INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad -500 043
COMPUTER SCIENCE AND ENGINEERING
TUTORIAL QUESTION BANK 2016-2017

Course Name	$:$	STRUCTURAL ANALYSIS - I
Course Code	$:$	A40115
Class	$:$	II B. Tech II Semester
Branch	$:$	Civil Engineering
Year	$:$	$2016-2017$
Course Faculty	$:$	Mr. G. Anil Kumar, Assistant Professor, CE

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

PART - A (SHORT ANSWER QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Program Outcome
UNIT - I			
1	Define static indeterminacy	Remember	2
2	Explain different types of indeterminacies	Remember	2
3	Explain internal indeterminacy	Understanding \& Remember	2
4	Define Tension Coefficient	Understanding \& Remember	2
5	State Kinematic indeterminacy	Understanding \& Remember	2
6	Write different methods for computing deflection of determinate beam	Understanding \& Remember	2
7	Difference between Internal and External Stability	Understanding \& Remember	2
8	What are the different types of frames based on stability	Understanding \& Remember	2
9	What are the different types of frames and explain the same with neat diagrams	Understanding \& Remember	2
1	Define Statically Indeterminacy and Degree of Indeterminacy	Understanding \&	2

1 |Page

S. No	Question	Blooms Taxonomy Level	Program Outcome
		Remember	
UNIT - II			
1	Define term deflection of a beam.	Remember	2
2	State conjugate beam theorem	Remember	2
3	Write relation between load, shear force and bending moment acting on a structure	Understanding \& Remember	2
4	State moment area theorems	Understanding \& Remember	2
5	Define strain energy	Understanding \& Remember	2
6	State the castaglianos theorem	Understanding \& Remember	2
7	A steel rod has a square cross section of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ and a length of 2 M . Calculate strain energy when a stress of 400 Mpa is produced by stretching it. Take E $=200$ Gpa	Analyze and evaluate	2,5
8	Calculate Strain energy due to shear stress for a member which has a length of $0.5 \mathrm{M}, 120 \mathrm{~mm}$ Diameter and a pull of 5 KN . Take $\mathrm{E}=200$ Gpa.	Analyze and evaluate	2,5
9	What is the temperature effect on three hinged arches	Understanding \& Remember	2
1	How three hinged arch is different from two hinged arch and explain it	Understanding \& Remember	2
UNIT - III			
1	What are the reaction values for propped cantilever beam when it carries point load and udl	Remember	2
2	Calculate maximum bending moment for a propped cantilever beam which carries a udl of $10 \mathrm{Kn} / \mathrm{m}$ for a span of 2 m	Analyze and evaluate	2,5
3	Calculate point of contra flexure for propped cantilever beam has a 4 m length carries point load of 20 KN at free end	Analyze and evaluate	2,5
4	Difference between cantilever beam and propped cantilever beam	Understanding \& Remember	2
5	Calculate deflection at mid span for a propped cantilever beam of load $10 \mathrm{Kn} / \mathrm{m}$ for a span of 4 m	Analyze and evaluate	2
6	What is the effect of sinking of support for fixed beam	Understanding \& Remember	2
7	What is effect of rotation	Analyze and evaluate	2
8	Calculate slope and deflection for a fixed beam of load $10 \mathrm{Kn} / \mathrm{m}$ for a span of 4 m	Analyze and evaluate	2,5
9	Difference between propped cantilever beam and fixed beam	Understanding \& Remember	2
1	A fixed beam of length 3 m is subjected to two point loads 9 KN at the middle third point. Calculate Bending moment at the fixed end.	Analyze and evaluate	2,5
UNIT - IV			
1	State Clapeyron's three moment theorem and write equation also.	Remember	2
2	What is the effect of sinking of support in Three moment theorem	Remember	2
3	Explain Continuous beam with neat diagram	Understanding \& Remember	2
4	Derive Slope deflection equation in continuous beam	Understanding \& Remember	2
5	What is the effect of sinking of support in slope deflection method	Understanding \& Remember	2
6	Define stiffness and relative stiffness of a member with different	Understanding \&	2

2|Page

S. No	Question	Blooms Taxonomy Level	Program Outcome
	far end conditions	Remember	
7	Define Carry over factor	Understanding \& Remember	2
8	Define Distribution factor and its importance at fixed end and simply support end	Understanding \& Remember	2
9	Define Elastic curve	Understanding \& Remember	2
1	Importance of Elastic curves in beams.	Understanding \& Remember	2
UNIT - V			
1	Explain the term "Focal Length".	Understanding \& Remember	2
2	Define Influence Line.	Understanding \& Remember	2
3	List out the uses of Influence lines.	Understanding \& Remember	2
4	State Muller Breslauces Principle.	Understanding \& Remember	2
5	Where do you get rolling loads in practice	Understanding \& Remember	2
6	What is meant by absolute maximum bending moment in a beam	Understanding \& Remember	2
7	Where do you have the absolute maximum bending moment in a simply supported beam when a series of wheel loads cross it	Understanding \& Remember	2
8	What do you understand by the term reversal of stresses	Understanding \& Remember	2
9	State the location of maximum shear force in a simple beam with any kind of loading.	Understanding \& Remember	2
1	What is the absolute maximum bending moment due to a moving udl longer	Understanding \& Remember	2

PART - B (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Program Outcome
UNIT - I			
1	Differentiate between pin-jointed and rigid jointed plane frames	Understanding \& Analyze	2,5
2	Using method of Tension Coefficient analysis, determine the forces in the members of the plane truss shown in fig.	Analyze and evaluate	2,5,11
3	Fig shows the plan of a tripod ; the feet $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ being in the horizontal plan and the apex S being 4 m above the plane Horizontal loads of 125 kN and 200 kN are applied at D as shown. Find the forces in all the members assuming that all the joints are pin joints.	Analyze and evaluate	2,5,11

S. No	Question	Blooms Taxonomy Level	Program Outcome
4	Analyze the plane truss shown in figure using the method Tension Coefficients and find the forces in the members.	Analyze and evaluate	2,5,11
5	Using the Method of Tension analyses the cantilever, plan truss shown in figure. Find the member forces.	Analyze and evaluate	2,5,11
6	Calculate the forces in members of pin jointed space truss shown in figure, using Tension Coefficient method.	Analyze and evaluate	2,5,11
7	Each bar of the truss shown in fig 2 has a cross section of 625 mm 2 . Calculate the horizontal deflection of the joint C .	Analyze and evaluate	2,5,11

S. No	Question	Blooms Taxonomy Level	Program Outcome
8	A portal frame ABCD is hinged at $\mathrm{A} \& D$ and has rigid joints. The frame is loaded as shown in Fig. Analyze the frame using minimum strain energy method. Plot the bending moment diagram.	Analyze and evaluate	2,5,11
9	Determine the vertical and horizontal deflections of the free end of the lamp post shown in fig. 1 . Take $\mathrm{EI}=16000 \mathrm{kN}-\mathrm{m} 2$.	Analyze and evaluate	2,5,11
10	Determine the vertical and horizontal deflection at the free end of the bent shown in fig. 4. Use the unit load method. Assume uniform flexural rigidity EI throughout.	Analyze and evaluate	2,5,11
UNIT - II			
1	Define moment area theorem and explain its applications in beams	Apply, Analyze and evaluate	a

S. No	Question	Blooms Taxonomy Level	Program Outcome
2	A beam of 12 m span is subjected to a point load of 125 kN at point E as shown in figure 1 . Find the slopes at point A, B, C \& E and the deflections at points C, D \& E. Use conjugate beam method.	Analyze and evaluate	b
3	An overhanging beam PQR is loaded as shown in figure 2. Find the slopes over each support at the right end. Find the maximum upward deflection between the supports. Use Macaulay"s method. Take E = $2.1 \times 105 \mathrm{~N} / \mathrm{mm} 2, I=6 \times 108 \mathrm{~mm} 4$.	Analyze and evaluate	b
4	A beam $A B$ of 4 m span is simply supported as shown in figure 3 , determine : TakeE $=2 \times 108 \mathrm{kN} / \mathrm{mm} 2, \mathrm{I}=2 \times 10-5 \mathrm{~m} 4$ a) Deflection at C, b) Maximum deflection	Analyze and evaluate	b
5	A cantilever $A B$ of length L is subjected to a concentrated load w and a couple u at the free end, as shown in figure 4, determine the slope and deflection at the free end by moment area method. EI (flexural rigidity) is constant.	Analyze and evaluate	b
6	Evaluate slope at point A and deflection at point C for the beam shown in fig no. 5 , using castigliano"s theorems. Take $\mathrm{e}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=$ $2 \times 108 \mathrm{~mm} 4$.	Analyze and evaluate	b
7	Analyse the pin-jointed frame loaded as shown in figure by the stiffness method. Find the force in any one of the diagonal member. All members have the same cross sectional area.	Analyze and evaluate	c

S. No	Question	Blooms Taxonomy Level	Program Outcome
8	Using Method of sections determine the forces in the members BC, GC and GF of the pin jointed plane truss as shown in fig.	Analyze and evaluate	c
9	Find the forces in the members $\mathrm{AF}, \mathrm{AB}, \mathrm{CD}, \mathrm{DE}$ and the reaction forces in A and D. $C D=3 M$.	Analyze and evaluate	c
10	Using Method of sections determine the forces in all the members of pin jointed truss.	Analyze and evaluate	c
UNIT - III			
1	A cantilever of length 10 m carries udl of $800 \mathrm{~N} / \mathrm{m}$ length over the whole length. The free end of the cantilever is supported on a prop. The prop sinks by 5 mm . If $\mathrm{E}=3 \mathrm{X} 105 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=108 \mathrm{~mm} 4$, then the prop reaction	Understanding, Analyze \& Evaluate	2,5
2	A cantilever of length 8 m carries udl of $2 \mathrm{Kn} / \mathrm{m}$ run over the whole length. The cantilever is propped rigidly at the free end. If $\mathrm{E}=1 \mathrm{X} 105 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=108 \mathrm{~mm} \mathrm{4}$, then determine reaction at the rigid prop and deflection at the center	Analyze and evaluate	2,5,11
3	A cantilever of length 5 m carries a point load of 24 kn at its center. The cantilever is propped rigidly at the free end. Determine the reaction at the rigid prop.	Analyze and evaluate	2,5,11
4	A cantilever of length 4 m carries a UDL of $1 \mathrm{Kn} / \mathrm{m}$ run over the whole span length. The cantilever is propped rigidly at the free end. If the value of If $\mathrm{E}=2 \mathrm{X} 105 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=108 \mathrm{~mm} 4$, Determine the reaction at the rigid prop and deflection at the center.	Analyze and evaluate	2,5,11
5	A cantilever of length 8 m carries UDL of $0.8 \mathrm{Kn} / \mathrm{m}$ length over the whole	Analyze and	2,5,11

S. No	Question	$\begin{gathered} \text { Blooms } \\ \text { Taxonomy Level } \\ \hline \end{gathered}$	Program Outcome
	length. The free end of the cantilever is supported on a prop. The prop sinks by 5 mm . If $\mathrm{E}=2 \mathrm{X} 105 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=108 \mathrm{~mm} 4$, then the prop reaction	evaluate	
6	A fixed beam AB, 5 m long, carries a point load of 48 kn at its center. the moment of inertia of the beam is $5 \times 107 \mathrm{~mm} 4$ and value of E for the beam materials is $2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Determine Fixed end moments at A and B, and Deflection under the load.	Analyze and evaluate	2,5,11
7	A fixed beam of length 5 m carries a point load of 20 KN at a distance of 2 m from A . Determine the fixed end moments and deflection under the load, if the flexural rigidity of the beam is $1 \times 104 \mathrm{Kn} / \mathrm{m} 2$	Analyze and evaluate	2,5,11
8	A fixed beam of length 6 m carries point loads of 20 kn and 15 kn at distance 2 m and 4 m from the left end A. Find the fixed end moments and the reactions at the supports. Draw B.M and S.F diagrams.	Analyze and evaluate	2,5,11
9	A fixed beam of length 3 m carries tow point loads of 30 kn each at a distance of 1 m from both ends. Determine the fixing moments and draw B.M diagram.	Analyze and evaluate	2,5,11
10	A fixed beam AB of length 6 m carries a uniformly distributed load $3 \mathrm{kn} / \mathrm{m}$ over the left half of the span together with a point load of 4 kn at a distance of 4.5 m from the left end. Determine the fixing end moments and support reactions.	Analyze and evaluate	2,5,11
UNIT - IV			
1	A 3-span continuous beam ABCD has fixed end supports. On end span $A B=6 \mathrm{~m}$ there is u.d.l. of $20 \mathrm{kN} / \mathrm{m}$, while on $\mathrm{CD}=5 \mathrm{~m}$ there is a point load of 80 kN at mid span on the central span $\mathrm{BC}=5 \mathrm{~m}$, there is a point load of 50 kN at 3 m from B . If the moment of inertia of BC is twice that of $A B$ and $C D$ analyse by moment distribution method and sketch the B.M.D	Analyze \& evaluate	2,5
2	If support B of the continuous beam of Question No. 1 settles by 30 mm , obtain the support moments by slope deflection method, taking $\mathrm{I}=400$ cm 4 and $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Sketch the B.M.D.	Analyze and evaluate	2,5,11
3	Using Slope Deflection method obtain the support moments for the 2span continuous beam shown below. Sketch BMD.	Analyze and evaluate	2,5,11
4	Using Claperoyn"s method finds the support movements for the 2-span continuous beam loaded as shown below figure 2. Sketch the B.M.D.	Analyze and evaluate	2,5,11
5	Using moment distribution method, analyse the 2-span continuous beam ABC , having end supports A and C fixed. There is a load of 5 kN in span $A B=5 \mathrm{~m}$ at 3 m from A , while on span $B C$ there is a load of 8 kN at 2.5 m from C. Sketch the B.M.D	Analyze and evaluate	2,5,11

S. No	Question	Blooms Taxonomy Level	Program Outcome
6	If the end spans A and C of the beam given in Question No. 2 are simply supported analyse using slope deflection method. Sketch the BMD.	Analyze and evaluate	2,5,11
7	Analyze two span continuous beam ABC in which support B sinks by 5 mm by slope deflection method. Then draw Bending moment \& Shear force diagram. Take EI constant and draw Elastic curve.	Analyze and evaluate	2,5,11
8	Analyze continuous beam ABCD by slope deflection method and then draw bending moment diagram. Take EI constant.	Analyze and evaluate	2,5,11
9	Analyse the continuous beam ABCD shown in figure by slope deflection method. The support B sinks by 15 mm . Take $\mathrm{E}=200 \mathrm{x} 105 \mathrm{KN} / \mathrm{m} 2$ and $\mathrm{I}=120 \times 106 \mathrm{~m} 4$	Analyze and evaluate	2,5,11
10	Three span continuous beam ABCD is fixed at A and continuous over B, C and D . The beam subjected to loads as shown. Analyse the beam by slope deflection method and draw bending moment and shear force diagram.	Analyze and evaluate	2,5,11
UNIT - V			
1	Two point loads of 125 kN and 250 kN spaced 4 m in figure 1, apart cross a girder of 17.5 m from left to right with the 125 kN load leading. Draw the influence line for the bending moment and find the value of maximum bending moment at a section $\mathrm{C}, 7.5 \mathrm{~m}$ from the left hand support. Also find the absolute maximum bending moment due the given load system. Figure 1	Understanding \& Analyze	2,5,11

S. No	Question	Blooms Taxonomy Level	Program Outcome
2	Four wheel load of $7,5,9 \& 6 \mathrm{kN}$ cross a girder of span 22.5 m from the left to right followed by an UDL of $5 \mathrm{kN} / \mathrm{m}$ of 4 m length. The 7 kN load is leading. The spacing between the loads are shown in fig 2 . The head of UDL is 3 m from the last load of 6 kN . Using influence lines calculate the shear force and bending moment at a section 8 m form the left support when the 5 kN load is at the center of span. Figure 2	Analyze and evaluate	2,5,11
3	Draw the influence line diagrams for the forces in the members P, Q, \& R of the truss shown in fig 3. Figure 3	Analyze and evaluate	2,5,11
4	Draw the influence lines for the members U1U2,, L2L3, U3L3, \& U4L4 of the deck type girder shown in figure 4.	Analyze and evaluate	2,5,11
5	Sketch the influence line diagram for S.F. and B. M. at 4 m from the left end of a simply-supported girder of span 10 m . Hence find the maximum S.F. and maximum B.M. at the section if two wheel loads of 8 kN and 16 kN spaced 2 m apart move from left to right.	Analyze and evaluate	2,5,11
6	Illustrate the procedure to find the forces in the members of a Pratt truss due to moving loads using the influence line diagrams.	Analyze and evaluate	2,5,11
7	A UDL of intensity $10 \mathrm{kN} / \mathrm{m}$ and 4 m long crosses a simply supported girder of 12 m span. Sketch the I.L. diagrams for S.F. and B.M. at $1 / 3$ span. Hence find the maximum S.F. and B.M. at the section. Find also the absolute maximum S.F. and B.M.	Analyze and evaluate	2,5,11
8	A UDL of intensity $20 \mathrm{kN} / \mathrm{m}$ and 5 m long crosses a simply supported girder of 15 m span. Sketch the I.L. diagrams for S.F. and B.M. at mid span. Hence find the maximum S.F. and B.M. at the section. Find also the absolute maximum S.F. and B.M.	Analyze and evaluate	2,5,11
9	Sketch the influence line diagram for S.F. and B. M. at 5 m from the right end of a simply-supported girder of span 15 m . Hence find the maximum S.F. and maximum B.M. at the section if two wheel loads of 10 kN and 18 kN spaced 4 m apart move from left to right.	Analyze and evaluate	2,5,11
10	Four wheel load of 4, 6, 8, 6 and 4 kN cross a girder of span 25 m from	Analyze and	2,5,11

S. No	Question	Blooms Taxonomy Level	Program Outcome
	the left to right. The 10 kN load is leading. The spacing between each load is 2.5m. Using influence lines calculate the shear force and bending moment at a section 8m form the left support when the 8 kN load is at the center of span.	evaluate	

PART - C (ANALYTICAL QUESTIONS)

S. No	Question	Blooms Taxonomy Level	Program Outcome
UNIT - I			
1	What are the different methods for analysis of Frames? Write the assumptions made in analyzing perfect frame.	Understanding	2
2	Determine the forces in the members of the cantilever truss shown in fig.	Analyze and evaluate	2,5,11
3	For the truss shown in Fig, Determine reactions at the two supports P and Q and forces in the members.	Analyze and evaluate	2,5,11
4	Find the forces in the members of truss shown in fig.	Analyze and evaluate	2,5,11

S. No

S. No	Question	Blooms Taxonomy Level	Program Outcome
9	Determine the forces in all the members of a truss shown in fig below by method of sections.	Analyze and evaluate	2,5,11
10	Find the force in all members of the truss shown in Figure 12.55 by method of sections.	Analyze and evaluate	2,5,11
UNIT - II			
1	The strain energy due to bending in the cantilever beam shown in fig.	Analyze \& evaluate	2,5,11
2	The strain energy stored in member $A B$ of the pin joined truss shown in fig.	Analyze and evaluate	2,5,11

S. No	Question	Blooms Taxonomy Level	Program Outcome
3	A simply supported beam of span " 1 " and flexural rigidity „EI" carries a unit point load at its center. What is the strain energy in the beam due to bending?	Analyze and evaluate	2,5,11
4	The strain energy stored in a simply supported beam of span „1" and flexural rigidity „EI" due to central concentrated load „W" is	Analyze and evaluate	2,5,11
5	If the strain energy absorbed in a cantilever beam in bending under its own weight is „K" times greater then the strain energy absorbed in an identical simply supported beam in bending under its own weight, the the what chould be the magnitude.	Analyze and evaluate	2,5,11
6	A three hinged arch is shown in fig. Calculate horizontal thrust.	Analyze and evaluate	2,5,11
7	A three hinged arch parabolic arch ABC has a span o 20 m and central rise of 4 m . The arch has hinges at the ends and at the center. A train of two point loads of 20 Kn and $10 \mathrm{Kn}, 5 \mathrm{~m}$ apart, crosses this arch from left to right, with 20 Kn load leading. Calculate maximum thrust induced at the support.	Analyze and evaluate	2,5,11
8	For the three hinged parabolic arch shown in fig what is the value of horizontal thrust.	Analyze and evaluate	2,5,11
9	Calculate horizontal thrust at support „ $\mathrm{A}^{\prime \prime}$ in a three hinged arch shown in fig.	Analyze and evaluate	2,5,11

S. No	Question	Blooms Taxonomy Level	Program Outcome
10	A three hinged semicircular arch of radius R carries a uniformly distributed load W per unit run over the whole span. What will be the horizontal thrust?	Analyze and evaluate	2,5,11
UNIT - III			
1	A cantilever ABC of length is fixed at the end A and is simply supported at an intermediate support B. The cantilever carries a uniformly distributed load w/unit length over the whole span. Determine the position of the support B so that reactions at A and B are equal.	Analyze \& evaluate	2,5,11
2	A beam AB of length L, simply supported at the ends and propped at mid span, carries a udl of w per unit length. Calculate the prop reaction and plot the bending moment diagram.	Analyze and evaluate	2,5,11
3	A cantilever of uniform cross section carries a udl w/unit length. What upward force must be applied at the end to reduce the deflection there to zero?	Analyze and evaluate	2,5,11
4	For the propped beam shown in Fig. Determine the reaction R and sketch the shear force and bending moment diagrams.	Analyze and evaluate	2,5,11
5	A 5 m long fixed beam AB is hinged at the point $\mathrm{H}, 3 \mathrm{M}$ from the end A , thus forming two concentrated cantilever AH and BH . A load of 86 Kn acts at a distance of 2 m from the left end A. Find the reaction at the hinge and the fixing moments at A and B. Takes IAH=2IBH.	Analyze and evaluate	2,5,11
6	A fixed-ended beam of 9 m span carries udl of $15 \mathrm{Kn} / \mathrm{m}$ (including its own weight) and two pint loads of 200kn at the third point in the span. Assuming rigid end fixing. Find the fixing moment.	Analyze and evaluate	2,5,11
7	For a rigidly fixed beam AB of 5 m span carrying udl of $10 \mathrm{Kn} / \mathrm{m}$, over the entire span, locate the points of contraflexure and draw the S.F and B.M diagrams.	Analyze and evaluate	2,5,11
8	A beam built in at both the ends is loaded with a triangular loading on its one half of the span, the other load half carries no load. The load gradually increases from zero at the fixed end to $15 \mathrm{Kn} / \mathrm{m}$ at mid span. The span of the beam is 5 m . Determine the bending moments.	Analyze and evaluate	2,5,11
9	A beam of uniform cross section and 5 m length, is built in at each end. It carries a udl of $10 \mathrm{Kn} / \mathrm{m}$ extending from 3 m from one end and a concentrated load of $20 \mathrm{Kn}, 1 \mathrm{~m}$ from the other end. Sketch the B.M diagram giving principal numerical values.	Analyze and evaluate	2,5,11
10	A beam fixed at both ends is prismatic. It carries a load of varying intensity zero at the end to w/unit length at the center. Determine the fixed moments.	Analyze and evaluate	2,5,11

S. No	Question	Blooms Taxonomy Level	Program Outcome
UNIT - IV			
1	A continuous beam ABC consists of two consecutive spans of 4 m each and carries a distributed load of $60 \mathrm{Kn} / \mathrm{m}$ run. The end A is fixed and the end C simply supported. Find the support moments and the reactions.	Analyze \& evaluate	2,5,11
2	Analyze the continuous beam shown in fig, if the support B sinks by 1 cm . The section is constant throughout. $\mathrm{E}=200 \mathrm{Gpa}$ and $\mathrm{I}=8500 \mathrm{~cm} 4$.	Analyze and evaluate	2,5,11
3	Draw S.F and B.M diagrams for a continuous beam loaded as shown I fig.	Analyze and evaluate	2,5,11
4	A continuous beam ABCD 20 m long is continuous over 3 spans. $\mathrm{AB}=8 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}, \mathrm{CD}=8 \mathrm{~m}$. Moment of inertia is 2 I , that of BC is I and that of CD is 2 I . There is a UDL load of $1500 \mathrm{~N} / \mathrm{m}$ over spans $A B$ and BC. On the span CD there is a central load of 4000 N . The ends are fixed and during loading the support B sinks by 1 cm . Find the fixed end moments using slope deflection method. $\mathrm{I}=1600 \mathrm{~cm} 4$ and $\mathrm{E}=200 \mathrm{GPa}$	Analyze and evaluate	2,5,11
5	A continuous beam ABCD 18 m long is continuous over 3 spans. $A B=8 \mathrm{~m}, B C=4 \mathrm{~m}, \mathrm{CD}=8 \mathrm{~m}$. Moment of inertia is constant over the whole span. A concentrated load of 4000 N is acting of AB at 3 m from support A. There is a UDL load of $1000 \mathrm{~N} / \mathrm{m}$ on BC. On the span CD there is a central load of 4000 N . The ends are fixed and during loading the support B sinks by 1 cm . Find the fixed end moments using slope deflection method. $\mathrm{I}=1600 \mathrm{~cm} 4$ and $\mathrm{E}=200 \mathrm{GPa}$	Analyze and evaluate	2,5,11
6	Analyze the continuous beam ABCD $3 l$ long using slope deflection method is continuous over 3 spans with a uniformly distributed load of w per unit length. $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=l$. The beam is of constant section throughout its length and supports remain at same level after loading.	Analyze and evaluate	2,5,11
7	A continuous beam ABCD 20 m long is continuous over 3 spans. $\mathrm{AB}=8 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}, \mathrm{CD}=8 \mathrm{~m}$. Moment of inertia is 2 I , that of BC is I and that of CD is 2I. There is a UDL load of $1500 \mathrm{~N} / \mathrm{m}$ over spans $A B$ and BC. On the span CD there is a central load of 4000 N . The ends are fixed and during loading the support B sinks by 1 cm . Find the fixed end moments using slope deflection method. $I=1600 \mathrm{~cm} 4$ and $E=200 \mathrm{GPa}$	Analyze and evaluate	2,5,11
8	A continuous beam ABCD 18 m long is continuous over 3 spans. $\mathrm{AB}=8 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}, \mathrm{CD}=8 \mathrm{~m}$. Moment of inertia is constant over the whole span. A concentrated load of 4000 N is acting of AB at 3 m from support A. There is a UDL load of $1000 \mathrm{~N} / \mathrm{m}$ on BC. On the span CD there is a central load of 4000 N . The ends are fixed and during loading the support B sinks by 1 cm . Find the fixed end moments using slope deflection method. $\mathrm{I}=1600 \mathrm{~cm} 4$ and $\mathrm{E}=200 \mathrm{GPa}$	Analyze and evaluate	2,5,11
9	Analyze the continuous beam ABCD $3 l$ long using slope deflection method is continuous over 3 spans with a uniformly distributed load of w per unit length. $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=l$. The beam is of constant section	Analyze and evaluate	2,5,11

