

2 0 0 0

INSTITUTE OF AERONAUTICAL ENGINEERING

TARE NO.

(Autonomous) Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER-II

B.Tech VII Semester End Examinations, November - 2019

Regulation: IARE-R16 MICROWAVE ENGINEERING

(Electronics and Communication Engineering)

Time: 3 Hours

Max Marks: 70

Answer any ONE question from each Unit All questions carry equal marks All parts of the question must be answered in one place only

UNIT – I

a)	a) Name the microwave frequency bands and spectrums and Summarize the advantages of microwaves.		
b)	The dimensions of a rectangular waveguide are $a = 2.5$ cm and $b = 1$ cm. The signal frequency is 8.6 GHz. The determine the following: (a) Possible modes (b) Cut-off frequencies.	[7M]	
a)	Derive the TMmn mode field equation in rectangular waveguide.	[7M]	
b)	A rectangular waveguide operating in dominant mode having breath 10 cm for 2.5 GHz signal propagated in this waveguide. Determine the group, phase velocities and guide wavelength	[7M]	
	UNIT – II		
a)	What is the instrumentation amplifier? What are the required parameters of an instrumentation amplifier? Explain the working of instrumentation amplifier with neat circuit diagram	[7M]	
b)	Show that H-plane acts as a 3 dB splitter	[7M]	
	 a) b) a) b) 	 a) Name the microwave frequency bands and spectrums and Summarize the advantages of microwaves. b) The dimensions of a rectangular waveguide are a = 2.5 cm and b = 1 cm. The signal frequency is 8.6 GHz. The determine the following: (a) Possible modes (b) Cut-off frequencies. a) Derive the TMmn mode field equation in rectangular waveguide. b) A rectangular waveguide operating in dominant mode having breath 10 cm for 2.5 GHz signal propagated in this waveguide. Determine the group, phase velocities and guide wavelength UNIT – II a) What is the instrumentation amplifier? What are the required parameters of an instrumentation amplifier? Explain the working of instrumentation amplifier with neat circuit diagram. b) Show that H-plane acts as a 3 dB splitter	

4a) Describe about various types of Attenuators and phase shifters?[7M]b) An attenuator of 20dB is fed with 100w input. Find the output power of the attenuator.[7M]

UNIT – III

- 5 a) Explain in detail bunching process & obtain expression for bunching parameter in a two [7M] cavity klystron amplifier..
 - b) A reflex klystron operates at the peak mode n = 2 with Beam voltage V0 = 300 V Beam [7M] current I0 = 20 mA Signal voltage V1 = 40 V Determine: (a) The input power (b) The output power (c) The efficiency.
- 6 a) Explain the principle of operation of a reflex Klystron oscillator and derive an expression [7M] for the bunching parameter.

b) A helix travelling wave tube operates at 4 GHz under a beam voltage V0 = 6 kV and beam [7M] current I0 = 30 mA. If the helix impedance Z0 is 100 ohm and circuit length N = 30, find the output power gain.

UNIT – IV

7 a)		What is meant by Avalanche Transit Time Devices? Explain the operation, construction and Applications of IMPATT.	
	b)	An IMPATT diode has a drift length of $2\mu m$. Determine the operating frequency of the IMPATT diode, if the drift velocity for Si is 107 cms/sec.	[7M]
8	a)	Explain Gunn effect using the two valley theory.	[7M]
	b)	An n-type GaAs Gunn diode has Electron velocity $vd = 3$ 105 m/s Negative electron mobility $ \mu n = 0.16$ m2 /Vs Relative dielectric constant $\epsilon r = 12.9$ Determine the criterion for classifying the modes of operation.	[7M]
		$\mathbf{UNIT} - \mathbf{V}$	
9	a)	Write a short notes on i)power ratio method ii)Rf substitution method	[7M]
	b)	Two identical 20 dB directional couplers are used in a waveguide to sample the incident and reflected powers. The output of the forward and reverse directional coupler are 3.5 mW and 0.25 mW respectively. Find the VSWR in the waveguide.	[7M]
10	a) b)	Define Voltage standing wave ratio and explain the method for measuring VSWR<10?	[7M]

b) Calculate the VSWR of a transmission line operating at 10 GHz. Assume TE10 wave [7M] propagating inside of a waveguide of dimensions a = 4 cm, b = 3 cm. The distance between twice minimum power point is 2 mm on a slotted line.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE OBJECTIVES

Ι	Develop the knowledge on transmission lines for microwaves, cavity resonators and Wave guide components and applications.			
II	Enable the students to understand and analyze the operation of microwave tubes like			
	klystron, magnetron, travelling wave tube, etc.,			
III	Familiarize with microwave solid state devices			
IV	Introduce the student the microwave test bench for measure different parameters like attenuation,			
	VSWR, impedance etc.			

