TARE NO LIBERTY

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	Mathematical Transform Techniques
Course Code	:	AHS011
Class	:	II B. Tech IV Semester
Branch	:	Mechanical Engineering
Year	:	2018 - 2019
Course Coordinator	:	Ms. B Praveena, Assistant Professor, FE
Course Faculty		Dr. S Jagadha, Associate Professor, FE Ms.V Subba laxmi, Assistant Professor, FE

I. COURSE OBJECTIVES (COs):

The course should enable the students to:

I	Express non periodic function to periodic function using Fourier series and Fourier transforms.
II	Apply Laplace transforms and Z-transforms to solve differential equations.
III	Formulate and solve partial differential equations.

II. COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the ability to do the following:

CAHS011.01	Ability to compute the Fourier series of the function with one variable.
CAHS011.02	Understand the nature of the Fourier series that represent even and odd functions.
CAHS011.03	Determine Half- range Fourier sine and cosine expansions.
CAHS011.04	Understand the concept of Fourier series to the real-world problems of signal processing
CAHS011.05	Understand the nature of the Fourier integral.
CAHS011.06	Ability to compute the Fourier transforms of the function.
CAHS011.07	Evaluate finite and infinite Fourier transforms.
CAHS011.08	Understand the concept of Fourier transforms to the real-world problems of circuit analysis, control system design
CAHS011.09	Solving Laplace transforms using integrals.
CAHS011.10	Evaluate inverse of Laplace transforms by the method of convolution.
CAHS011.11	Solving the linear differential equations using Laplace transform.
CAHS011.12	Understand the concept of Laplace transforms to the real-world problems of electrical circuits, harmonic oscillators, optical devices, and mechanical systems
CAHS011.13	Apply Z-transforms for discrete functions.
CA113011.13	** V
CAHS011.14	Evaluate inverse of Z-transforms using the methods of partial fractions and convolution method.
CAHS011.15	Apply Z-transforms to solve the difference equations.
CAHS011.16	Understand the concept of Z-transforms to the real-world problems of automatic controls in telecommunication.
CAHS011.17	Understand partial differential equation for solving linear equations by Lagrange method.
CAHS011.18	Apply the partial differential equation for solving non-linear equations by Charpit's method.

CAHS011.19	Solving the heat equation and wave equation in subject to boundary conditions.					
CAHS011.20	CAHS011.20 Understand the concept of partial differential equations to the real-world problems of electromagnetic and fluid dynamics					
CAHS011.21	Possess the knowledge and skills for employability and to succeed in national and international level competitive examinations.					

TUTORIAL QUESTION BANK

	UNIT - I				
	FOURIER SERIES				
Part -	Part - A (Short Answer Questions)				
S No	QUESTIONS	Blooms Taxonomy Level	Course Learning Outcomes (CLOs)		
1	Define a periodic function for the function $f(x)$ and give example.	Remember	CAHS011.01		
2	Define even and odd function the function $f(x)$.	Remember	CAHS011.01		
3	Find whether the following functions are even or odd (i) x sinx+cosx+x ² coshx (ii)xcoshx+x ³ sinhx.	Understand	CAHS011.01		
4	Find the primitive periods of the functions sin3x, tan5x, sec4x	Understand	CAHS011.01		
5	Write Euler's formulae in the interval $(\alpha, \alpha + 2\pi)$.	Remember	CAHS011.01		
6	Write the half range Fourier sin and cosine series in $(0,l)$.	Understand	CAHS011.01		
7	Write the examples of periodic function.	Understand	CAHS011.01		
8	Express $f(x) = \frac{\pi^2}{12} - \frac{x^2}{4}$ as a Fourier series in the interval $-\pi < x < \pi$.	Understand	CAHS011.01		
9	Write the Dirichlet's conditions for the existence of Fourier series of a function $f(x)$ in the interval $(\alpha, \alpha + 2\pi)$.	Remember	CAHS011.01		
10	If $f(x) = x$ in $(-\pi, \pi)$ then find the Fourier coefficient a_2 ?	Understand	CAHS011.01		
11	What are the conditions for expansion of a function in Fourier series?	Understand	CAHS011.01		
12	If $f(x)$ is an odd function in the interval $(-l,l)$ then what are the value of a_0,a_n ?	Understand	CAHS011.01		
13	If $f(x) = x^2$ in $(-l, l)$ then find b_1 ?	Understand	CAHS011.01		
14	What is the Fourier sine series for $f(x) = x$ in $(0, \pi)$?	Understand	CAHS011.01		
15	What is the half range sine series for $f(x) = e^x$ in $(0, \pi)$?	Understand	CAHS011.0		
16	Define fourier series of a function $f(x)$ in the interval $(C, C + 2\pi)$?	Remember	CAHS011.01		
17	Define fourier series of a function $f(x)$ in the interval $(-l, l)$?	Remember	CAHS011.01		
18	If $f(x) = x^2 - x$ in $(-\pi, \pi)$ then what is a_0 ?	Understand	CAHS011.01		
19	Write the fourier series for even function?	Understand	CAHS011.01		
20	Write the fourier series for odd function?	Understand	CAHS011.01		
Part - B (Long Answer Questions)					
1	Obtain the Fourier series expansion of f(x) given that $f(x) = (\pi - x)^2$ in $0 < x < 2\pi$ and deduce the value of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$	Understand	CAHS011.0 CAHS011.01		
2	Find the Fourier Series to represent the function $f(x) = \sin x $ in $-\pi < x < \pi$.	Understand	CAHS011.01		

3	Find the Fourier Series expansion for the function $f(x) = x$ in the interval $(-\pi, \pi)$.	Understand	CAHS011.01
4	Find the Fourier Series expansion for the function $f(x) = \cos x $ in	Understand	CAHS011.01
	$\left[-\pi,\pi\right]$.		
5	Find the Fourier series to represent the function $f(x) = e^{ax}$ in	Understand	CAHS011.01
	$0 < x < 2\pi$		
6	Find the half range Fourier sine series for the function $f(x) = \cos x$ for $0 < x < \pi$	Understand	CAHS011.02
7	Obtain the Fourier cosine series for $f(x) = x \sin x$ when $0 < x < \pi$ and	Understand	CAHS011.01
	show that $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		
	$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots = \frac{\pi - 2}{4}.$		
8	Find the Fourier series to represent the function $f(x) = x \cos x$ in	Understand	CAHS011.01
	$0 < x < 2\pi$		
9	If $f(x)$ = coshax then expand $f(x)$ as a Fourier Series in the interval	Understand	CAHS011.01
10	$(-\pi,\pi)$. Find the Fourier cosine and sine series for the function	Understand	CAHS011.02
10		Understand	CAHS011.02
	$f(x) = \frac{1}{12}(3x^2 - 6x\pi + 2\pi^2)$ in the interval $(0,2\pi)$.		
11	Express the function $f(x) = x - \pi$ as Fourier series in the interval	Understand	CAHS011.01
	$-\pi < x < \pi$.		
12	Find the Fourier series to represent the function $f(x) = e^{-ax}$ from	Understand	CAHS011.01
	$x = -\pi$ to π . And hence deduce that		
	$\frac{\pi}{\sinh \pi} = 2\left[\frac{1}{2^2 + 1} - \frac{1}{3^2 + 1} + \frac{1}{4^2 + 1}\right]$		
	$\sinh \pi = \begin{bmatrix} 2^2 + 1 & 3^2 + 1 & 4^2 + 1 \end{bmatrix}$		
13	Expand the function $f(x) = \left(\frac{\pi - x}{2}\right)^2$ as a Fourier series in the interval	Understand	CAHS011.01
	$0 < x < 2\pi$, hence deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + = \frac{\pi^2}{12}$		
14	Find the Fourier series to represent the function $f(x) = x - x^2$ in	Understand	CAHS011.01
	$[-\pi,\pi]$?		
15	Find the half range sine series for $f(x) = x(\pi - x)$, in $0 < x < \pi$	Understand	CAHS011.02
	Deduce that $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots = \frac{\pi^3}{32}$		
16	Express $f(x) = e^{-x}$ as a Fourier series in the interval $(-l, l)$	Understand	CAHS011.01
17	Find the Fourier series of periodicity 3 for the function $f(x) = 2x - x^2$ in (0,3)	Understand	CAHS011.01
18	Find the Fourier expansion of $f(x) = \frac{\pi^2}{12} - \frac{x^2}{4}$ in the interval $[-\pi, \pi]$	Understand	CAHS011.01
19	Find the half – range Fourier cosine series for the function	Understand	CAHS011.02

Find the half-range Fourier sine series for the function $f\left(x\right) = \frac{e^{ax} - e^{-ax}}{e^{ax} - e^{-ax}} \text{ in } \left(0, \pi\right)$ Part - C (Problem Solving and Critical Thinking Questions) If $f\left(x\right) = \begin{cases} x, 0 < x < \frac{\pi}{2} \\ x - x, \frac{\pi}{2} < x < \pi \end{cases}$ then prove that $\left(x - x, \frac{\pi}{2} < x < \pi\right)$ $f\left(x\right) = \begin{cases} x, 0 < x < \frac{\pi}{2} \\ x - x, \frac{\pi}{2} < x < \pi \end{cases}$ then prove that $\left(x - x, \frac{\pi}{2} < x < \pi\right)$ $\left(x - x, \frac{\pi}{2} < x < \pi\right)$ Find the Pourier series of the periodic function defined as $f\left(x\right) = \begin{cases} x, 0 < x < \frac{\pi}{2} \\ x, 0 < x < \pi \end{cases}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where $I_0 \text{ is the maximum current and the period is } 2\pi \text{ Express } i(x) \text{ as a Fourier series.}$ 4 $\begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of $a_0, a_n \text{ and } b_n$? 5 $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ If $f\left(x\right) = \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ in the Fourier expansion of $f\left(x\right)$ find the value of $a_0, a_n \text{ and } b_n$? 6 Obtain the Fourier series of $f\left(x\right) = \begin{cases} -k & \text{for } -\pi < x < 0 \\ k & \text{for } 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$		$f(x) = \sin\left(\frac{\pi x}{l}\right)$ in the range $0 < x < l$		
$f(x) = \frac{e^{ax} - e^{-ax}}{e^{ax} - e^{-ax}} in (0, \pi)$ Part - C (Problem Solving and Critical Thinking Questions) If $f(x) = \begin{cases} x, 0 < x < \frac{\pi}{2} & \text{then prove that} \\ \pi - x, \frac{\pi}{2} < x < \pi \end{cases}$ $f(x) = \frac{4}{\pi} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x \right].$ 2 Find the Fourier series of the periodic function defined as $f(x) = \begin{bmatrix} -\pi, -\pi < x < 0 \\ x, 0 < x < \pi \end{bmatrix}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + = \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of $a_0, a_n and b_n$? 5 $\begin{cases} 0, & -1 < x < \frac{1}{2} \\ 0, & \frac{1}{2} < x < 1 \end{cases}$ In the Fourier expansion of $f(x)$ find the value of $a_0, a_n and b_n$? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0	20		Understand	CAHS011.02
Part - C (Problem Solving and Critical Thinking Questions) 1 If $f(x) = \begin{cases} x, 0 < x < \frac{\pi}{2} \\ -x, \frac{\pi}{2} < x < \pi \end{cases}$ then prove that $ f(x) = \frac{4}{\pi} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x \right]. $ 2 Find the Fourier series of the periodic function defined as $f(x) = \begin{bmatrix} -\pi, -\pi < x < 0 \\ x, 0 < x < \pi \end{bmatrix}$ Hence deduce that $ \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + = \frac{\pi^2}{8} $ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Understand CAHS011.0 5 If $f(x) = \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \\ 0, & \frac{l}{2} < x < l \end{cases}$ in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for & 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		av – av		
If $f(x) = \begin{cases} x, 0 < x < \frac{\pi}{2} & \text{then prove that} \\ \pi - x, \frac{\pi}{2} < x < \pi \end{cases}$ $f(x) = \frac{4}{\pi} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x \right].$ Pind the Fourier series of the periodic function defined as $f(x) = \begin{bmatrix} -\pi, -\pi < x < 0 \\ x, 0 < x < \pi \end{bmatrix}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{\pi^2}{8}$ The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? Obtain the Fourier series of $f(x) = \begin{cases} -k, & \text{for } -\pi < x < 0 \\ k, & \text{for } 0 < x < \pi \end{cases}$ Understand CAHS011.0 CAHS011.0 CAHS011.0 CAHS011.0 CAHS011.0 CAHS011.0 CAHS011.0 CAHS011.0 CAHS011.0		e - e		
If $f(x) = \begin{cases} x, 0 < x < \frac{\pi}{2} \\ \pi - x, \frac{\pi}{2} < x < \pi \end{cases}$ $f(x) = \frac{4}{\pi} \begin{bmatrix} \sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x \end{bmatrix}.$ 2 Find the Fourier series of the periodic function defined as $f(x) = \begin{bmatrix} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + = \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? 5 $\begin{cases} 0, & -l < x < \frac{l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for & 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0	Part -	C (Problem Solving and Critical Thinking Questions)		
$f(x) = \frac{4}{\pi} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x \right].$ 2 Find the Fourier series of the periodic function defined as $f(x) = \begin{bmatrix} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^3} + \frac{1}{5^2} + = \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? 5 $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for & 0 < x < \pi \end{cases}$ Understand CAHS011.0	_		Understand	CAHS011.02
$f(x) = \frac{4}{\pi} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x \right].$ 2 Find the Fourier series of the periodic function defined as $f(x) = \begin{bmatrix} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^3} + \frac{1}{5^2} + = \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 $\begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? 5 $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k & \text{for } -\pi < x < 0 \\ k & \text{for } 0 < x < \pi \end{cases}$ Understand CAHS011.0		If $f(x) = \int_{0}^{x} x \cdot 0 < x < \frac{\pi}{2}$ then prove that		
2 Find the Fourier series of the periodic function defined as $f(x) = \begin{bmatrix} -\pi, & -\pi < x < 0 \\ -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + = \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? 5 $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k, & for -\pi < x < 0 \\ k, & for 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		$\pi - x, \frac{\pi}{2} < x < \pi$		
2 Find the Fourier series of the periodic function defined as $f(x) = \begin{bmatrix} -\pi, & -\pi < x < 0 \\ -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + = \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? 5 $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k, & for -\pi < x < 0 \\ k, & for 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $		
$\begin{bmatrix} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + = \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of $a_0, a_n and b_n$? 5 $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of $a_0, a_n and b_n$? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		$f(x) = \frac{1}{\pi} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x \right].$		
Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? 5 $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k, & for -\pi < x < 0 \\ k, & for & 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0	2	Find the Fourier series of the periodic function defined as $f(x) =$	Understand	CAHS011.02
Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$ 3 The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? 5 $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k, & for -\pi < x < 0 \\ k, & for & 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		$\begin{bmatrix} -\pi, & -\pi < x < 0 \\ y & 0 < y < \pi \end{bmatrix}$		
The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. $\begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? $\begin{cases} 0, & \frac{1}{2} < x < l \\ 0, & \frac{l}{2} < x < l \end{cases}$ in the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for & 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		2		
given by $i(x) = \begin{cases} I_0 \sin x & for \ 0 \le x \le \pi \\ 0 & for \ \pi \le x \le 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of $a_0, a_n and \ b_n$? 5 $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of $a_0, a_n and \ b_n$? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k, for -\pi < x < 0 \\ k, for 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{1}{8}$		
current and the period is 2π .Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? 5 If $f(x) = \begin{cases} 0, & -l < x < \frac{-l}{2} \\ \cos \frac{\pi x}{l}, & \frac{-l}{2} < x < \frac{l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for & 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0	3	The intensity of an alternating current after passing through a rectifier is	Understand	CAHS011.02
current and the period is 2π .Express $i(x)$ as a Fourier series. 4 If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? 5 If $f(x) = \begin{cases} 0, & -l < x < \frac{-l}{2} \\ \cos \frac{\pi x}{l}, & \frac{-l}{2} < x < \frac{l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? 6 Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for & 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		given by $i(x) = \int I_0 \sin x$ for $0 \le x \le \pi$ where I is the maximum		
If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ where $\begin{cases} -k, & for -\pi < x < 0 \\ k, & for -0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ $\begin{cases} 7, & Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0 \\ 0 & CAHS01$		given by $t(x) = \begin{cases} 0 & \text{for } \pi \le x \le 2\pi \end{cases}$ where T_0 is the maximum		
If $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ Then find the values of a_0, a_n and b_n ? $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ \cos \frac{\pi x}{l}, & \frac{-l}{2} < x < \frac{l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? $\begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ In the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? $\begin{cases} 0, & -l < x < \frac{l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ To Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		current and the period is 2π . Express $i(x)$ as a Fourier series.		
Then find the values of $a_0, a_n and \ b_n$? $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \\ 0 & \text{in the Fourier expansion of } f(x) \text{ find the value of } a_0, a_n and \ b_n ? \end{cases} $ CAHS011.0 $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \\ 0, & \frac{l}{2} < x < l \end{cases} $ in the Fourier expansion of $f(x)$ find the value of $a_0, a_n and \ b_n ?$ $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases} $ Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ To Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0	4	$\left(1 + \frac{2x}{x}\right) - \pi < x < 0$	Understand	CAHS011.02
Then find the values of $a_0, a_n and \ b_n$? $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \\ 0 & \text{in the Fourier expansion of } f(x) \text{ find the value of } a_0, a_n and \ b_n ? \end{cases} $ CAHS011.0 $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \\ 0, & \frac{l}{2} < x < l \end{cases} $ in the Fourier expansion of $f(x)$ find the value of $a_0, a_n and \ b_n ?$ $ \begin{cases} 0, & -l < x < \frac{-l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases} $ Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ To Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		$\left \text{If } f(x) = \right ^{1+\pi}, n = x = 0$		
Then find the values of $a_0, a_n and b_n$? $ \begin{array}{c} $		$\left \frac{1-2x}{1-2x} \right 0 \le x \le \pi$		
If $f(x) = \begin{cases} 0, & -l < x < \frac{-l}{2} \\ \cos \frac{\pi x}{l}, & \frac{-l}{2} < x < \frac{l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for & 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		π		
If $f(x) = \begin{cases} 0, & -l < x < \frac{l}{2} \\ \cos \frac{\pi x}{l}, & -\frac{l}{2} < x < \frac{l}{2} \\ 0, & \frac{l}{2} < x < l \end{cases}$ in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ Understand CAHS011.0 The provided HTML is a sum of the following provided by the content of the provided HTML is a sum of the following provided HTML in the following provided HTML is a sum of the following provided HTML in the following provided HTML in the following provided HTML is a sum of the following provided HTML in		Then find the values of a_0 , a_n and b_n ?		
If $f(x) = \begin{cases} \cos \frac{\pi x}{l}, \frac{-l}{2} < x < \frac{l}{2} \\ 0, \frac{l}{2} < x < l \end{cases}$ in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for & 0 < x < \pi \end{cases}$ Understand CAHS011.0 The provided HTML is a sum of the fourier series of $f(x) = \frac{\pi}{4}$ and hence $f(x) = \frac{\pi}{4}$ betermine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0	5		Understand	CAHS011.02
in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ Understand CAHS011.0 Show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		_		
in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ Understand CAHS011.0 Show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		If $f(x) = \left \cos \frac{\pi x}{l}, \frac{-l}{-l} < x < \frac{l}{-l} \right $		
in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ Understand CAHS011.0 Show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0				
in the Fourier expansion of $f(x)$ find the value of a_0, a_n and b_n ? Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ Understand CAHS011.0 Show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		$0, \frac{l}{2} < x < l$		
Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		(2		
Obtain the Fourier series of $f(x) = \begin{cases} k & \text{for } 0 < x < \pi \\ k & \text{for } 0 < x < \pi \end{cases}$ and hence show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0	6	,	Understand	CAHS011 02
show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ 7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0	0	Obtain the Fourier series of $f(x) = \begin{cases} -k & for -\pi < x < 0 \\ k & for 0 < x < \pi \end{cases}$ and hence	Onderstand	CAHSUIT.U2
7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0		$\begin{bmatrix} \cdot & \cdot & \cdot & 1 & 1 & 1 & \pi \end{bmatrix}$		
7 Determine the Fourier series representation of the half wave rectifier signal Understand CAHS011.0				
$x(t) = \begin{cases} \sin t, & 0 \le t < \pi \\ 0, & \text{otherwise} \end{cases}$	7	Determine the Fourier series representation of the half wave rectifier signal	Understand	CAHS011.02
		$x(t) = \begin{cases} \sin t, & 0 \le t < \pi \end{cases}$		

			1
8	Let $x(t) = \begin{cases} t, & 0 \le t \le 1 \\ 2 - t, & 1 \le t \le 2 \end{cases}$ be a periodic signal with fundamental	Understand	CAHS011.02
	period T=2, Find the Fourier coefficients a_0 , a_n and b_n ?		
9		Understand	CAHS011.01
	In the expansion of $f(x) = \left(\frac{\pi - x}{2}\right)^2$, $0 < x < 2\pi$ find the value of		
	a_n and b_n .?		
10	Obtain the Fourier series for the function	Understand	CAHS011.02
	$\begin{cases} x & in -\pi < x < \pi \end{cases}$		
	$f(x) = \begin{cases} 0 & in 0 < x < \pi/2 \end{cases}$		
	$f(x) = \begin{cases} x & \text{in } -\pi < x < \pi \\ 0 & \text{in } 0 < x < \pi/2 \\ x - \pi/2 & \text{in } \pi/2 < x < \pi \end{cases}$		
	UNIT-II		
D 4	FOURIER TRANSFORMS		
	A (Short Answer Questions)	Damanahan	CAUCO11 02
1	Write the Fourier sine integral and cosine integral.	Remember Understand	CAUS011.03
2	Find the Fourier sine transform of xe^{-ax}		CAHS011.03
3	Write the infinite Fourier transform of $f(x)$.	Remember	CAHS011.03
4	Write the properties of Fourier transform of f(x)	Remember	CAHS011.03
5	Find the Fourier sine transform of $f(x)=x$?	Understand	CAHS011.03
6	Find the Fourier cosine transform of $f(x) = 2e^{-5x} + 5e^{-2x}$?	Understand	CAHS011.03
7	What is the value of $F_C\{e^{-at}\}$?	Understand	CAHS011.03
8	State Fourier integral theorem.	Understand	CAHS011.03
9	Define Fourier transform.	Remember	CAHS011.03
10	Find the finite Fourier cosine transform of $f(x)=1$ in $0 < x < \pi$	Understand	CAHS011.03
11	Find the inverse finite sine transform $f(x)$ if $F_S(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$	Understand	CAHS011.03
12	State and prove Linear property of Fourier Transform	Understand	CAHS011.03
13	State and prove change of scale property of Fourier Transform	Understand	CAHS011.03
14	State and prove Shifting Property of Fourier Transform	Understand	CAHS011.03
15	State and prove Modulation Theorem of Fourier Transform	Understand	CAHS011.03
16	Prove that $F(x^n f(x)) = (-i)^n \frac{d^n}{ds^n} [F(p)]$	Understand	CAHS011.03
17	Find the Fourier Transform of f(x) defined by	Understand	CAHS011.03
	$f(x) = \begin{cases} e^{iqx}, & \alpha < x < \beta \\ 0, & x < \alpha \text{ and } x > \beta \end{cases} \text{ or } f(x) = \begin{cases} e^{ikx}, & a < x < b \\ 0, & x < a \text{ and } x > b \end{cases}$		
18	Solve $F_{S}\{f(x)\cos ax\} = \frac{1}{2}[F_{S}(p+a) + F_{S}(p-a)]$	Understand	CAHS011.03
19	Solve $F_c\{f(x)\sin ax\} = \frac{1}{2} [F_s(p+a) - F_s(p-a)]$	Understand	CAHS011.03

	$\sum_{i=1}^{n} F(f(x) \sin xx) \frac{1}{n} \left[F(x, x) - F(x, y) \right]$	Understand	CAHS011.03
20	Solve $F_s\{f(x)\sin ax\} = \frac{1}{2} [F_c(p-a) - F_c(p+a)]$		
	B (Long Answer Questions)		G . ***G
1	Find the Fourier transform of f(x) defined by $f(x) = \begin{cases} 1, & x < a \\ 0, & x > a \end{cases}$	Understand	CAHS011.03
	hence evaluate		
	$\int_0^\infty \frac{\sin p}{p} dp. and \int_{-\infty}^\infty \frac{\sin ap. \cos px}{p} dp$		
2	Find the Fourier transform of f(x) defined by $f(x) = \begin{cases} 1 - x^2, & x \le 1 \\ 0, & x > 1 \end{cases}$	Understand	CAHS011.03
	Hence evaluate		
	$(i) \int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx (ii) \int_0^\infty \frac{x \cos x - \sin x}{x^3} dx$		
3	Find the Fourier Transform of f(x) defined by $f(x) = e^{\frac{-x^2}{2}}$, $-\infty < x < \infty$	Understand	CAHS011.03
	or, Show that the Fourier Transform of $e^{\frac{-x^2}{2}}$ is reciprocal.		
4	Find Fourier cosine and sine transforms of e^{-ax} , $a > 0$ and hence deduce	Understand	CAHS011.03
	the inversion formula (or) deduce the integrals		
	$i. \int_0^\infty \frac{\cos px}{a^2 + p^2} dp ii. \int_0^\infty \frac{p \sin px}{a^2 + p^2} dp$		
5	Find the Fourier sine Transform of $e^{- x }$ and hence evaluate	Understand	CAHS011.03
	$\int_0^\infty \frac{x \sin mx}{1+x^2} dx$		
6	Find the Fourier cosine transform of (a) $e^{-ax} \cos ax$ (b) $e^{-ax} \sin ax$	Understand	CAHS011.03
7	Find the Fourier sine and cosine transform of xe^{-ax}	Understand	CAHS011.03
8	Find the Fourier sine transform of $\frac{x}{a^2 + x^2}$ and Fourier cosine transform	Understand	CAHS011.03
	of $\frac{1}{a^2 + x^2}$		
9	Find the Fourier sine and cosine transform of $f(x) = \frac{e^{-ax}}{x}$ and deduce	Understand	CAHS011.03
	that $\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \sin sx dx = Tan^{-1} \left(\frac{s}{a}\right) - Tan^{-1} \left(\frac{s}{b}\right)$		
		·	

Find the finite Fourier sine and cosine transform of $f(x)$, defined by $f(x) = \left(1 - \frac{x}{\pi}\right)^2$, where $0 < x < \pi$ 11 Find the finite Fourier sine and cosine transform of $f(x)$, defined by $f(x) = \sin \alpha x$ in $(0, \pi)$. 12 Find the finite Fourier sine transform of $f(x)$, defined by $f(x) = \sin \alpha x$ in $(0, \pi)$. 13 Using Fourier integral show that $e^{-x} \cos x = \frac{2}{\pi} \int_0^{\pi} \frac{\lambda^2 + 2}{\lambda^2 + 4} \cos \lambda x dx$ 14 Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- a y}$ 15 Understand $F(x) = \int_0^{\pi} \frac{\sin x - \cos x}{x^3} dx = \frac{\pi}{4}$ 16 Find the finite Fourier sine and cosine transforms of $f(x) = \sin \alpha x$ in $(0, \pi)$. 17 Find the inverse Fourier cosine transform $f(x)$ of $F_x(p) = \frac{p}{1 + p^2}$ 18 Using Fourier integral show that $e^{-x} \cos x = \frac{p}{x} \int_0^{\pi} \frac{x^2 + 2}{x^2 + 4} \cos \lambda x dx$ 19 Understand CAHS011.03 inverse Fourier cosine transform $f(x)$ of $F_x(p) = p^n e^{-\alpha p}$ and inverse Fourier sine and cosine transforms of $f(x) = \sin \alpha x$ in $(0, \pi)$. 19 Using Fourier integral show that $e^{-xx} = \frac{2a}{\pi} \int_0^{\pi} \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda$ (a > 0, x ≥ 0) 19 Using Fourier integral show that $e^{-xx} = \frac{2(b^2 - a^2)}{\pi} \int_0^{\pi} \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda$, a > 0, b > 0 20 Using Fourier integral, show that $\int_0^{\pi} \frac{1 - \cos \lambda \pi}{\lambda^2 + a^2} \sin \lambda x d\lambda = \begin{cases} \frac{\pi}{2} f \cos x + \pi & -1 - \cos \lambda \pi \\ 0, f x > \pi & \end{cases}$ Understand CAHS011.03 CAHS011.03				
11 Find the finite Fourier sine and cosine transform of $f(x)$, defined by $f(x) = \sin \alpha x$ in $(0, \pi)$. 12 Find the finite Fourier sine transform of $f(x)$, defined by $f(x) = \sin \alpha x$ in $(0, \pi)$. 13 Using Fourier integral show that $e^{-x} \cos x = \frac{2}{\pi} \int_{0}^{x} \frac{\lambda^{2} + 2}{\lambda^{2} + 4} \cos \lambda x dx$ Understand CAHS011.03 14 Find the inverse Fourier transform $f(x)$ of $f(x) = e^{- x /2}$ Understand CAHS011.03 15 Find the Fourier transform of $f(x) = \begin{cases} a^{2} - x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 16 Find the finite Fourier sine and cosine transforms of $f(x) = \sin \alpha x$ in $(0, \pi)$. 17 Find the inverse Fourier cosine transform $f(x)$ of $f(x) = \sin \alpha x$ in $(0, \pi)$. 18 Using Fourier integral show that $e^{-\alpha x} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda$ (a > 0, x \geq 0) 19 Using Fourier integral show that $e^{-\alpha x} = \frac{2(b^{2} - a^{2})}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2} + a^{2})(\lambda^{2} + b^{2})} d\lambda$, $a > 0, b > 0$ 20 Using Fourier Integral, show that	10	Find the finite Fourier sine and cosine transform of $f(x)$, defined by	Understand	CAHS011.04
11 Find the finite Fourier sine and cosine transform of $f(x)$, defined by $f(x) = \sin \alpha x$ in $(0, \pi)$. 12 Find the finite Fourier sine transform of $f(x)$, defined by $f(x) = \sin \alpha x$ in $(0, \pi)$. 13 Using Fourier integral show that $e^{-x} \cos x = \frac{2}{\pi} \int_{0}^{x} \frac{\lambda^{2} + 2}{\lambda^{2} + 4} \cos \lambda x dx$ Understand CAHS011.03 14 Find the inverse Fourier transform $f(x)$ of $f(x) = e^{- x /2}$ Understand CAHS011.03 15 Find the Fourier transform of $f(x) = \begin{cases} a^{2} - x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 16 Find the finite Fourier sine and cosine transforms of $f(x) = \sin \alpha x$ in $(0, \pi)$. 17 Find the inverse Fourier cosine transform $f(x)$ of $f(x) = \sin \alpha x$ in $(0, \pi)$. 18 Using Fourier integral show that $e^{-\alpha x} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda$ (a > 0, x \geq 0) 19 Using Fourier integral show that $e^{-\alpha x} = \frac{2(b^{2} - a^{2})}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2} + a^{2})(\lambda^{2} + b^{2})} d\lambda$, $a > 0, b > 0$ 20 Using Fourier Integral, show that		$f(x) - \left(1 - \frac{x}{x}\right)^2$ where $0 < x < \pi$		
f(x) = sin ax in $(0,\pi)$. 12 Find the finite Fourier sine transform of f(x), defined by $f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$ 13 Using Fourier integral show that $e^{-x} \cos x = \frac{2}{\pi} \int_{0}^{x} \frac{\lambda^{2} + 2}{\lambda^{2} + 4} \cos \lambda x dx$ 14 Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Understand CAHS011.03 15 Find the Fourier transform of $f(x) = \begin{cases} a^{2} - x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 16 Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, $\frac{\pi}{x}$). 17 Find the inverse Fourier cosine transform $f(x)$ of $f(x) = \sin ax$ in (0, $f(x) = \sin ax$). 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda$ (a > 0, x ≥ 0) 19 Using Fourier integral show that $e^{-ax} = \frac{2(b^{2} - a^{2})}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2} + a^{2})(\lambda^{2} + b^{2})} d\lambda$, $a > 0, b > 0$ 20 Using Fourier Integral, show that		π , where $\sigma < x < n$		
Find the finite Fourier sine transform of $f(x)$, defined by $f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$ Using Fourier integral show that $e^{-x} \cos x = \frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda^{2} + 2}{\lambda^{2} + 4} \cos \lambda x dx$ Understand CAHS011.03 14 Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p /y}$ Understand CAHS011.03 15 Find the Fourier transform of $f(x) = \begin{cases} a^{2} - x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 16 Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, understand cAHS011.04 π). 17 Find the inverse Fourier cosine transform $f(x)$ of $F_{c}(p) = p^{n}e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_{s}(p) = \frac{p}{1+p^{2}}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda$ (a > 0, x ≥ 0) 19 Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^{2} - a^{2})}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2} + a^{2})(\lambda^{2} + b^{2})} d\lambda$, a > 0,b > 0 20 Using Fourier Integral, show that	11	Find the finite Fourier sine and cosine transform of $f(x)$, defined by	Understand	CAHS011.04
$f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$ Using Fourier integral show that $e^{-x} \cos x = \frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda^{2} + 2}{\lambda^{2} + 4} \cos \lambda x dx$ Understand CAHS011.03 14 Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Understand CAHS011.03 15 Find the Fourier transform of $f(x) = \begin{cases} a^{2} - x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 Find the Fourier transform of $f(x) = \begin{cases} a^{2} - x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, understand CAHS011.04 π). 17 Find the inverse Fourier cosine transform $f(x)$ of $F_{c}(p) = p^{n}e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_{s}(p) = \frac{p}{1+p^{2}}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda$ ($a > 0, x \ge 0$) 19 Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^{2} - a^{2})}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2} + a^{2})(\lambda^{2} + b^{2})} d\lambda$, $a > 0, b > 0$ 20 Using Fourier Integral, show that		$f(x) = \sin ax \text{ in } (0,\pi).$		
Using Fourier integral show that $e^{-x}\cos x = \frac{2}{\pi}\int_{0}^{\infty} \frac{\lambda^{2}+2}{\lambda^{2}+4}\cos \lambda x dx$ Understand CAHS011.03 14 Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Understand CAHS011.03 15 Find the Fourier transform of $f(x) = \begin{cases} a^{2}-x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 16 Find the Finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, π). 17 Find the inverse Fourier cosine transform $f(x)$ of $F_{c}(p) = p^{n}e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_{s}(p) = \frac{p}{1+p^{2}}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi}\int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}}d\lambda$ ($a > 0, x \ge 0$) 19 Using Fourier integral show that $e^{-ax} = \frac{2(b^{2}-a^{2})}{\pi}\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2}+a^{2})(\lambda^{2}+b^{2})}d\lambda$, $a > 0, b > 0$ 20 Using Fourier Integral, show that	12	Find the finite Fourier sine transform of $f(x)$, defined by	Understand	CAHS011.04
Using Fourier integral show that $e^{-x}\cos x = \frac{2}{\pi}\int_{0}^{\infty} \frac{\lambda^{2}+2}{\lambda^{2}+4}\cos \lambda x dx$ Understand CAHS011.03 14 Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Understand CAHS011.03 15 Find the Fourier transform of $f(x) = \begin{cases} a^{2}-x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 16 Find the Finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, π). 17 Find the inverse Fourier cosine transform $f(x)$ of $F_{c}(p) = p^{n}e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_{s}(p) = \frac{p}{1+p^{2}}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi}\int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}}d\lambda$ ($a > 0, x \ge 0$) 19 Using Fourier integral show that $e^{-ax} = \frac{2(b^{2}-a^{2})}{\pi}\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2}+a^{2})(\lambda^{2}+b^{2})}d\lambda$, $a > 0, b > 0$ 20 Using Fourier Integral, show that		$\begin{cases} r & 0 \le r \le \frac{\pi}{r} \end{cases}$		
Using Fourier integral show that $e^{-x}\cos x = \frac{2}{\pi}\int_{0}^{\infty} \frac{\lambda^{2}+2}{\lambda^{2}+4}\cos \lambda x dx$ Understand CAHS011.03 14 Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Understand CAHS011.03 15 Find the Fourier transform of $f(x) = \begin{cases} a^{2}-x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 16 Find the Finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, π). 17 Find the inverse Fourier cosine transform $f(x)$ of $F_{c}(p) = p^{n}e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_{s}(p) = \frac{p}{1+p^{2}}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi}\int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}}d\lambda$ ($a > 0, x \ge 0$) 19 Using Fourier integral show that $e^{-ax} = \frac{2(b^{2}-a^{2})}{\pi}\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2}+a^{2})(\lambda^{2}+b^{2})}d\lambda$, $a > 0, b > 0$ 20 Using Fourier Integral, show that		$f(x) = \begin{cases} x, & 0 \le x \le \overline{2} \end{cases}$		
Using Fourier integral show that $e^{-x}\cos x = \frac{2}{\pi}\int_{0}^{\infty} \frac{\lambda^{2}+2}{\lambda^{2}+4}\cos \lambda x dx$ Understand CAHS011.03 14 Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Understand CAHS011.03 15 Find the Fourier transform of $f(x) = \begin{cases} a^{2}-x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 16 Find the Finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, π). 17 Find the inverse Fourier cosine transform $f(x)$ of $F_{c}(p) = p^{n}e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_{s}(p) = \frac{p}{1+p^{2}}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi}\int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}}d\lambda$ ($a > 0, x \ge 0$) 19 Using Fourier integral show that $e^{-ax} = \frac{2(b^{2}-a^{2})}{\pi}\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2}+a^{2})(\lambda^{2}+b^{2})}d\lambda$, $a > 0, b > 0$ 20 Using Fourier Integral, show that		$\pi - x, \frac{\pi}{2} \le x \le \pi$		
Using Fourier integral show that $e^{-x}\cos x = \frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda + 2}{\lambda^{2} + 4}\cos \lambda x dx$ Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Understand CAHS011.03 Find the Fourier transform of $f(x) = \begin{cases} a^{2} - x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 Find the Fourier transform of $f(x) = \begin{cases} a^{2} - x^{2} & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in $(0, 0, 0)$ Understand CAHS011.04 The find the inverse Fourier cosine transform $f(x)$ of $F_{c}(p) = p^{n}e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_{s}(p) = \frac{p}{1+p^{2}}$ Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda (a > 0, x \ge 0)$ Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^{2} - a^{2})}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2} + a^{2})(\lambda^{2} + b^{2})} d\lambda, a > 0, b > 0$ Understand CAHS011.03 Understand CAHS011.03		(2		
Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Understand CAHS011.03 Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, π). Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$ Understand CAHS011.03 $e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\sqrt{\lambda^2 + a^2}} d\lambda (a > 0, x \ge 0)$ Using Fourier integral show that $e^{-ax} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that	13	Using Fourier integral show that $e^{-x} \cos x = \frac{2}{3} \int_{-\infty}^{\infty} \frac{\lambda^2 + 2}{\cos \lambda x} \cos \lambda x dx$	Understand	CAHS011.03
Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Understand CAHS011.03 Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Understand CAHS011.03 Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, π). Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$ Understand CAHS011.03 $e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\sqrt{\lambda^2 + a^2}} d\lambda (a > 0, x \ge 0)$ Using Fourier integral show that $e^{-ax} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that		$\pi \int_{0}^{1} \lambda^{2} + 4$		
Find the Fourier transform of $f(x) = \begin{cases} u - x & y & x < u \\ 0 & if & x > a \end{cases}$ hence show that $\int_0^\infty \frac{\sin x - \cos x}{x^3} dx = \frac{\pi}{4}$ 16 Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, Understand CAHS011.04 π). 17 Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda \text{ (a > 0, x ≥ 0)}$ 19 Using Fourier integral show that $e^{-ax} = e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that Understand CAHS011.03	14	Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$	Understand	CAHS011.03
$\int_{0}^{\infty} \frac{\sin x - \cos x}{x^{3}} dx = \frac{\pi}{4}$ 16 Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, Understand CAHS011.04 π). 17 Find the inverse Fourier cosine transform $f(x)$ of $F_{c}(p) = p^{n}e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_{s}(p) = \frac{p}{1+p^{2}}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda \text{ (a > 0, x ≥ 0)}$ 19 Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^{2} - a^{2})}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2} + a^{2})(\lambda^{2} + b^{2})} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that Understand CAHS011.03	15	$\int a^2 - x^2 if x < a$	Understand	CAHS011.03
Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, π). Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$ and $F_c(p) = p^n e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$ Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda (a > 0, x \ge 0)$ Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that $Understand CAHS011.03$		Find the Fourier transform of $f(x) = \begin{cases} 0 & \text{if } x > a \end{cases}$ hence show that		
Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in (0, π). Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$ and $F_c(p) = p^n e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$ Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda (a > 0, x \ge 0)$ Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that $Understand CAHS011.03$		$\int_{0}^{\infty} \sin x - \cos x dx = \pi$		
7). Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$ Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda (a > 0, x \ge 0)$ Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ Understand CAHS011.03 Understand CAHS011.03		$\int_0^{\infty} \frac{1}{x^3} dx - \frac{1}{4}$		
Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$ and Understand CAHS011.03 inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda (a > 0, x \ge 0)$ 19 Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that Understand CAHS011.03	16		Understand	CAHS011.04
inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$ 18 Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda (a > 0, x \ge 0)$ 19 Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that $Understand CAHS011.03$	17		Understand	CAHS011.03
Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda (a > 0, x \ge 0)$ Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^{2} - a^{2})}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2} + a^{2})(\lambda^{2} + b^{2})} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that Understand CAHS011.03				
Using Fourier integral show that $e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda (a > 0, x \ge 0)$ 19 Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^{2} - a^{2})}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^{2} + a^{2})(\lambda^{2} + b^{2})} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that Understand CAHS011.03		inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{P}{1+p^2}$		
Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ Understand CAHS011.03 Understand CAHS011.03	18	Using Fourier integral show that	Understand	CAHS011.03
Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ Understand CAHS011.03 Understand CAHS011.03		$=ax$ $2a\overset{\circ}{\mathfrak{c}}\cos\lambda x$		
Using Fourier Integral show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that Understand CAHS011.03		$e^{-a\lambda} = \frac{1}{\pi} \int_{0}^{\pi} \frac{1}{\lambda^{2} + a^{2}} d\lambda (a > 0, x \ge 0)$		
$e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0, b > 0$ 20 Using Fourier Integral, show that Understand CAHS011.03	19	Using Fourier integral show that	Understand	CAHS011.03
20 Using Fourier Integral, show that Understand CAHS011.03				
20 Using Fourier Integral, show that $\int_0^\infty \frac{1 - \cos \lambda \pi}{\lambda} \cdot \sin \lambda x d\lambda = \begin{cases} \frac{\pi}{2} & \text{if } 0 < x < \pi \\ 0, & \text{if } x > \pi \end{cases}$ Understand CAHS011.03		$e^{-a\lambda} - e^{-a\lambda} = \frac{1}{\pi} \int_0^a \frac{1}{\left(\lambda^2 + a^2\right)\left(\lambda^2 + b^2\right)} d\lambda, a > 0, b > 0$		
$\int_{0}^{\infty} \frac{1 - \cos \lambda \pi}{\lambda} \cdot \sin \lambda x d\lambda = \begin{cases} \frac{\pi}{2} & \text{if } 0 < x < \pi \\ 0, & \text{if } x > \pi \end{cases}$	20	Using Fourier Integral, show that	Understand	CAHS011.03
$0, if \ x > \pi$		$\int_{0}^{\infty} \frac{1 - \cos \lambda \pi}{2} \cdot \sin \lambda x d\lambda = \begin{cases} \frac{\pi}{2} & \text{if } 0 < x < \pi \end{cases}$		
		$0, if \ x > \pi$		

	Part - C (Problem Solving and Critical Thinking Questions)			
1	Find the Fourier cosine transform of the function f(x) defined by	Understand	CAHS011.03	
	$(\cos x, 0 < x < a)$			
	$f(x) = \begin{cases} \cos x, & 0 < x < a \\ 0, & x \ge a \end{cases}$			
2	Find the Fourier sine transform of f(x) defined by	Understand	CAHS011.03	
	$\sin x$, $0 < x < a$			
	$f(x) = \begin{cases} \sin x, & 0 < x < a \\ 0, & x \ge a \end{cases}$			
3	Find the Fourier sine and cosine transform of $2e^{-5x} + 5e^{-2x}$	Understand	CAHS011.03	
4	Find the Fourier sine and cosine transform of	Understand	CAHS011.03	
	x, for 0 < x < 1			
	$ f(x) = \begin{cases} 2 - x, & for 1 < x < 2 \end{cases} $			
	$f(x) = \begin{cases} x, & for & 0 < x < 1 \\ 2 - x, & for & 1 < x < 2 \\ 0, & for & x > 2 \end{cases}$			
5	Find the Fourier cosine transform of $f(x)$ defined by	Understand	CAHS011.03	
	$\begin{cases} x, & 0 < x < 1 \end{cases}$			
	$f(x) = \begin{cases} 2-x, & 1 < x < 2 \end{cases}$			
	$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$			
6	Find the inverse finite sine transform f(x) if	Understand	CAHS011.04	
	$F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2} $ where $0 < x < \pi$			
7	Find the inverse finite cosine transform f(x), if	Understand	CAHS011.04	
	$(2n\pi)$			
	$F_c(n) = \frac{\cos\left(\frac{2n\pi}{3}\right)}{\left(2n+1\right)^2}, where \ 0 < x < 4$			
	$F_c(n) = \frac{1}{(2n+1)^2}$, where $0 < x < 4$			
	(
8	Using Fourier integral show that	Understand	CAHS011.03	
0	$2^{\infty} \lambda^2 + 2$			
	$e^{-ax}\cos x = \frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda^{2} + 2}{\lambda^{2} + 4} \cos \lambda x d\lambda$			
9	Find the finite Fourier sine and cosine transforms of	Understand	CAHS011.04	
	$f(x) = x(\pi - x) \text{ in } (0, \pi).$			
10	Find the finite Fourier sine and cosine transforms of	Understand	CAHS011.04	
	$f(x) = \cos \alpha x$ in $(0, l)$ and $(0, \pi)$			
	UNIT-III LAPLACE TRANSFORMS			
	A (Short Answer Questions)			
1	Define Laplace Transform, and write the sufficient conditions for the	Remember	CAHS011.05	
	existence of Laplace Transform. Verify whether the function $f(t)=t^3$ is exponential order and find its	Understand	CAHS011.05	
	verify whether the function $f(t)=t$ is exponential order and find its transform.	Onucistand	CM13011.03	
	Find the Laplace transform of Dirac delta function	Remember	CAHS011.05	