S. No	Question	Blooms Taxonomy Level	Program Outcome
	throughout its length and supports remain at same level after loading.		
10	A continuous beam ABCD 18 m long is continuous over 3 spans. $\mathrm{AB}=8 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}, \mathrm{CD}=8 \mathrm{~m}$. Moment of inertia is constant over the whole span. A concentrated load of 4000 N is acting of AB at 3 m from support A. There is a UDL load of $1000 \mathrm{~N} / \mathrm{m}$ on BC. On the span CD there is a central load of 4000 N . The ends are fixed and during loading the support B sinks by 1 cm . Analyze using elastic curve. $\mathrm{I}=1600 \mathrm{~cm} 4$ and $\mathrm{E}=200 \mathrm{GPa}$	Analyze and evaluate	2,5,11
UNIT - V			
1	For simply support beam 10M, I.L.D is drawn for B.M at a section 4 m from the let hand support. The maximum B.M at the section due to moving load of 160 KN , is equal to	Analyze \& evaluate	2,5,11
2	A udl of $30 \mathrm{Kn} / \mathrm{m}$ and 4 m length rolls over a span of 16 M . The absolute maximum B.M in KN-M is	Analyze and evaluate	2,5,11
3	A number of wheel loads $3 \mathrm{t}, 4 \mathrm{t}$, 5 t and 6 t spaced $2 \mathrm{~m}, 3 \mathrm{~m}$ and 3 m respectively with the $3 t$ load leading from left to right. To find the maximum B.M at 8 m from A, what load must be placed at what section?	Analyze and evaluate	2,5,11
4	Three wheel loads 10 t , 26t and 24 t spaced 2 m apart roll on a girder from left to right with the 10 t load leading. The girder has a span of 20 m . For the condition of maximum bending moment at a section 8 m from the left end what load should be placed at the section.	Analyze and evaluate	2,5,11
5	A beam PQRS is 18 m long and is simply supported at points Q and R 10 m apart. Overhang PQ and RS are 3 m and 5 m respectively. A train of two point loads of 150 Kn and $100 \mathrm{Kn}, 5 \mathrm{~m}$ apart, crosses this beam from left to right with 100 Kn load leading. What is the maximum sagging moment under 150 Kn .	Analyze and evaluate	2,5,11
6	For above problem the passage of loads, what are the maximum and minimum reactions at support R , in Kn respectively?	Analyze and evaluate	2,5,11
7	What is the variation of influence line for stresses unction in a statically.	Analyze and evaluate	2,5,11
8	What is the shape of influence line diagram for the maximum bending moment is respect of a simply support beam.	Analyze and evaluate	2,5,11
9	Five concentrated loads $40 \mathrm{Kn}, 120 \mathrm{Kn}, 100 \mathrm{Kn}$ and 80 Kn spaced at equal distance of 3 m between them cross from left to right of a S.S beam of span 40 m with the 40 Kn load leading. What load gives the maximum bending moment at section C 15 m from left?	Analyze and evaluate	2,5,11
10	What is the area of influence line diagram for the reaction at the hinged end of a uniform propped cantilever beam of span L?	Analyze and evaluate	2,5,11

Prepared by: G Anil Kumar, Assistant Professor, CE

HOD, CIVIL ENGINEERING