COURSE OUTCOMES (COs):

CO 1	Describe the types of waveguides, rectangular waveguides and field equations
CO 2	Understand the coupling mechanisms in waveguides and analyze the waveguide multiport junctions
CO 3	Explore the microwave linear tubes and analyze with microwave cross field tubes
CO 4	Understand the microwave solid state devices and avalanche transit time devices
CO 5	Demonstrate the microwave bench set up and conducting measurements of different parameters

COURSE LEARNING OUTCOMES:

AEC015.01	Understand the microwave spectrum and applications of microwaves
AEC015.02	Analyze the types of waveguides, rectangular waveguides and field equations in rectangularwaveguide.
AEC015.03	Determine the wave impedance for a TM and TE wave in rectangular waveguide
AEC015.04	Understand the types of cavity resonators and determine the dominant mode.
AEC015.05	Explore the coupling mechanisms for a cavity resonator.
AEC015.06	Understand the waveguide discontinuities: waveguide irises, tuning screws, posts and matched loads
AEC015.07	Understand the operation of multiport junctions and its applications
AEC015.08	Understand the Faraday rotation principle and analyze the different ferrite devices.
AEC015.09	Understand the limitations of conventional vacuum tubes at microwave frequencies and Understand the velocity modulation process and bunching process in microwave linear beam tubes
AEC015.10	Determine the beam current density in Multi cavity Klystron amplifiers
AEC015.11	Understand the velocity modulation process and power output in Reflex Klystron
AEC015.12	Determine the amplification process in helix Traveling wave tube (TWT)
AEC015.13	Describe the 8-cavity cylindrical travelling wave Magnetron
AEC015.14	Analyze the Hull cut-off and Hartree conditions in Magnetron.
AEC015.15	Illustrate the microwave solid-state devices: microwave tunnel diode and transferred electron devices

SEE Question No.		Course Learning Outcomes		Course Outcomes	Blooms
				Outcomes	Level
1	a	AEC015.1	Understand the microwave spectrum and	CO 1	Understand
			applications of microwaves		
	b	AEC015.02	Analyze the types of waveguides,	CO 1	Understand
			rectangular waveguides and field equations		
			in rectangular waveguide.		
2	а	AEC015.03	Determine the wave impedance for a TM	CO 1	Understand
			and TE wave inrectangular waveguide		
	b	AEC015.03	Determine the wave impedance for a TM	CO 1	Understand
		15001505	and TE wave inrectangular waveguide		.
3	а	AEC015.07	Understand the operation of multiport	CO 2	Understand
	1	150015.07	Junctions and itsapplications	<u> </u>	TT 1 / 1
	b	AEC015.07	Understand the operation of multiport	002	Understand
		AEC015.07	Junctions and its applications	CO 2	I In denete a d
4	a	AEC015.07	iunctions and itsapplications	02	Understand
	h	AEC015.08	Junctions and its applications	CO 2	Pemember
	0	ALC015.00	and analyze the different ferrite devices	02	Kennennber
	h	AEC015.08	Understand the Faraday rotation principle	CO 3	Understand
5	U	712015.00	and analyze the different ferrite devices	605	Onderstand
5	а	AEC015.09	Understand the limitations of conventional	CO 3	Remember
	u	1120010109	vacuum tubes at micro wave frequencies and	000	remember
			Understand the velocity modulation process		
			and bunc hing process in microwavelinear		
			beam tubes		
	b	AEC015.11	Understand the velocity modulation process	CO 3	Understand
6			and power outputin Reflex Klystron		
	a	AEC015.12	Determine the amplification process in helix	CO 3	Understand
			Traveling wave		
			tube (TWT)		
_	b	AEC015.13	Describe the 8-cavity cylindrical travelling	CO 4	Understand
7			wave Magnetron		
	a	AEC015.16	Determine the RWH theory and modes of	CO 4	Understand
			operations in Gunndiodes		
0	b	AEC015.16	Determine the RWH theory and modes of	CO 4	Understand
8		AEC015 17	operations in Gunn diodes	CO 4	TTo do not o n d
	a	AEC015.17	Understand the Avalanche transit time	C0 4	Understand
			and BADITT diode		
	h	AEC015.17	Understand the Avalanche transit time	COS	Understand
	0	ALC015.17	devices: IMPATT diode TRAPATT diode	005	Onderstand
9			and BARITT diode		
	а	AEC015 18	Describe the microwave bench set-up with	CO5	Remember
	u	1120010110	different blocksand their features	000	remember
			attenuation. frequency. VSWR and		
			impedance		
10	a	AEC015.19	Determine the measurements of microwave	CO5	Understand
-			power, attenuation, frequency, VSWR and		
			impedance		
	b	AEC015.19	Determine the measurements of microwave	CO5	Remember
			power, attenuation, frequency, VSWR and		
			impedance		

MAPPING OF SEMESTER END EXAMINATION TO COURSE LEARNING OUTCOMES: