INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500043

CIVIL ENGINEERING

QUESTION BANK

Course Name	$:$ Probability and Statistics
Course Code	$:$ A40008

Class : II-II B. Tech
Branch : CIVIL Engineering
Year
: 2016-2017
Course Faculty
: Ms. B PRAVEENA

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.
In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

1. Group - A (Short Answer Questions)

S. No	Question	Blooms Taxonomy Level	Course Outcome
UNIT-I SINGLE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS			
1	If $\mathrm{X} \& \mathrm{Y}$ is a random variable then Prove $\mathrm{E}[\mathrm{X}+\mathrm{K}]=\mathrm{E}[\mathrm{X}]+\mathrm{K}$,where ' K ' constant	Understand	b
2	Prove that $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$	Understand	b
3	Explain probability distribution for discrete and continuous	Analyze	c
4	If X is Discrete Random variable then Prove that $\operatorname{Var}(\mathrm{a} X+b)=\mathrm{a}^{2}$ $\operatorname{var}(\mathrm{X})$	Understand	c
5	Write the properties of the Normal Distribution	Analyze	e
6	Write the importance and applications of Normal Distribution	Apply	e
7	Define different types of random variables with example	Remember	c
8	Derive variance of binomial distribution	Evaluate	d
9	Derive mean of Poisson distribution	Evaluate	d
10	Explain about Moment generating function	Analyze	e
	UNIT-II		

S. No	Question	Blooms Taxonomy Level	Course Outcome
MULTIPLE RANDOM VARIABLES, CORRELATION \®RESSION			
1	State the properties of joint distribution function of two random variable	Analyze	e
2	Explain about random vector concepts	Analyze	f
3	If a random variable $\mathrm{W}=\mathrm{X}+\mathrm{Y}$ where X and Y are two independent random variables what is the density function of W	Analyze	f
4	Explain types of correlations	Remember	g
5	Write the properties of rank correlation coefficient	Analyze	g
6	Write the properties of regression lines	Analyze	g
7	Write the difference between correlation and regression	Remember	g
8	The rank correlation coefficient between the marks in two subjects is 0.8 .the sum of the squares of the difference between the ranks is 33.find the number of students	Evaluate	g
9	Find the angle between the regression lines if S.D of Y is twice the S.D of X and $\mathrm{r}=0.25$	Evaluate	g
10	Derive the angle between the two regression lines	Evaluate	
UNIT-IIISAMPLING DISTRIBUTIONS AND TESTING OF HYPOTHESIS			
1	Explain different Types and Classification of sampling	Analyze	h
2	Write about Point Estimation, Interval Estimation	understand	i
3	Write a short note on Hypothesis, Null and Alternative with suitable examples	understand	i
4	Write a short Note on Type I \& Type II error in sampling theory	understand	i
5	Prove that Sample Variance is not an Unbiased Estimation of Population Variance	understand	i
6	Write Properties of t-distribution	Analyze	j
7	Explain about Chi-Square	Analyze	j
8	Write a short note on Distinguish between t,F, Chi square test	understand	j
9	Explain about Bayesian estimation	Analyze	i
10	Compare Large Samples and Small sample tests	Create	j
UNIT-IVQUEUING THEORY			

S. No	Question	Blooms Taxonomy Level	Course Outcome			
1	Explain queue discipline	Analyze	k			
2	Explain pure birth process	Analyze	k			
3	Explain pure death process	Analyze	k			
4	Derive expected number of customers	Evaluate	k			
5	Derive average waiting time in queue	Evaluate	l			
6	Evaluate P(n>1)	Evaluate	1			
7	Define transient state and steady sate	Remember	l			
8	Explain M/M/1 model	Analyze	l			
9	Explain M/M/1 with infinite population	Analyze	l			
10	Derive probability of having n customers P_{n} in a queue M/M/1, having poisson arrival	Evaluate	l			
	STOCHASTIC PROCESSES					
1	Define stochastic process	Remember	m			
2	Explain different types of stochastic process	Analyze	m			
3	Give examples of stochastic process	Create	m			
4	Find the expected duration of the game for double stakes	Evaluate	m			
5	Define Markov's chain	Understand	m			
6	Explain Markov's property	Understand	m			
7	Explain transition probabilities	Understand	m			
8	Explain stationary distribution	Understand	m			
9	Explain limiting distribution	m				
10	Explain irreducible and reducible	m				