4	Find the Laplace transform of $ \sin \omega t , t \ge 0$	Understand	CAHS011.05
5	State and prove change of scale property of Laplace Transform.	Understand	CAHS011.05
6	Find the Laplace transform of $t^2u(t-2)$	Remember	CAHS011.05
7	Find $L\{g(t)\}$ where $g(t) = \begin{cases} \cos(t - \frac{2\pi}{3}), & \text{if } t > \frac{2\pi}{3} \\ 0, & \text{if } t < \frac{2\pi}{3} \end{cases}$	Understand	CAHS011.05
8	Find the Laplace transform of $f(t) = \begin{cases} \cos t, 0 < t < \pi \\ \sin t, t > \pi \end{cases}$	Understand	CAHS011.05
9	Find the Laplace transform of sinh t	Remember	CAHS011.05
10	Verify the initial and final value theorem for $e^{-t}(t+1)^2$	Remember	CAHS011.05
	CIE II		
11	Prove that if $L^{-1}{f(s)} = f(t)$ then $L^{-1}{\overline{f}^{n}(s)} = (-1)^{n} t^{n} f(t)$	Understand	CAHS011.05
12	Prove that if $L^{-1}{f(s)} = f(t)$ then $L^{-1}{\frac{f(s)}{s}} = \int_{0}^{t} f(u) du$	Understand	CAHS011.05
13	State and prove convolution theorem to find the inverse of Laplace transform	Understand	CAHS011.04
14	Find the inverse Laplace transform of $L^{-1}\left\{\frac{3s+7}{s^2-2s-3}\right\}$	Understand	CAHS011.05
15	Find the inverse Laplace transform of $L^{-1}\left\{\frac{s}{(s+1)^2(s^2+1)}\right\}$	Understand	CAHS011.05
16	Find the inverse Laplace transform of $\frac{s}{(s^2+1)(s^2+4)}$	Understand	CAHS011.05
17	Find the inverse Laplace transform of $\log \left(\frac{s+a}{s+b} \right)$	Remember	CAHS011.05
18	Find the inverse Laplace transform of $\frac{e^{-2s}}{(s+4)^3}$	Remember	CAHS011.05
19	Solve the following initial value problem by using Laplace transform $4y'' + \pi^2 y = 0$, $y(0) = 0$, $y'(0) = 0$	Understand	CAHS011.05
20	Solve the following initial value problem by using Laplace transform $y'' + 4y = \delta(t)$, $y(0) = 0$, $y'(0) = 0$	Understand	CAHS011.05
Part	- B (Long Answer Questions)		
1	Using Laplace transform evaluate $\int_{0}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt$	Understand	CAHS011.05
2	Find the Laplace transform of $f(t) = (t+3)^2 e^t$	Understand	CAHS011.06
3	Find $L\left\{\frac{\cos 4t \sin 2t}{t}\right\}$	Understand	CAHS011.05
4	Find $L\{\cosh at \sin bt\}$	Understand	CAHS011.05
5	Find $L\left\{e^{-3t}\sinh 3t\right\}$	Understand	CAHS011.05
6	Find $L\{t\sin 3t\cos 2t\}$	Understand	CAHS011.06

7	Find the Laplace transform of $\frac{\cos 2t - \cos 3t}{t}$	Understand	CAHS011.06
8	Find the Laplace transform of $te^{2t} \sin 3t$	Understand	CAHS011.06
9	Find the Laplace transform of $\left\{\frac{1-\cos at}{t}\right\}$	Understand	CAHS011.06
10	Find the Laplace transform of $\cos t \cos 2t \cos 3t$	Understand	CAHS011.05
	CIE II		
11	Find the inverse Laplace transform of $\frac{2S^2 - 6S + 5}{S^3 - 6S^2 + 11S - 6}$	Understand	CAHS011.05
12	Find the inverse Laplace transform $\frac{e^{-2s}}{s^2 + 4s + 5}$	Understand	CAHS011.05
13	Find the inverse Laplace transform $\frac{s}{(s^2+1)(s^2+9)(s^2+25)}$	Understand	CAHS011.05
14	Find the inverse Laplace transform of $\log \left(\frac{s^2 + 4}{s^2 + 9} \right)$	Understand	CAHS011.05
15	Find the inverse Laplace transform $\frac{s^2 + 2s - 4}{(s^2 + 9)(s - 5)}$	Understand	CAHS011.05
	Solve the following initial value problem by using Laplace transform	Understand	CAHS011.06
16	$(D^2 + 2D + 5)t = e^{-t}\sin t, y(0) = 0, y'(0) = 1$		
17	Solve the following initial value problem by using Laplace transform	Understand	CAHS011.06
	$y'' + 9y = \cos 2t, y(0) = 1, y(\frac{\pi}{2}) = -1$		
	Solve the following initial value problem by using Laplace transform	Understand	CAHS011.06
18	y''' - 2y'' + 5y' = 0, y(0) = 1, y'(0) = 0, y''(0) = 1		
19	Solve the following initial value problem by using Laplace transform	Understand	CAHS011.06
	$(D^3 - D^2 + 4D - 4)t = 68e^x \sin 2x, y = 1, Dy = -19, D^2y = -37 \text{ at } x = 0$		
20	Solve the following initial value problem by using Laplace transform	Understand	CAHS011.06
	$\frac{dy}{dt} + 2y + \int_{0}^{t} y dt = \sin t, y(0) = 1$		
	- C (Problem Solving and Critical Thinking)		
1	Using the theorem on transforms of derivatives, find the Laplace	Understand	CAHS011.05
	Transform of the following functions.		
	(a). e ^{at} (b). cosat (c). t sin at		
2	Find the Laplace transform of (a) $e^{-3t} \cosh 4t \sin 3t$ (b) $(t+1)^2 e^t$	Understand	CAHS011.05
3	Find the Laplace transform of (a) $t^2e^t \sin 4t$ (b) $t \cos^2 t$	Understand	CAHS011.05

4	Find the Laplace transform of $\int_{0}^{t} \frac{e^{t} \sin t}{t} dt$	Understand	CAHS011.06
5	Find the L{f(t)} and L{f'(t)} for the function (a) $\frac{\sin t}{t}$ (b) $e^{-5t} \sin t$	Understand	CAHS011.06
	CIE II		
	s+3	Understand	CAHS011.06
6	Find the inverse Laplace transform $\frac{s+3}{s^2-10s+29}$		
7	Find the inverse transform of $\frac{s+2}{s^2-4s+13}$	Understand	CAHS011.06
8	Find the inverse Laplace transform $\frac{s^2 + s - 2}{s(s+3)(s-2)}$	Understand	CAHS011.06
9	Apply convolution theorem to evaluate $L^{-1}\left\{\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right\}$	Understand	CAHS011.06
10	Apply convolution theorem to evaluate $L^{-1}\left\{\frac{1}{s(s^2+4)^2}\right\}$	Understand	CAHS011.06
	UNIT-IV		
	Z –TRANSFORMS		
	- A (Short Answer Questions)	TT 1 . 1	GATIGO11 07
1	Prove that $z(a^n) = \frac{z}{z-a}$	Understand	CAHS011.07
2	Prove that $z(a^n) = \frac{z}{z-a}$ Evaluate $z\left[\frac{1}{(n+1)!}\right]$	Understand	CAHS011.07
3	Find the z- transform of $e^{-\alpha n}$ where $\alpha > 0$	Understand	CAHS011.07
4	Find the z-transform of the sequence defined by $u_n = 2^n$ $n \le 0$	Understand	CAHS011.07
5	State and prove Linear Properties of z- transforms	Understand	CAHS011.07
6	Find the z- transform of $\frac{a^n}{n!}e^{-a}$	Understand	CAHS011.07
7	Find the z- transform of $\cos(n+1)\theta$	Understand	CAHS011.07
8	State and prove shifting property to the right.	Understand	CAHS011.07
9	Prove that $z\left[\left(\frac{1}{2}\right)^n\right] = \frac{2z}{2z-1}$	Understand	CAHS011.07
10	State and prove shifting property to the left.	Understand	CAHS011.07
11	Find $z(n-1)^2$	Understand	CAHS011.07
12	Define convolution theorem of Z-Transform	Remember	CAHS011.07
13	Find $z(n\cos n\theta)$	Understand	CAHS011.07
14	Show that $z(\frac{1}{n+1}) = z \log \frac{z}{z-1}$	Understand	CAHS011.07

15	4	Understand	CAHS011.07
	Evaluate the inverse z-transform of $\frac{4z}{z-1}$	Understand	CAHS011.07
16	Evaluate Inverse z-transform of $\frac{3z(z+1)}{(z-1)^3}$ Evaluate the inverse z-transform of $\frac{1}{1-az^{-1}}$ with $ z >a$	Understand	CAHS011.07
17	Evaluate the inverse z-transform of $\frac{1}{1-az^{-1}}$ with $ z >a$	Understand	CAHS011.07
18	Obtain the z-transform of the cosine function $x(t) = \begin{cases} \cos \omega t & 0 \le t \\ 0 & t < 0 \end{cases}$	Understand	CAHS011.07
19	Prove that $z(n^2) = \frac{z^2 + z}{(z-1)^3}$	Understand	CAHS011.07
20	Find the z-Transform of $\frac{1}{n(n+1)}$	Understand	CAHS011.07
	B (Long Answer Questions)	Γ== -	1
1	Evaluate $z(\cos\theta + i\sin\theta)^n$ hence prove that	Understand	CAHS011.07
	$z(\cos n\theta) = \frac{z(z - \cos \theta)}{z^2 - 2z\cos \theta + 1} \text{ and } z(\sin n\theta) = \frac{z\sin \theta}{z^2 - 2z\cos \theta + 1}$		
2	Find the inverse z-transform of $\frac{8z-z^3}{(4-z)^3}$	Understand	CAHS011.07
3	Use convolution theorem to evaluate $z^{-1} \left(\frac{z^2}{z^2 - 4z + 3} \right)$	Understand	CAHS011.07
4	State and prove convolution theorem of z- transforms.	Understand	CAHS011.07
5	Obtain the inverse z-transform of $\frac{z^3}{(z+1)(z-1)^2}$	Understand	CAHS011.07
6	Obtain the inverse z-transform of $\frac{z-1}{(z-2)^3}$	Understand	CAHS011.07
7	Use convolution theorem to evaluate the inverse of $\frac{z^2}{z^2 - 5z + 6}$	Understand	CAHS011.07
8	Solve the difference equation using z-transform y_{n+2} - $3y_{n+1}$ + $2y_n$ = 4^n with y_0 = 0 , y_1 = 1	Understand	CAHS011.07
9	Solve difference equation using z-transform u_{n+2} - $4u_{n+1}$ + $4u_n$ = 2^n given u_0 = 0 , u_1 = 1	Understand	CAHS011.07
10	Solve the difference equation using z- transform $u_{n+2}-2u_{n+1}u_n=3n+5$	Understand	CAHS011.07
11	Solve the difference equation using z- transform $u_{n+2} - 8u_{n+1} + 16u_n = 4^n$ given $u_0=0$ and $u_1=1$	Understand	CAHS011.07
12	Solve the difference equation using z- transform $y_{n+2} - 2y_{n+1} + y_n = 2^n$	Understand	CAHS011.07
	with $y_0=2$ and $y_1=1$		
13	Solve the difference equation using z- transform	Understand	CAHS011.07
	$y_{n+2} - 2y_{n+1} + y_n = 3n + 5$ with $y_0 = 1$ and $y_1 = 3$		
14	Solve the difference equation using z- transform $u_{n+2} - 6u_{n+1} + 9u_n = 0$	Understand	CAHS011.07
15	Solve the difference equation using z- transform	Understand	CAHS011.07

			T 1
	$y_{n+2} - 2y_{n+1} + y_n = 3n + 5$ with $y_0 = y_1 = 0$		
16	Evaluate $z^{-1} \left(\frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4} \right)$	Understand	CAHS011.07
17	Using $z(n^2) = \frac{z^2 + z}{(z-1)^3}$ prove that $z(n+1)^2 = \frac{z^3 + z^2}{(z-1)^3}$	Understand	CAHS011.07
18	Evaluation of inverse z-Transforms by using standard Formulae. $z^{-1} \left(\frac{az}{(z-a)^2} \right) = na^n$	Understand	CAHS011.07
19	Prove that $z(a^n \sin n\theta) = \frac{az \sin \theta}{z^2 - 2az \cos \theta + a^2}$	Understand	CAHS011.07
20	Show that $z(\sin(n+1)\theta) = \frac{z^2 \sin \theta}{z^2 - 2z \cos \theta + 1}$	Understand	CAHS011.07
Part -	- C (Problem Solving and Critical Thinking)		
1	Using the power series method find the inverse Z-Transform of $\frac{z}{(10+7z+z^2)}$	Understand	CAHS011.08
2	Using the power series method find the inverse Z – Transform of z	Understand	CAHS011.08
3	$(z-3)(z-2)(z-1)$ Using the power series method find the inverse Z –Transform of $\frac{1+2z^{-1}}{(1+2z^{-1}+4z^{-2})}$	Understand	CAHS011.08
4	Using convolution theorem to find the inverse Z –Transform of $\frac{10z}{(z-2)(z-1)}$	Understand	CAHS011.08
5	Using convolution theorem to find the inverse Z –Transform of $\frac{8z^2}{(4z+1)(2z-1)}$	Understand	CAHS011.08
6	Using the partial fraction method find the inverse Z – Transform of $\frac{z(2z-1)}{(z-2)^2(z-1)}$	Understand	CAHS011.08
7	Using the partial fraction method find the inverse Z – Transform of $\frac{z^2 + 2z + 1}{z^2 - \frac{3}{2}z + \frac{1}{2}}$	Understand	CAHS011.08
8	Using the partial fraction method find the inverse Z –Transform of $\frac{z^2}{(z^2+4)(z+2)}$	Understand	CAHS011.08
9	Using the integral method find the inverse Z – Transform of $\frac{z-4}{(z^2+5z+6)}$	Understand	CAHS011.08
_			

