| Hall Ticket No |  |  |  |  |  | Question Paper Code: AEC008 |
|----------------|--|--|--|--|--|-----------------------------|
|                |  |  |  |  |  |                             |



## **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous) Dundigal, Hyderabad - 500 043

## MODEL QUESTION PAPER-II

B.Tech V Semester End Examinations, November - 2019

**Regulation: IARE-R16** 

## **INTEGRATED CIRCUITS APPLICATIONS** (Electronics and Communication Engineering)

Time: 3 Hours Max Marks: 70

# Answer any ONE question from each Unit All questions carry equal marks All parts of the question must be answered in one place only

|   |          | UNIT – I                                                                                                                                                                                                                                                                                                                                     |              |
|---|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1 | a)       | Derive the expression for Q Point, A, ZI and Z0 of a dual input balanced output differential amplifier.                                                                                                                                                                                                                                      | [7M]         |
|   | b)       | For a dual input, balanced output differential amplifier, $RC = 2.2k\Omega$ , $RE = 4.7 k\Omega$ , $RS1 = RS2 = 50\Omega$ . The supply voltages are $\pm 10$ V. the hfe for the transistor is 50. Assume silicon transistors and hie = $1k\Omega$ . Determine the operating point values, differential mode gain, common mode gain and CMRR. | [7M]         |
| 2 | a)<br>b) | What is Input Bias Current and explain how can it be reduced? An Op - amp has a slew rate of $1.5V/\mu s$ . What is the maximum frequency of an output sinusoid of peak value 10 V at which the distortion sets in due to the slew rate limitation?                                                                                          | [7M]<br>[7M] |
|   |          | UNIT – II                                                                                                                                                                                                                                                                                                                                    |              |
| 3 | a)<br>b) | With the help of neat diagrams explain the operation of Schmitt Trigger using IC741. Design an Op-amp circuit to give an output $VO = -(3V1+2V2+0.1V3)$ for $Rf = 10k\Omega$ assume necessary data for R1, R2, R3.                                                                                                                           | [7M]<br>[7M] |
| 4 | a)       | With the help of neat circuit diagram and waveform explain the operation of Monostable Multivibrator using IC741.                                                                                                                                                                                                                            | [7M]         |
|   | b)       | Design a Practical differentiator at 2KHz. Assume necessary data for Rf and Cin.                                                                                                                                                                                                                                                             | [7M]         |
|   |          | UNIT – III                                                                                                                                                                                                                                                                                                                                   |              |
| 5 | a)       | Draw the 1 st order low pass filter using op-amp and derive the expression for higher cut-<br>off frequency                                                                                                                                                                                                                                  | [7M]         |
|   | b)       | Design a wide band reject filter having fh = 400 Hz and fl = 2kHz having pass band gain as 2. Draw the circuit and corresponding frequency response.                                                                                                                                                                                         | [7M]         |
| 6 | a)       | With the help of circuit diagram and waveform, explain the working of IC 555 Timer as Monostable multivibrator and derive an expression for pulse width.                                                                                                                                                                                     | [7M]         |
|   | b)       | Design a Notch filter using Op-Amp at 300 Hz.                                                                                                                                                                                                                                                                                                | [7M]         |
|   |          |                                                                                                                                                                                                                                                                                                                                              |              |

## UNIT – IV

| 7  | a)       | Explain the types of digital to analog converters with suitable circuit diagrams for Binary Weighted Resistor DAC.                                                                                                                                                                                                        | [7M]         |
|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | b)       | What output voltage would be produced by a D/A converter whose output range is 0 to 10 V and whose input binary number is  (i) 10 for a 2-bit D/A Converter  (ii) 0110 for a 4-bit D/A Converter  (iii) 10111100 for an 8-bit D/A Converter                                                                               | [7M]         |
| 8  | a)       | With the help of neat circuit diagram and waveform explain the operation of Dual Slope ADC.                                                                                                                                                                                                                               | [7M]         |
|    | b)       | Design a dual slope ADC uses a 16 bit counter and a 2 MHz clock rate. The maximum input voltage is +10V. The maximum integrator output voltage should be - 6V when the counter has cycled through $2^n$ counts. The capacitor used in the integrator is $0.01\mu f$ . Find the value of the resistor R of the integrator. | [7M]         |
|    |          | $\mathbf{UNIT} - \mathbf{V}$                                                                                                                                                                                                                                                                                              |              |
| 9  | a)       | What is a carry look ahead adder? Design and implement carry look ahead adder using logical gates.                                                                                                                                                                                                                        | [7M]         |
|    | b)       | Design combinational circuit for common anode 7 segment display / driver.                                                                                                                                                                                                                                                 | [7M]         |
| 10 | a)<br>b) | Design a 4-bit synchronous up-down counter using JK flip-flop. Implement the parallel input to serial output shift register using 74x163 and 74x166.                                                                                                                                                                      | [7M]<br>[7M] |

## **COURSE OBJECTIVES**

The course should enable the students to:

| I   | Be acquainted to principles and characteristics of op-amp and apply the techniques for the design of comparators, instrumentation amplifier, integrator, differentiator, multivibrators, waveform generators, log and anti-log amplifiers. |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | Analyze and design filters, timer, analog to digital and digital to analog Converters.                                                                                                                                                     |
| III | Understand the functionality and characteristics of commercially available digital integrated circuits.                                                                                                                                    |

## **COURSE OUTCOMES (COs):**

| CO 1 | Discuss the analysis of Op-Amp for different configurations and its properties.        |
|------|----------------------------------------------------------------------------------------|
| CO 2 | Analyze and design the linear and non linear applications of Op-Amp                    |
| CO 3 | Design the various filters using Op-Amp and analysis of Multivibrators using 555 Timer |
| CO 4 | Describe the various ADC and DAC techniques                                            |
| CO 5 | Explore the concepts of Combinational and sequential logic circuits using digital IC's |

## **COURSE LEARNING OUTCOMES**

Students who complete the course will have demonstrated the ability to do the following.

| AEC008.01       | Illustrate the block diagram, classifications, package types, temperature range,                       |  |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                 | specifications and characteristics of Op-Amp.                                                          |  |  |  |  |  |
| AEC008.02       | Discuss various types of configurations in differential amplifier with balanced and                    |  |  |  |  |  |
|                 | unbalanced outputs.                                                                                    |  |  |  |  |  |
| AEC008.03       | Evaluate DC and AC analysis of dual input balanced output configuration and discuss                    |  |  |  |  |  |
|                 | the properties of differential amplifier and Discuss the operation of cascaded differential amplifier. |  |  |  |  |  |
| AEC008.04       | Analyze and design linear applications like inverting amplifier, non-inverting amplifier,              |  |  |  |  |  |
| The cools i     | instrumentation amplifier and etc. using Op-Amp.                                                       |  |  |  |  |  |
| AEC008.05       | Analyze and design non linear applications like multiplier, comparator, log and anti log               |  |  |  |  |  |
| ALC000.03       | amplifiers, waveform generators and etc, using Op-Amp.                                                 |  |  |  |  |  |
| AEC008.06       |                                                                                                        |  |  |  |  |  |
| AEC008.00       | Discuss various active filter configurations based on frequency response and construct                 |  |  |  |  |  |
| A E C 0 0 0 0 7 | using 741 Op- Amp.                                                                                     |  |  |  |  |  |
| AEC008.07       | Design bistable, monostable and astable multivibrators operation by using IC 555 timer                 |  |  |  |  |  |
|                 | and study their applications.                                                                          |  |  |  |  |  |
| AEC008.08       | Determine the lock range and capture range of PLL and use in various applications of                   |  |  |  |  |  |
|                 | communications.                                                                                        |  |  |  |  |  |
| AEC008.09       | Understand the classifications, characteristics and need of data converters such as ADC                |  |  |  |  |  |
|                 | and DAC.                                                                                               |  |  |  |  |  |
| AEC008.10       | Analyze the Digital to Analog converter technique such as weighted resistor DAC, R-2R                  |  |  |  |  |  |
|                 | ladder DAC, inverted R-2R ladder DAC and IC 1408 DAC.                                                  |  |  |  |  |  |
| AEC008.11       | Analyze the Analog to Digital converter technique such as integrating, successive                      |  |  |  |  |  |
|                 | approximation and flash converters.                                                                    |  |  |  |  |  |
| AEC008.12       | Design Adders, multiplexers, demultiplexers, decoders, encoders by using TTL/CMOS                      |  |  |  |  |  |
|                 | integrated circuits and study the TTL and CMOS logic families.                                         |  |  |  |  |  |
| AEC008.13       | Design input/output interfacing with transistor – transistor logic or complementary metal              |  |  |  |  |  |
|                 | oxide semiconductor integrated circuits.                                                               |  |  |  |  |  |

| AEC008.14 | Understand the operation of SR, JK, T and D flip-flops with their truth tables and     |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------|--|--|--|--|--|
|           | characteristic equations. Design TTL/CMOS sequential circuits.                         |  |  |  |  |  |
| AEC008.15 | Design synchronous, asynchronous and decade counter circuits and also design registers |  |  |  |  |  |
|           | like shift registers and universal shift registers.                                    |  |  |  |  |  |

## MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES:

| SEE<br>Question<br>No. |   |           | Course Learning Outcomes                                                                                                                        | Course<br>Outcomes | Blooms<br>Taxonomy<br>Level |
|------------------------|---|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|
| 1                      | a | AEC008.02 | Discuss various types of configurations in differential amplifier with balanced and unbalanced outputs.                                         | CO 1               | Understand                  |
| 1                      | b | AEC008.02 | Illustrate the block diagram, classifications, package types, temperature range, specifications and characteristics of Op-Amp.                  | CO 1               | Remember                    |
| 2                      | a | AEC008.01 | Illustrate the block diagram, classifications, package types, temperature range, specifications and characteristics of Op-Amp.                  | CO 1               | Understand                  |
| 2                      | b | AEC008.01 | Illustrate the block diagram, classifications, package types, temperature range, specifications and characteristics of Op-Amp.                  | CO 1               | Remember                    |
| 3                      | a | AEC008.05 | Analyze and design non linear applications like multiplier, comparator, log and anti log amplifiers, waveform generators and etc, using Op-Amp. | CO 2               | Remember                    |
| 3                      | b | AEC008.04 | Analyze and design linear applications like inverting amplifier, non-inverting amplifier, instrumentation amplifier and etc. using Op-Amp.      | CO 2               | Apply                       |
| 4                      | a | AEC008.05 | Analyze and design non linear applications like multiplier, comparator, log and anti log amplifiers, waveform generators and etc, using Op-Amp. | CO 2               | Remember                    |
| 4                      | b | AEC008.05 | Analyze and design non linear applications like multiplier, comparator, log and anti log amplifiers, waveform generators and etc, using Op-Amp. | CO 2               | Apply                       |
| 5                      | a | AEC008.06 | Discuss various active filter configurations based on frequency response and construct using 741 Op- Amp.                                       | CO 3               | Remember                    |
| 3                      | b | AEC008.06 | Discuss various active filter configurations based on frequency response and construct using 741 Op- Amp.                                       | CO 3               | Apply                       |
| 6                      | a | AEC008.07 | Design bistable, monostable and astable multivibrators operation by using IC 555 timer and study their applications.                            | CO 3               | Understand                  |
| 0                      | b | AEC008.06 | Discuss various active filter configurations based on frequency response and construct using 741 Op- Amp.                                       | CO 3               | Apply                       |
| 7                      | a | AEC008.10 | Analyze the Digital to Analog converter technique such as weighted resistor DAC, R-2R ladder DAC, inverted R-2R ladder DAC and IC 1408 DAC.     | CO 4               | Understand                  |

|    | b | AEC008.10 | Analyze the Digital to Analog converter technique such as weighted resistor DAC, R-2R ladder DAC, inverted R-2R ladder DAC and IC 1408 DAC.      | CO 4 | Apply      |
|----|---|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
|    | a | AEC008.11 | Analyze the Analog to Digital converter technique such as integrating, successive approximation and flash converters.                            | CO 4 | Remember   |
| 8  | b | AEC008.11 | Analyze the Analog to Digital converter technique such as integrating, successive approximation and flash converters.                            | CO 4 | Apply      |
| 0  | a | AEC008.12 | Design Adders, multiplexers, demultiplexers, decoders, encoders by using TTL/CMOS integrated circuits and study the TTL and CMOS logic families. | CO 5 | Understand |
| 9  | b | AEC008.12 | Design Adders, multiplexers, demultiplexers, decoders, encoders by using TTL/CMOS integrated circuits and study the TTL and CMOS logic families. | CO 5 | Understand |
| 10 | a | AEC008.15 | Design synchronous, asynchronous and decade counter circuits and also design registers like shift registers and universal shift registers.       | CO 5 | Apply      |
|    | b | AEC008.15 | Design synchronous, asynchronous and decade counter circuits and also design registers like shift registers and universal shift registers.       | CO 5 | Apply      |

**Signature of Course Coordinator** 

HOD, ECE