1. Group - B (Long Answer Questions)

S. No	Question	Blooms Taxonomy Level	Course Outcome
UNIT-IM VARIABLES AND PROBABILITY DISTRIBUTIONS			
1	A random variable x has the following probability function:	Evaluate	c

S. No	Question						Blooms Taxonomy Level	Course Outcome
	$\begin{array}{cccccccccc} \mathrm{x} & 0 & 1 & 3 & 4 & 5 & 6 & 7 \\ \mathrm{P}(\mathrm{x}) & 0 & \mathrm{k} & 2 \mathrm{k} & 2 \mathrm{k} & 3 \mathrm{k} & k^{2} & 7 k^{2}+\mathrm{k} \end{array}$ Find the value of k (ii) evaluate $p(x<6), p(x>6)$							
2	Let X denotes the minimum of the two numbers that appear when a pair of fair dice is thrown once. Determine the (i) Discrete probability distribution (ii) Expectation (iii) Variance						Understand \& Evaluate	c
3	A random Then find (i)	iable -1 K (ii)	$\begin{array}{c\|} \hline \mathrm{X} \text { has } \\ \hline 0 \\ \hline 0.2 \\ \hline \text { nean (} \end{array}$	he foll 1 2K (ii) va	$\begin{array}{c\|} \hline \text { owing } \\ \hline 2 \\ \hline 0.3 \\ \hline \text { iance } \end{array}$	probability function: 3 K v) $\mathrm{P}(0<x<3)$	Evaluate	c
4	A continuous random variable has the probability density function $f(x)=\left\{\begin{array}{l} k x e^{-\lambda x}, \text { for } x \geq 0, \lambda>0 \\ 0, \text { otherwise } \end{array} \quad \text { Determine (i) } \mathrm{k}\right. \text { (ii) Mean }$ (iii) Variance						Evaluate	c
5	If the PDF of Random variable $\mathrm{f}(\mathrm{x})=k\left(1-x^{2}\right), 0<x<1$ then find (i) k (ii) $\mathrm{p}[0.1<\mathrm{x}<0.2]$ (iii) $\mathrm{P}[\mathrm{x}>0.5]$						Evaluate	c
6	If the masses of 300 students are normally distributed with mean 68 kg and standard deviation 3 kg how many students have masses: greater than 72 kg (ii) less than or equal to 64 kg (iii) between 65 and 71 kg inclusive						Analyze	e
7	Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii)either 2 or 3 boys ? Assume equal probabilities for boys and girls.						Understand \& Evaluate	d
8	If a Poisson distribution is such that $P(X=1) \cdot \frac{3}{2} P(X=3)$, find (i) $P(X \geq 1)$ (ii) $P(X \leq 3)$ (iii) $P(2 \leq X \leq 5)$.						Evaluate	d
9	Average number of accidents on any day on a national highway is 1.8 . Determine the probability that the number of accidents is (i) at least one (ii) at most one						Analyze \& Evaluate	d
10	In a Normal distribution, 7\% of the item are under 35 and 89\%						Evaluate	e

S. No	Question							Blooms Taxonomy Level	Course Outcome
	are under 63. Find the mean and standard deviation of the distribution.								
UNIT-IIMULTIPLE RANDOM VARIABLES, CORRELATION \®RESSION									
1	Consider the joint probability density function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}, 0<\mathrm{x}$ $<1,0<y<2$. Find marginal density function							Evaluate	f
2	Two independent variable X and Y have means 5 and 10 and variances 4 and 9 respectively. Find the coefficient of correlation between U and V where $U=3 x+4 y, V=3 x-y$							Understand \& Evaluate	g
3	The probability density function of a random variable x is $f(x)=\frac{1}{2} \exp \left[-\frac{x}{2}\right], \quad x>0$. Find the probability of $1<\mathrm{x}<2$.							Evaluate	f
4	Let X and Y random variables have the joint density function $f(x, y)=2,0<x<y<1$ then find marginal density function							Evaluate	f
5	Find the rank correlation coefficient for the following ranks of 16 students$\begin{aligned} & (1,1),(2,10),(3,3),(4,4),(5,5),(6,7),(7,2),(8,6),(9,8),(10,11),(11,15), \\ & (12,9),(13,14),(14,12),(15,16)(16,13) \end{aligned}$							Analyze \& Evaluate	g
6	Calculate the coefficient of correlation between age of cars and annual maintain cost and comment:							Evaluate	g
	Years 2	4							
	Rupee s 1600	1500	1800	1900	1700	2100	2000		
7	If $\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=\sigma$ and the angle between the regression lines is Tan ${ }^{1}(4 / 3)$. Find r.							Remember \& Evaluate	g
8	For 20 army personal the regression of weight of kidneys (Y) on weight of heart (X) is $\mathrm{Y}=3.99 \mathrm{X}+6.394$ and the regression of weight of heart on weight of kidneys is $\mathrm{X}=1.212 \mathrm{Y}+2.461$. Find the correlation coefficient between the two variable and also their means							Understand \& Evaluate	g
9	From 10 observations on price X and supply Y the following data was obtained $\sum X=130, \sum Y=220, \sum X^{2}=2288, \sum Y^{2}=$ 5506, $\sum X Y=3467$ Find coefficient of correlation, line of regression of Y on X and X on Y							Evaluate	g
10	If the variance of X is 9 .The two regression equations are 8 X $10 \mathrm{Y}+66=0$ and $40 \mathrm{X}-18 \mathrm{Y}-214=0$.Find correlation coefficient between X and Y and standard deviation of Y							Remember \& Evaluate	g
	UNIT-IIISAMPLING DISTRIBUTIONS AND TESTING OF HYPOTHESIS								
1	The mean of a random sample is an unbiased estimate of the mean of the population $3,6,9,15,27$. (i) List of all possible samples of size 3 that can be taken without replacement from the							Apply	h

S. No	Question	Blooms Taxonomy Level	Course Outcome
	finite population. (ii) Calculate the mean of the each of the samples listed in (iii) And assigning each sample a probability of 1/10.		
2	An ambulance service claims that it takes on the average 8.9 minutes to reach its destination In emergency calls. To check on this claim the agency which issues license to Ambulance service has then timed on fifty emergency calls getting a mean of 9.2 minutes with 1.6 minutes. What can they conclude at 5% level of significance?	Apply	i
3	A sample of 400 items is taken from a population whose standard deviation is 10 .The mean of sample is 40. Test whether the sample has come from a population with mean 38 also calculate 95% confidence interval for the population	Apply	i
4	The means of two large samples of sizes 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of S.D 2.5 inches	Apply	i
5	Experience had shown that 20% of a manufactured product is of the top quality. In one day's production of 400 articles only 50 are of top quality .Test the hypothesis at 0.05 level.	Analyze \& Evaluate	i
6	A sample of 26 bulbs gives a mean life of 990 hrs. With S.D. of 20 hours. The manufacture claims that the mean life bulb is 1000 hrs. is the sample not up to the standard	Apply	j
7	In a one sample of 10 observations the sum of squares of deviations from mean was 90 and other sample of 12 observations it was 108 .test whether the difference is significant at 5% level of significance.	Apply	j
8	The no. of automobile accidents per week in a certain area as follows: $12,8,20,2,14,10,15,6,9,4$. are these frequencies in agreement with the belief that accidents were same in the during last 10 weeks.	Apply	j

S. No	Question	Blooms Taxonomy Level	Course Outcome
	the car park has negative exponential distribution with mean of two hours. how many cars are in the car park on average and what is the probability of newly arriving costumer finding the car park full and having to park his car else where		
5	Consider a self service store with one cashier. Assume Poisson arrivals and exponential service time. Suppose that 9 customers arrive on the average of every 5 minutes and the cashier can serve 19 in 5 minutes. Find (i) the average number of customers queuing for service. (ii)the probability of having more than 10 customers in the system. (iii) the probability that the customer has to queue for more than 2 minutes	Evaluate	1
6	A self service canteen employs one cashier at its counter. 8 customers arrive per every 10 minutes on an average. The cashier can serve on average one per minute. Assuming that the arrivals are Poisson and the service time distribution is exponential, determine: (i)the average number of customers in the system; (ii) the average queue length; (iii) average time a customer spends in the system; (iv) average waiting time of each customer	Evaluate	1
7	Customers arrive at a one window drive in bank according to a Poisson distribution with mean 10 per hour. Service time per customer is exponential with mean 5 minutes The car space in front of the window including that for the serviced can accommodate a maximum of 3 cars . other cars can wait outside the space. i) what is the probability that an arriving customer can drive directly to the space in front of the windom? Ii) what is the probability that an arriving customer will have to wait outside the indicated space? Iii) How long is an arriving customer expected to wait before starting service	Apply	1
8	A fast food restaurant has one drive window. Cars arrive according to a Poisson process. Cars arrive at the rate of 2 per 5 minutes. The service time per customer is 1.5 minutes. Determine i) The Expected number of customers waiting to be served. ii) The probability that the waiting line exceeds 10iii) Average waiting time until a customer reaches the window to place an order. iv) The probability that the facility is idle	Apply	1
9	At a railway station, only one train is handled at a time. The railway yard is sufficient only for two trains to wait while other is given signal to leave the station. Trains arrive at an average rate of 6 per hour and the railway station can handle them on an	Apply	1

S. No	Question	Blooms Taxonomy Level	Course Outcome
	average of 12 per hour. Assuming Poisson arrivals and exponential service distribution, find the steady state probabilities for the various number of trains in the system. Find also the average waiting time of a new train coming into the yard		
	Consider a single server queuing system with Poisson input and exponential service time. Suppose the mean rate is 3 calling units per hour with the expected service time as 0.25 hours and the maximum permissible number of calling units in the system is two. Obtain the steady state probability distribution of the number of calling units in the system and then calculate the expected number in the system	Apply	

S. No	Question	Blooms Taxonomy Level	Course Outcome
	ergodic? $\left[\begin{array}{cccc}\mathbf{1} & \mathbf{1 / 2} & \mathbf{1 / 2} & \mathbf{0} \\ \mathbf{1 / 2} & \mathbf{0} & \mathbf{0} & \mathbf{1 / 2} \\ \mathbf{1 / 2} & \mathbf{0} & \mathbf{0} & \mathbf{1 / 2} \\ \mathbf{0} & \mathbf{1 / 2} & \mathbf{1 / 2} & \mathbf{1} / 2\end{array}\right]$		
7	The transition probability matrix of a marker chain is given by $\left[\begin{array}{ccc}0.3 & 0.7 & 0 \\ 0.1 & 0.4 & 0.5 \\ 0 & 0.2 & 0.8\end{array}\right]$ irreducibleor not?	Evaluate	m
8	. Which of the following matrices are Stochastic i) $\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1\end{array}\right]$ ii) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ iii) $\left[\begin{array}{ccc}1 / 2 & 1 / 4 & 1 / 4 \\ 1 & 1 & 0 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$	Apply	m
9	Which of the following Matrices are Regular \quad i) $\left[\begin{array}{cc}\mathbf{1 / 2} & \mathbf{1} / \mathbf{2} \\ \mathbf{0} & \mathbf{1}\end{array}\right]$ ii) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ iii) $\left[\begin{array}{ccc}1 / 2 & 1 / 4 & 1 / 4 \\ 0 & 1 & 0 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$	Apply	m
10	a) Is the Matrix $\left[\begin{array}{cccc}0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \\ 0.2 & 0.4 & 0.1 & 0.3 \\ 0 & 0 & 0 & 1\end{array}\right]$ irreducible? (b) Is the Matrix $\mathrm{p}=\left[\begin{array}{ccc}\mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} / \mathbf{2} & \mathbf{1} / \mathbf{6} & \mathbf{1} / 3 \\ \mathbf{1} / \mathbf{3} & 2 / 3 & \mathbf{0}\end{array}\right]$ Stochastic?	Evaluate	m

3. Group - III (Analytical Questions)

S. No	Questions	Blooms Taxonomy Level	Program Outcome			
UNIT-I SINGLE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS						
1	When the classical definition of probability fails.	Analyze	b			
2	The function f(x)=Ax ${ }^{2}$ In 0<x0<1 is valid probability density function then find the value of A.	Evaluate	c			
3	Define Normal distribution	Understand	e			
4	Explain about Moments	Analyze	f			
5	Derive mean deviation from the mean for Normal Distribution	Evaluate	e			
6	What is the area under the whole normal curve?	Analyze	e			
7	In which distribution the mean, mode and median are equal.	Analyze	e			

S. No	Questions	Blooms Taxonomy Level	Program Outcome
8	The mean and variance of a binomial variable X with parameters n and p are 16 and Find $P(X \geq 1)$	Evaluate	d
9	Where the traits of normal distribution lies.	Analyze	e
10	Write the properties of continuous random variable	Understand	b
UNIT-IIMULTIPLE RANDOM VARIABLES, CORRELATION \®RESSION			
1	Derive the angle between the two regression lines	Evaluate	g
2	If θ is the angle between two regression lines then show that $\sin \theta \leq$ $1-r^{2}$	Apply	g
3	What is the marginal distributions of X and Y .	Analyze	f
4	Write the normal equations of straight line	Analyze	g
5	Find mean value of the variables X and Y and coefficient of correlation from the following regression equations $2 \mathrm{Y}-\mathrm{X}-50=0$, $3 \mathrm{Y}-2 \mathrm{X}-10=0$	Evaluate	g
6	Define regression and give its uses	Remember	g
7	What are normal equations for regression lines?	Analyze	g
8	When the Regression coefficient is independent	Analyze	g
9	Find correlation coefficient if $\mathrm{b}_{\mathrm{xy}}=085 \mathrm{y}, \mathrm{b}_{\mathrm{yx}}=089 \mathrm{x} \sigma_{x}=3$	Evaluate	g
10	When the coefficient of correlation is maximum	Analyze	g
UNIT-III SAMPLING DISTRIBUTIONS AND TESTING OF HYPOTHESIS			
1	Which error is called producer's risk?	Understand	i
2	Which error is called consumer's risk.	Understand	i
3	When the single tailed test is used.	Analyze	i
4	What is test statistics for testing single mean?	Analyze	i
5	How to calculate limit for true mean.	Analyze	i
6	If $\mathrm{p}=0.15 \mathrm{q}=0.85 \mathrm{n}=10$ find confidence limits	Evaluate	1
7	What must be sample size to apply t test.	Analyze	h
8	If $\bar{x}=47.5, \mu=42.1, s=8.4, n=24$ find t . What is shape of t	Evaluate	j
9	What is the range of F distribution?	Understand	j
10	Which distribution is used to test the equality of population means?	Analyze	j
UNIT-IVQUEUING THEORY			
1	What is probability of arrivals during the service time of any	Analyze	k

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	given customer?		
2	What is FIFO means?	Remember	k
3	Define Jack eying.	Understand	k
4	Define reneging.	Understand	k
5	Define $\mathrm{m} / \mathrm{m} / 1:$ FIFO	Understand	k
6	Model of queuing system.	Analyze	k
7	Define balking.	Understand	k
8	What is the pattern according to which customers are served?	Analyze	1
9	What is variance of queue length?	Analyze	1
10	How to calculate the idle time of the server according to queue theory	Evaluate	k
UNIT-V STOCHASTIC PROCESSES			
1	What do you call the random variable in stochastic process?	Analyze	m
2	When the state is said to be Ergodic.	Analyze	m
3	What is null persistent state?	Understand	m
4	What is Markov process?	Understand	m
5	Give an example of discrete parameter Markov chain.	Create	m
6	When a matrix is said to be regular.	Understand	m
7	What is the use of Markov process?	Understand	m
8	When the state is said to be commute with each other.	Understand	m
9	Let $p=\frac{1}{2}, q=\frac{1}{2}, z=500, a=1000$ then find the expected duration of the game	Evaluate	n
10	If the stakes are doubled while the initial capital remain unchanged the probability ruin decreases for the player whose probability of success is $\mathrm{P}<1 / 2$ and increases for the adversary	Apply	n

Prepared By: Ms. B Praveena

