INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043

CIVIL ENGINEERING QUESTION BANK

Course Name	$:$	Surveying
Course Code	$:$	A30108
Class	$:$	II Year
Branch	$:$	CIVIL ENGINEERING
Year	$:$	$2016-2017$
Course Coordinator	$:$	B. Suresh Civil Engineering Department
Course Faculty	$:$	B.Suresh Civil Engineering Department

OBJECTIVES

Successful completion of the course will enable the students to:

1. Understand angle and distance measurement; and differential, profile, cross-section, and topographic leveling procedures and apply them to field conditions
2. Prepare proper field notes and data collection approaches
3. Use standard survey tools
4. Understand and apply measurement error, accuracy, precision and techniques to improve accuracy of surveys
5. Work effectively in groups for field survey and data interpretation
6. Analyze and synthesize survey data
7. Understand (introductory level) geographic information systems (GIS)

1. Group - A (Short Answer Questions)

S. No	Question INTRODUCTION	Blooms Taxonomy Level	Program Outcome		
1	Define Surveying	Understanding	1		
2	State the Principle of surveying	Understanding	1		
3	State the two Primary division of surveying	Understanding	1		
4	What are the different types of chains	Understanding	1		
5	State the types of errors in chain	Understanding	1		
6	What are the different types of tapes	Understanding	1		
7	What are the different types of compasses	Understanding	1		
8	Define Magnetic Bearing	Understanding	2		
9	Define True Bearing	Understanding	2		
10	Define Arbitary Bearing	Understanding	2		
11	Define Magnetic Meridian	Understanding	2		
12	Define local attraction	Understanding	2		
13	Define magnetic Dip	Understanding	2		
14	Define magnetic Declination	Understanding	3		
15	What is local Attraction	Understanding	3		

6	What is a check line	Remembering	5
7	Write the formula for an area using mid-ordinate rule	Understanding \& remembering	6
8	Write the formula for an area using average ordinate rule	Understanding \& remembering	6
9	Write the formula for an area using trapezoidal rule	Understanding \& remembering	6
10	Write the formula for an area using simpson's rule	Understanding \& remembering	6
11	Write the formula to calculate volume using Meridian distance method	Understanding \& remembering	6
12	Write the formula to calculate volume using Double Meridian distance method	Understanding \& remembering	6
13	Write the formula to calculate volume using Departure and total latitude method	Understanding \& remembering	6
14	Write the formula to calculate volume using Co-Ordinates method	Understanding \& remembering	6
15	Write the formula to calculate volume using trapezoidal rule	Understanding \& remembering	6
UNIT-IVTHEODOLITE			
1	Define transit theodolite	Understanding \& remembering	7
2	Define Non-transit theodolite	Understanding \& remembering	7
3	Define is vertical axis	Understanding \& remembering	7
4	Define horizontal axis	Understanding \& remembering	7
5	Define line of sight or line of collimation	Understanding \& remembering	7
6	Define axis of level tube	Understanding \& remembering	7
7	Define centring	Understanding \& remembering	7
8	Define transiting	Understanding \& remembering	7
9	Define swinging of telescope	Understanding \& remembering	7
10	Define face left observation	Understanding \& remembering	8
11	Define face Right observation	Understanding \& remembering	8
12	Define telescope normal	Understanding \& remembering	8

13	Define telescope inverted	Understanding \& remembering	8
14	Define vertical circle of a telescope	Understanding \& remembering	8
15	Define trigonometric leveling	Understanding \& remembering	8
UNIT-VTACHEOMETRIC SURVEYING			
1	Define Tachometry	Remembering \& Understanding	9
2	Write the formula for to calculate horizontal distance if staff held vertical	 Understanding	9
3	Write the formula for to calculate vertical distance if staff held vertical	Understanding	9
4	What is a simple curve	Understanding	9
5	What is a compound curve	Understanding \& remembering	9
6	What is a reverse curve	Understanding	9
7	What is forward tangent	 Understanding	9
8	What is backward tangent	 Understanding	9
9	What is long cord in a curve	 Understanding	9
10	What is point of tangency	Remembering \& Understanding	9
11	What is point of intersection	 Understanding	9
12	What is the main function of a total station	Remembering Understanding	9
13	What are the demerits in a total station	 Understanding	9
14	Define GIS	 Understanding	9
15	Define GPS	Remembering \& Understanding	9

2. Group - II (Long Answer Questions)

S. No	Question	Blooms Taxonomy Level	Program Outcome
UNIT-I INTRODUCTION			
1	What is the Principle of surveying	Understanding \& remembering	1
2	Give the classification of surveying in brief based up on Nature of field	Understanding \& remembering	1
3	Give the classification of surveying in brief based up on purpose/objectives	Understanding \& remembering	1
4	Give the classification of surveying in brief based up on Instruments used	Understanding \& remembering	1
5	A 20 m chain used for a survey was found to be 20.10 m at the beginning and 20.30 m at the end of the work. The area of the plan drawn to a scale of $1 \mathrm{~cm}=8 \mathrm{~m}$ was measured with the help of a planimeter and was found to be $32.56 \mathrm{sq} . \mathrm{cm}$ find the true area of the field.	 Apply	2
6	A 30 m chain used for a survey was found to be 20.10 m at the beginning and 20.50 m at the end of the work. The area of the plan drawn to a scale of $1 \mathrm{~cm}=6 \mathrm{~m}$ was measured with the help of a planimeter and was found to be $32.56 \mathrm{sq} . \mathrm{cm}$ find the true area of the field.	 Apply	2
7	A 20 m chain was found to be 10 cm too long after chaining a distance of 1500 m . It was found to be 18 cm too long at the end of the day's work after chaining a total distance of 2900 m . Find the true distance if the chain was corrected before the commencement of the work.	 Apply	2
8	A line was measured with a steel tape which is exactly 30 m long at $18^{\circ} \mathrm{C}$ and found to be 452.343 m . The temperature during measurement was $32^{\circ} \mathrm{C}$. find the true length of the line .Take coefficient of thermal expansion of tape ${ }^{0} \mathrm{C}=0.0000117$	analyze \& Apply	2
9	The area of the field was found to be $4000 \mathrm{~m}^{2}$ we measured with a chain of 30 m length if the length of the chain was 0.11 m short. Determine the correct area.	analyze \& Apply	2
10	The area of the field was found to be $6000 \mathrm{~m}^{2}$ we measured with a chain of 20 m length if the length of the chain was 0.21 m short. Determine the correct area.	 Apply	2
11	The distance between the points measured along a slope is 428 m find the horizontal distance between them if i) The angle of slope between the points is 8^{0} ii) The difference in level is 62 m iii) The slope is1 in 4	 Apply	2
12	A steel tape 20 m long standardized at $55^{\circ} \mathrm{F}$ with a pull of 10 Kg was used for measuring a base line. Find the correction per tape length, if the temperature at the time of measurement was $80^{\circ} \mathrm{F}$ and the pull exerted was 16 Kg Take weight of tape as 0.8 Kg and $\mathrm{E}=2.109 * \mathrm{X} 10^{6} \mathrm{Kg} / \mathrm{Cm}^{2}$ coefficient of thermal expansion per $1^{0} \mathrm{~F}=6.2 \times 10^{-6}$ and area of tape	analyze \& Apply	2

S. No	Question							Blooms Taxonomy Level	Program Outcome
4	Define the terms i) Level surface ii) Datum iii) Bench mark iv) Mean sea level							analyze \& Apply	4
5	Explain briefly about the different types of leveling instruments							analyze \& Apply	4
6	The following staff readings were observed successively with a level, the instrument having been moved after third, sixth and eight readings $2.228,1.606,0.988,2.090,2.864,1.262,0.602,1.982,1.044,2.684$ meters. Enter the above readings in a page of a level book and calculate the $\mathrm{R} L$ of points if the first reading was taken with a staff held on a bench mark of 432.384 m							analyze \& Apply	4
7	Classify the different type of errors in leveling							$\begin{gathered} \text { analyze \& } \\ \text { Apply } \end{gathered}$	4
8	The following staff readings were observed successively with level, the instrument having moved after the second, fourth and eight readings $0.875,1.235,2.310,1.385,2.930,3.125,4.125,0.120,1.875,2.030$, 3.765 The first reading was taken with the staff held upon a benchmark of elevation 132.135 apply usual checks							analyze \& Apply	4
9	Write the temporary adjustments of a level							analyze \& Apply	4
10	The page of an old field book is shown below. Some readings are not clear. Determine these readings from the available data							analyze \& Apply	4
	Staf BS f stati on 	IS	FS	Rise	Fall	$\overline{\mathrm{RL}}$	Re ma rks		
	P 0.635					215.915			
	Q				$\begin{gathered} 0.68 \\ 0 \end{gathered}$				
	R		0.865				BM RL		
	S	0.785		0.430					
	T 0.935				$\begin{gathered} 0.32 \\ 0 \end{gathered}$				
	U					215.715			
11	The following ten readings were taken with a level, the instrument being shifted after the fifth and eighth readings: $1.315,0.965,1.345,1.1 .05$, $0.875,1.155,1.305,1.675,1.345$ and 1.875 . The RL of the first turning point is 100.000 . Find the reduced levels of the remaining points by the Rise and fall method.							 Apply	4
12	Write a note on interpolation of contours							Understanding	4
13	Write a note on Uses and advantage s of contours							Understanding	4
14	Write a note on characteristics of contours							Understanding	4
15	Write a note on uses of contour maps							Understanding	4

S. No	Question									Blooms Taxonomy Level	Program Outcome
	0				6		3				
	Compute the area included between the chain line, the hedge and offset by Simpson's rule.										
8	The following perpendicular offsets were taken from a chain line to a hedge									Analyze \& Apply	6
	chainag e 0	15	30	45	60	70	80	100	120		
	offset 7.6 0	8.5	10.7	12.8					6.4		
	Compute the area included between the chain line, the hedge and offset by Trapezoidal rule.										
9	Determine the area of the closed traverse ABCDA by the M.D. method									Analyze \& Apply	6
	Line		Latitude				Departure				
	AB		+108				+4				
	BC		+15				+249				
	CD		-123				+4				
	DA		0				-257				
10	Determine the area of the closed traverse ABCDA by the D.M.D. method									Analyze \& Apply	6
	Line		Latitude				Departure				
	AB		+108				+4				
	BC		+15				+249				
	CD		-123				+4				
	DA		0				-257				
11	Determine the area of the closed traverse ABCDA by Departure and total latitude method									Analyze \& Apply	6
	Line		Latitude				Departure				
	AB		+108				+4				
	BC		+15				+249				
	CD		-123				+4				
	DA		0				-257				
12	Determine the area of the closed traverse ABCDA by Co- ordinate method									Analyze \& Apply	6
	Line		Latitude				Departure				
	AB		+108				+4				
	BC		+15				+249				
	CD		-123								
	DA		0				-257				
13	A railway embankment is 10 m wide with side slope 1.5 to 1 assume the ground to be level in a direction traverse to the centre line, calculate the volume contained in a length of 120 m , the centre height at 20 m intervals being in meters $1.2,4.7,3.8,4.0,1.8,2.8,2.5$ solve using Prismoidal rule									Analyze \& Apply	6
14	A railway embankment is 10 m wide with side slope 1.5 tol assume the ground to be level in a direction traverse to the centre line, calculate the volume contained in a length of 120 m , the centre height at 20 m intervals being in meters $2.2,3.7,3.8,2.0,3.8,3.8,2.5$ solve using Trapezoidal rule									Analyze \& Apply	6
15	A railway embankment is 10 m wide with side slope 1.5 to 1 assume the									Analyze \&	6

S. No	Question	Blooms Taxonomy Level	Program Outcome
	ground to be level in a direction traverse to the centre line, calculate the volume contained in a length of 120 m , the centre height at 20 m intervals being in meters $1.8,3.7,4.8,4.0,2.8,2.8,3.5$ solve using Prismoidal rule	Apply	
UNIT-IVTHEODOLITE			
1	Draw neat sketch of a vernier theodolite. Describe its main parts and their functions	Understanding	7
2	Explain the temporary adjustments of theodolite	Understanding	7
3	Explain the procedure for the reiteration method of measuring horizontal angles.	Understanding	7
4	Explain briefly the methods used to locate details with a theodolite.	Understanding	7
5	Explain the steps involved in measuring horizontal angle with a theodolite.	Understanding	8
6	Explain briefly the possible instrumental errors in theodolite work and the precautions that should be taken to eliminate them.	Understanding	8
7	What is mean by face left and face right of theodolite? How would you change face? What instrumental errors are eliminated by face left and face right observations?	Understanding	8
8	Define the terms i) transit theodolite ii) Non-transit theodolite iii) vertical axis iv) horizontal axis	Understanding	8
9	Define the terms i) transiting ii) swinging of telescope iii) face left observation iv) face Right observation	Understanding	8
10	Define triangulation method in detail	Understanding	8
UNIT-VTACHEOMETRIC SURVEYING			
1	Write short notes on electronic theodolite	Understanding	9
2	Explain briefly the working principle of electronic theodolite	Understanding	9
3	Describe briefly the advantages of electronic theodolite	Understanding	9
4	Describe briefly the salient features of total station	Understanding	9
5	Explain functioning and capabilities of a total station	Understanding	9
6	Describe briefly the advantages of total station	Understanding	9

S. No	Question	Blooms Taxonomy Level	Program Outcome
7	Write a brief note on GPS.	Understanding	9
8	Explain briefly how GPS works to determine the position coordinates	Understanding	9
9	Write briefly about the applications of GIS.	Understanding	9
10	Write short notes on GIS.	Understanding	9
11	State the type of curves and explain the components of a simple curve	Understanding	9
12	What are the merits and demerits of total station	Understanding	9
13	State the advantages of GPS	Understanding	9
14	State the any two techniques followed in advantage surveying	9	
15	What are the application of advance surveying	Understanding	9

3. Group - III (Analytical Questions)

11 | P a g e

S.No	QUESTIONS								Blooms Taxonomy Level	Program Outcome
4	The page of an old field book is shown below. Some readings are not clear. Determine these readings from the available data								Apply \& Evaluate	4
	Sta ff sta tio n	BS	IS	FS	Rise	Fall	RL	\qquad		
	P	0.635					215.915			
	Q		F			$\begin{gathered} \hline 0.68 \\ 0 \end{gathered}$,	\bigcirc		
	R			0.865				BM RL 215.685		
	S		0.785		$\begin{gathered} \hline 0.43 \\ 0 \end{gathered}$					
	T	0.935				0.32 0				
	U						215.715			
5	Two stations A and B are 1200 m apart. A level was set up between the two stations 100 m away from A. the readings observed were 1.375 m on A and 2.465 on B. Find the true difference in elevation between A and B.								 Evaluate	4
6	What are contour? Explain uses and characteristics of contours								Understandin g	4
7	Describe with the help of sketches, the characteristics of contours.								Understandin g	4
8	Describe the various methods of indirect contouring								Understandin g	4
9	Explain various methods of interpolation of contours								Understandin g	4
10	What is cross-sectioning? What is its importance? How would you draw a longitudinal section and a cross section?								Understandin g	4
UNIT-IIICOMPUTATION OF AREAS AND VOLUMES										
1	Draw the sketch of a two level section, and derive an expression for the area of cross-section								Understandin g	5
2	Explain the method of computation of volume by the (i) Trapezoidal's rule (ii) Prismoidal rule								Understandin g	5
3	How would you determine the capacity of a reservoir from the contour plan								Understandin g	5
4	Calculate the side widths and cross-sectional area of an embankment having the following dimensions.$\begin{aligned} & \text { Formation width }=22 \mathrm{~m} \\ & \text { Side slope }=2 \text { to } 1 \\ & \text { Centre height }=10 \mathrm{~m} \\ & \text { Transverse slope }=11 \text { to } 1 \end{aligned}$								 Evaluate	5

S.No	QUESTIONS			Blooms Taxonomy Level	Program Outcome
	128.0 75.14 - 136.0 285.25 - Compute the volumes of cut and fill in the transitional area from chainage 100.00 to 136.0				

Prepared by: Mr. B Suresh, Assistant Professor, Civil Engineering

HOD, CIVIL ENGINEERING

