LCM is optimal than NWCR in solving transportation problem?	Understand	3
4	Why does Vogel's approximation method provide a good initial feasible solution?	Remember	3
5	What are the methods to test for optimality in transportation problem?	Understand	3
6	What is degeneracy in transportation problem?	Remember	4
7	Explain MODI method in brief?	Understand	3
8	Define unbalance problem in transportation?	Remember	3
9	Describe balanced problem in transportation?	Understand	3

	machines?		
10	What is the need for a replacement?	Understand	5
11	Define individual replacement policy?	Remember	5
12	What is group replacement policy?	Understand	5
13	Explain replacement problem?	Remember	5
14	Give some examples for replacement situations.	Understand	5
15	Define routine replacement.	Remember	5
16	Discuss preventive replacement.	Understand	5
17	What do you mean by replacement policy of items which deteriorate with time?	Remember	5
18	Give the examples of group replacement concept.	Understand	5
19	Define optimal replacement.	Remember	5
20	What is the need for a replacement?	Understand	5
21	Explain various sequencing models.	Remember	5
22	What are the advantages of sequencing?	Understand	5
23	Discuss the importance of sequencing.	Remember	5
24	Define sequencing?	Understand	5
Part A(Very Short Answer Questions); MID - II (24 Questions)			
1	Explain different types of replacement problems?	Understand	5
2	Describe general representation of replacement?	Remember	5
3	Discuss the applications of replacement?	Understand	5
4	Explain the terminology of replacement techniques in operations research?	Remember	5
5	What is the need for a replacement?	Undersand	5
6	Explain the importance of replacement analysis.	Remember	5
7	Define routine replacement.	Understand	5
8	What is replacement problem?	Understand	5
9	List some examples for replacement situations.	Remember	5
10	What is group replacement policy?	Understand	5
11	State preventive replacement.	Remember	5
12	What do you mean by replacement of items which deteriorate with the time?	Understand	5
13	State the examples of group replacement concept.	Remember	5
14	Define optimal replacement.	Understand	5
15	What is the need for a replacement?	Understand	5
16	Describe individual replacement policy.	Remember	5
17	Explain with examples the failure mechanism of items.	Understand	5
18	Write about 'replacement policy of items which deteriorate with time'.	Remember	5
19	Explain how replacement problems are classified?	Understand	5
20	Define replacement of items with gradual deterioration	Remember	5
21	Define replacement of that completely fail.	Understand	5
22	Give examples for replacement of items which do not deteriorate but completely fail.	Understand	5
23	State examples for replacement of items that deteriorate with time.	Remember	5
24	Discuss the examples for replacement of items which fail suddenly.	Understand	5
Part B (Long Answer Questions)			
1	Explain the importance of replacement analysis.	Understand	5
2	Describe with examples the failure mechanism of items.	Remember	5
3	Write about 'replacement policy of items which deteriorate with time'.	Understand	5

	the fourth year the operating cost are Rs:47,000).Determine the least age at which to replace the machine. If the optional replacement policy is followed. (a)What will be the average yearly cost of operating and owing the machine (Assume that the reset value of the machine is zero when replaced, and that future costs are not discounted. (b)Another machine B cost Rs: 1,00,000. Annual operating cost for the first year is Rs:4,000 and they increase by Rs:7,000 every year .The following firm has a machine of type A which is one year old. Should the firm replace it with B and if so when? (c)Suppose the firm is just ready to replace the M / c A with another M / c of the same type, just the the firm gets an information that the M/c B will become available in a year. What should firm do?																					
2	Machine A costs Rs: 45,000 and it's operating costs are estimated to be Rs: 1,000 for the first year increasing by Rs: 10,000 per year in the second year and subsequent years .Machine B costs Rs:50,000 and operating cost are Rs:2,000 for the first year and increasing by Rs: 4,000 in the second and subsequent years. If at present we have a machine of type A, should we replace it with B? If so when? Assume both machines have no resale value and these future costs are not discounted?									Remember	5											
3	The data collected in running a Machine the cost of which is Rs:60,000 are given below									Understand	5											
	Resale value			1	2	3		4	5													
	Resale value (Rs)			42,000	30,000	20,400		400	9,650													
	Cost of Spares (Rs) Cost of Labour			4,000	4,270	4,880		700	6,800													
				Cost of Labour 14,000 16,000 18,000 21,000 25,000 Find the time when the machine should be replaced?																		
4	Let the value of the money be assumed be 10% per year and suppose that the machine A is replaced after every three years whereas machine B is replaced every six years. The yearly cost in (Rs) of both the machines are given below.											Remember	5									
	Year 1 2 3 4 5 6 Machine A 1000 200 400 1000 200 400 Machine B 1700 100 200 300 400 500																					
5	The management of a large hotel is considering the periodic replacement of light bulbs fitted in it's room .There are 500 rooms in the hotel and each room has 6 bulbs. The management is now following the policy of replacing the bulbs as they fail at the total cost of Rs:3 per bulb.The management feels that this cost can be reduced to Rs: 1 by adopting the group replacement method. On the basis of the information given below, evaluate the alternative and make a recommendation to the management.									Understand	5											
	Month of use					2	3	4	5													
	Percent of bulbs failing by that month					025	50	80	100													
6	A firm is considering the replacement of a machine, whose cost price is Rs.12, 200 and its shop value is Rs.200. From experience the running (maintenance and operating) costs are found to be as follows.									Remember	5											
	Year	1	2	3	4	5	6	7	8													
	$\begin{array}{c\|} \hline \text { Ruuning } \\ \text { cost } \end{array}$	200	500	800	1200	1800	$\begin{gathered} \hline 250 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \hline 320 \\ 0 \end{gathered}$	$\begin{array}{c\|} \hline \\ \hline 400 \\ 0 \\ \hline \end{array}$													
	When should the machine be replaced?																					

UNIT - IV			
Short Answer Questions			
1	Define a player.	Understand	5
2	Explain a strategy.	Remember	5
3	Define a pure strategy	Understand	5
4	Discuss a mixed strategy.	Remember	5
5	What is the advantage of a mixed strategy over a pure strategy?	Understand	5
6	Define a two-person zero-sum game.	Remember	5
7	Describe n-person zero-sum game.	Understand	5
8	Explain a rectangular game?	Remember	5
9	What are the characteristics of a two-person zero-sum game?	Understand	5
10	State the rules for a game theory.	Remember	5
11	Describe a mixed strategy.	Understand	5
12	Define inventory	Understand	5
13	What is the necessity of maintaining inventory?	Remember	5
14	Explain different types of variables used in inventory?	Understand	5
15	Give the examples of controlled variables.	Remember	5
16	State the examples of uncontrolled variables.	Understand	5
17	What are the different types of inventory models?	Remember	5
18	Why many organizations hold safety stocks as part of their inventory.	Understand	5
19	Define inventory analysis?	Remember	5
20	What is a reorder point?	Understand	5
21	Describe the cost to store inventory?	Remember	5
22	What is the EOQ reorder point?	Understand	5
23	Define inventory	Understand	5
24	What is the necessity of maintaining inventory?	Remember	5
25	Explain different types of variables used in inventory?	Understand	5
26	Give the examples of controlled variables.	Remember	5
27	State the examples of uncontrolled variables.	Understand	5
Long Answer Questions			
1	Explain two person zero sum game and n person game?	Understand	6
2	Define pay of matrix and types of strategy in game theory?	Remember	6
3	What are inventory models? Enumerate various types of inventory models and describe them briefly.	Understand	6
4	State the four properties which a competitive situation should have, if it is to be called a competitive game.	Remember	6
5	What is the problem studied in game theory.	Understand	2
6	Write about zero sum games.	Remember	2
7	Differentiate between determinable and non-determinable games.	Understand	2
8	Establish the relation between a linear programming problem and a two person zero sum game.	Remember	5
9	Show how a game can be formulated as a linear programming problem.	Understand	5
10	Discuss limitations of game theory	Remember	2
11	Explain the various costs are involved in inventory problems with suitable examples. How they are inter-related.	Understand	5
12	Discuss in detail, what constitutes the ordering cost and carrying cost? With the help of a graph show how they behave with the increase in order quantity.	Understand	1
13	What are the different inventory costs associated with inventory control? How are they obtained in real life situations?	Remember	5
14	What are the advantages and disadvantages of increased inventory?	Understand	2

	$\begin{aligned} & \hline 500 \leq \text { Q2 } \\ & \text { Price /unit (Rs) } \\ & \text { Rs. } 10 \\ & \text { Rs. } 900 \end{aligned}$							
17	A shop is about to order some heaters for a forecast spell of cold weather. The shop pays Rs. 1000 for each heater and during the cold spell they sell for Rs 2000 each. The demand for the heater declines after the cold spell is ones and any unrold units are sold at Rs. 500 previous experience suggests the likely demand for heater is as follows.						Understand	7
18	Find the most economic batch quantity of a product on a machine if the production rate of the item on the machine is 300 pieces per day and the demand is uniform at the rate of 150 pieces/day. The set up cost is Rs. 300 per batch and the cost of holding one item in inventory is Rs. $0.81 /$ per day. How will the batch quantity vary if the machine production rate was infinite?						Remember	2
19	A company that operates for 50 weeks. In a year is concerned about its stocks of copper cable this cost Rs. 240 a meter and there is a demand for 80,000 meters a week. Each replishment costs Rs. 1050 for administration and Rs. 1650 for delivery while holding costs are estimated at 25% of value hold a year. Assuming no shortages are allowed, what is the optimal inventory, policy for the company? How would this analysis differ if the company wanted to maximize its profits rathen than minimize cost? What is the groups profit if the company sells the cable for Rs. 360 a meter.						Understand	7
UNIT-V								
. No.			Ques				\qquad	Course Outcomes
Short Answer Questions								
1	What are the characteristics of a waiting line system?						Understand	7
2	State the arrival characteristics?						Remember	7
3	Define a waiting a line.						Understand	7
4	Discuss waiting line applications.						Remember	3
5	Define customer and server.						Understand	7
6	Expand FIFO, FCFS and LIFO.						Remember	7
7	ExplainFILO and SIRO						Understand	3
8	Define dynamic programming						Remember	7
9	Who developed the technique called dynamic programming?						Understand	7
10	Describe state and stage.						Remember	5
11	Define state variable and decision variable.						Understand	7
12	What is immediate and optimal return ?						Understand	7
13	State Bellman's principle of optimality.						Remember	5
14	What are the applications of dynamic programming?						Understand	7
15	State the examples of dynamic programming.						Remember	7
16	Define simulation						Understand	7
17	What are the types of simulation?						Remember	7
18	Explain the phases of simulation?						Understand	7
19	What are the major limitations of simulation?						Remember	7
20	Explain the advantages of simulation?						Understand	7
21	What are the disadvantages of simulation?						Remember	7
Long Answer Questions								
1	Define the terms Balking, Reneging, Jockeying.						Understand	7

	Finished mopeds are transported to a lorry that can accommodate only 200 mopeds. Random numbers are $82,89,78,24,53,61,18,45,04,23,50,77,54$ and 10 . Simulate the mopeds waiting.								
3	$\begin{array}{l}\text { A bakery ke } \\ \text { show the dail } \\ \text { given below: }\end{array}$ $\begin{array}{c}\text { Daily } \\ \text { damand } \\ \text { (number) }\end{array}$ Probability use the follow next 10 days Random num Also estimat simulated da	stoc deman 0 0.01 g seq rs: 25 he daily	of a p pattern 10 0.20 ence of 39,65,76 avera	ar bra the ite 20 0.15 om nu 05,73, mand	and of cake m with asso mbers to si 89,19,49 for the cak	vious d pro 40 0.12 the the	perience ilities as 50 0.02 mand for s of the	Understand	7
4	A firm has a service time Interarrival (Minutes 10 15 20 25 30 The custome the time bet time varies f am and proce service facility discipline is hour and the an economic	gle ch babili e arrival n the 5 m ds for if is com stome propor	nnel se Probabil 0.10 0.25 0.30 0.25 0.10 at the ser arrivals ute to 30 near ly free. O first waitin on to en	statio s. \qquad e stati es from inutes. s. an wise it If the e cost a sec	with the ion is a rand m 10 to 30 The quein arrival im it waits in e attendants Rs. 15 per cond at tend	ing Pro \square \qquad phem utes. cess tely ueue. es are then	lility non and service ns at 10 to the queue s. 10 per uld it be	Remember	7
5	Minimize z principle.	$1^{2}+y$	${ }^{2}+y_{3}{ }^{2}$	$y_{1}+y_{2}$	$y_{2}+y_{3}=10,$	usin	llman's	Understand	9
6	Use dynamic Maximize z	$\begin{aligned} & \text { ogram } \\ & 1^{2}+2 x \end{aligned}$	$\underset{2^{2}+4 x_{3}{ }^{2}}{ }$	$\begin{aligned} & \text { e the fo } \\ & \Gamma \mathrm{x}_{1}+2 \end{aligned}$	following pr $2 x_{2}+x_{3} \leq 8,$	$\left\{2, x_{3} \geq\right.$		Remember	10
7	Use Bell man following pro Minimize z $=$	$\begin{aligned} & \text { princi } \\ & \text { em } \\ & 1^{2}+\mathrm{y}_{2} \end{aligned}$	le of op $+y_{3}{ }^{2}, S$	lity to $+\mathrm{y}_{2}+$	find the op $+\mathrm{y}_{3} \leq 15, \mathrm{y}_{1},$	$\geq 0 .$	n to the	Understand	10

Prepared by: Mr. A. Somaiah, Assistant Professor
Ms. T. Vanaja, Assistant Professor