UNIT-V PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS Part - A (Short Answer Questions) 1 Define order and degree with reference to partial differential equation 2 Form the partial differential equation by eliminate the arbitrary constants Understand CA from $z = ax^3 + by^3$	CAHS011.08 CAHS011.09 CAHS011.09 CAHS011.09 CAHS011.09 CAHS011.09 CAHS011.09
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS Part - A (Short Answer Questions) 1 Define order and degree with reference to partial differential equation Remember CA 2 Form the partial differential equation by eliminate the arbitrary constants Understand CA from $z = ax^3 + by^3$	CAHS011.09 CAHS011.09 CAHS011.09 CAHS011.09
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS Part - A (Short Answer Questions) 1 Define order and degree with reference to partial differential equation Remember CA 2 Form the partial differential equation by eliminate the arbitrary constants Understand CA from $z = ax^3 + by^3$	CAHS011.09 CAHS011.09 CAHS011.09 CAHS011.09
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS Part - A (Short Answer Questions) 1 Define order and degree with reference to partial differential equation Remember CA 2 Form the partial differential equation by eliminate the arbitrary constants Understand CA from $z = ax^3 + by^3$	CAHS011.09 CAHS011.09 CAHS011.09 CAHS011.09
Part - A (Short Answer Questions)1Define order and degree with reference to partial differential equationRememberCA2Form the partial differential equation by eliminate the arbitrary constantsUnderstandCAfrom $z = ax^3 + by^3$	CAHS011.09 CAHS011.09 CAHS011.09 CAHS011.09
Form the partial differential equation by eliminate the arbitrary constants Understand CA from $z = ax^3 + by^3$	CAHS011.09 CAHS011.09 CAHS011.09 CAHS011.09
from $z = ax^3 + by^3$	CAHS011.09 CAHS011.09 CAHS011.09
·	CAHS011.09 CAHS011.09
2 Form the partial differential equation by aliminating arbitrary function Understand C	CAHS011.09 CAHS011.09
$z=f(x^2+y^2)$	CAHS011.09
Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$ Understand CA	
	CAHS011.09
equation	CAHS011.09
	· ·
equation 7 Solve the partial differential equation p ² + q ² = m ² Understand CA	CAHS011.09
	CAHS011.09
9 Write the one dimension wave equation of partial differential equation Remember CA	CAHS011.09
1 1	CAHS011.09
^ ^	CAHS011.09
differential equation	21115011.05
	CAHS011.09
$\log(az-1) = x + ay + b$	
13 Form the partial differential equation by eliminating the constants from Understand CA	CAHS011.09
$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha \text{ where } \alpha \text{ is a parameter.}$	
	CAHS011.09
	CAHS011.09
equation.	
	CAHS011.09
equation.	CALICOLL OO
17 Solve p- x^2 =q+ y^2 Understand CA	CAHS011.09 CAHS011.09
1 1 1 1 1	CAHS011.09
A • A • A • A	CAHS011.09
Part - B (Long Answer Questions)	CA113011.09
	CAHS011.09
from	2/11/5011.07
$f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$	
	CAHS011.09
	CAHS011.09
	CAHS011.09
5 Solve the partial differential equation $px + qy = pq$ Understand CA	CAHS011.09
	CAHS011.09
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$	
$\left \frac{a^2 + b^2 + c^2}{b^2} \right = 1.$	

7	Colve the mential differential equation	Understand	CAHS011.09
7	Solve the partial differential equation	Understand	CAR3011.09
	$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$		~
8	Solve the partial differential equation	Understand	CAHS011.09
	$(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx.$		
9	Solve the partial differential equation.	Understand	CAHS011.09
	(mz-ny)p+(nx-lz)q=(ly-mx).		
10	Solve the partial differential equation $y^2zp+x^2zq=xy^2$	Understand	CAHS011.09
11	Solve the partial differential equation $z(p^2 - q^2) = x - y$	Understand	CAHS011.09
12	Solve the partial differential equation $\frac{x^2}{p} + \frac{y^2}{q} = z$	Understand	CAHS011.09
13	Solve the partial differential equation $p-x^2=q+y^2$.	Understand	CAHS011.09
14	Solve the partial differential equation $q = px + p$.	Understand	CAHS011.09
15	Solve the partial differential equation $z^2 = pqxy$.	Understand	CAHS011.09
16	Solve the partial differential equation $z = p^2x + q^2y$	Understand	CAHS011.09
17	Find the differential equation of all spheres whose centres lie on z-axis with a given radius r.	Understand	CAHS011.09
18	Find a complete integral of 2(z+xp+yq)=yp ²	Understand	CAHS011.09
19	Solve the partial differential equation	Understand	CAHS011.09
	$(x^{2} - y^{2} - yz)p + (x^{2} - y^{2} - zx)q = z(x - y).$		
20	Solve the partial differential equation $(x^2-y^2-z^2)p+2xyq = 2xz$	Understand	CAHS011.09
Part -	- C (Problem Solving and Critical Thinking)		
1	Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$ by the method of separation	Understand	
1	$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial t}$		CAHS011.09
1	of variables.		CAHS011.09
2		Understand	CAHS011.09
	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When		
2	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$.	Understand Understand	CAHS011.09
3	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$. Solve by the method of separation of variables $2u_x + u_y = 3u$ and	Understand Understand	CAHS011.09 CAHS011.09
3	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$. Solve by the method of separation of variables $2u_x + u_y = 3u$ and $u(0,y) = e^{-5y}$	Understand Understand Understand	CAHS011.09 CAHS011.09
3	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$. Solve by the method of separation of variables $2u_x + u_y = 3u$ and $u(0,y) = e^{-5y}$ A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(1-x)$, find the displacement of the string at any	Understand Understand Understand	CAHS011.09 CAHS011.09
3 4 5	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$. Solve by the method of separation of variables $2u_x + u_y = 3u$ and $u(0,y) = e^{-5y}$ A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(1-x)$, find the displacement of the string at any distance x from one end at any time t.	Understand Understand Understand Understand	CAHS011.09 CAHS011.09 CAHS011.09
3	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$. Solve by the method of separation of variables $2u_x + u_y = 3u$ and $u(0,y) = e^{-5y}$ A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(1-x)$, find the displacement of the string at any	Understand Understand Understand	CAHS011.09 CAHS011.09
3 4 5	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$. Solve by the method of separation of variables $2u_x + u_y = 3u$ and $u(0,y) = e^{-5y}$ A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(1-x)$, find the displacement of the string at any distance x from one end at any time t.	Understand Understand Understand Understand	CAHS011.09 CAHS011.09 CAHS011.09
3 4 5	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$. Solve by the method of separation of variables $2u_x + u_y = 3u$ and $u(0,y) = e^{-5y}$ A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(1-x)$, find the displacement of the string at any distance x from one end at any time t. Solve the one dimensional heat flow equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$	Understand Understand Understand Understand	CAHS011.09 CAHS011.09 CAHS011.09 CAHS011.10
3 4 5	of variables. Solve by the method of separation of variables $2xz_x - 3yz_y = 0$. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$. Solve by the method of separation of variables $2u_x + u_y = 3u$ and $u(0,y) = e^{-5y}$ A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(1-x)$, find the displacement of the string at any distance x from one end at any time t. Solve the one dimensional heat flow equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ given that $u(0,t) = 0, u(L,t) = 0, t > 0$ and	Understand Understand Understand Understand	CAHS011.09 CAHS011.09 CAHS011.09

7	Derive the complete solution for the one dimensional heat equation with	Understand	CAHS011.10
	zero boundary problem with initial temperature $u(x,0) = x(L-x)$ in the		
	interval (0, L).		
8	Write the boundary conditions for a rectangular plate is bounded by the		CAHS011.10
	line x=0, y=0, x=a, and y=b its surface are insulated the temperature along		
	$x=0$ and $y=0$ are kept at 0^{0} C and the other are kept at 100^{0} C.		
9	a string is stretched and fastened to two points at x=0 and x=L.Motion is		CAHS011.10
	started by displacing the string into the form $y=k(1x-x^2)$ from which it is		
	released at time t=0. Find the displacement of any point on the string at a		
	distance of x from one end at time t		
10	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in	Understand	CAHS011.10
	a position given by $y = y_0 \sin^3 \frac{\pi x}{l}$. If it is released from rest from this		
	position, find the displacement(x,t).		

Prepared By: Mrs.P Rajani, Assistant Professor, Dept of FE.

HOD, FRESHMAN ENGINEERING