Hall Ticket No	Question Paper Code: AHSB11
INSTITU	TE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043
	MODEL QUESTION PAPER-II
В	.Tech II Semester End Examinations, May - 2020 Regulations: IARE - R18
	THEMATICAL TRANSFORM TECHNIQUES (COMMON FOR AE / ECE / EEE / ME / CE)
Time: 3 hours	Max. Marks: 70
	Answer ONE Question from each Module All Questions Carry Equal Marks

MODULE-I

All parts of the question must be answered in one place only

1.	(a)	The of using Discerton method are real foot of the equation	[7M]
	(b)	approximations Find a real root of transcendental equation $3x - \cos x - 1 = 0$ using Newton Raphson method correct up to four decimals.	[7M]
		correct up to four decimals.	
2.	(a)	Define the term Laplace Transform. Write the necessary conditions for the existence of	[7M]
		Laplace transform.	
	(b)	Find the Laplace transform of $\cos t \cos 2t \cos 3t$	[7M]
	(0)	Find the Laplace transform of $\cos t \cos 2t \cos 3t$	[/10]

MODULE-II

- 3. (a) State Newton's forward and backward, Gauss forward and backward interpolation formulae for [7M] equal length of intervals.
 - (b) Find y(10), given that y(5)=12, y(6)=13, y(9)=14, y(11)=16 using Lagrange's interpolation [7M] formula.
- 4. (a) Define Inverse Laplace Transform. State the Inverse Laplace Transform of multiplied by s, [7M] divided by s and Convolution theorem.

(b) Find the inverse Laplace transform of
$$\log\left(\frac{s+a}{s+b}\right)$$
. [7M]

MODULE-III

5. (a) Discuss the normal equations of the fitting a Straight line and Second degree curves. [7M]

(b) By the method of least squares, fit a Second degree polynomial $y = a + bx + cx^2$ to the following data.

Х	0	0.5	1	1.5	2	2.5
у	0.10	0.45	2.15	9.15	40.35	180.75

- 6. (a) State Fourier integral theorem. Write the Fourier sine integral and cosine integral of f(x). Also [7M] Define Fourier transform of f(x).
 - (b) Find the inverse Fourier cosine transform f(x) of $F_c(p) = p^n e^{-ap}$ and inverse Fourier sine [7M]

transform f(x) of $F_s(p) = \frac{p}{1+p^2}$

MODULE-IV

- 7 (a) State Taylor's series, Euler's and Modified Euler's method for first order differential equations.
 - (b) Given the differential equation $\frac{dy}{dx} = -xy^2$, y (0) = 2. Compute y (0.2) in steps of 0.1, using [7M] modified Euler's method.
- 8. (a) State Runge-Kutta method formulae for all orders for solving the first order differential [7M] equation.
 - (b) Using Runge-Kutta method of second order, find y(2.5) given the differential equation [7M]

$$\frac{dy}{dx} = \frac{x+y}{x}$$
, y (2) = 2, h = 0.25.

MODULE-V

9.	(a)	Define order and degree with reference to partial differential equation. Also Define linear and non-linear partial differential equation with examples.	[7M]
	(b)	Solve the partial differential equation $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$.	[7M]
10	(a)	State One dimensional heat and wave equations under initial and boundary conditions.	[7M]

(b) A tightly stretched string with fixed end points x=0 and x=l is initially in a position given by [7M]

 $y = y_0 \sin^3(\frac{\pi x}{\ell})$. If it is released from rest from this position, find the displacement (x, t).

[7M]

COURSE OBJECTIVES (COs):

The c	The course should enable the students to:			
т	Enrich the knowledge solving algebra and transcendental equations and understanding Laplace			
1	transforms.			
II	Determine the unknown values of a function by interpolation and applying inverse Laplace transforms.			
III	Fitting of a curve and determining the Fourier transform of a function			
IV	Solving the ordinary differential equations by numerical techniques			
V	Formulate to solve partial differential equation			

COURSE OUTCOMES (COs):

CO 1	Analyzing real roots of algebraic and transcendental equations by Bisection method, False position and				
	Newton -Raphson method. Applying Laplace transform and evaluating given functions using shifting				
	theorems, derivatives, multiplications of a variable and periodic function.				
CO 2	Understanding symbolic relationship between operators using finite differences. Applyiing Newton's				
	forward, Backward, Gauss forward and backward for equal intervals and Lagrange's method for				
	unequal interval to obtain the unknown value. Evaluating inverse Laplace transform using derivatives,				
	integrals, convolution method. Finding solution to linear differential equation				
CO 3	Applying linear and nonlinear curves by method of least squares. Understanding Fourier integral,				
	Fourier transform, sine and cosine Fourier transforms, finite and infinite and inverse of above said				
	transforms.				
CO 4	Using Numericals methods such as Taylors, Eulers, Modified Eulers and Runge-Kutta methods to				
	solve ordinary differential equations.				
CO 5	Analyzing order and degree of partial differential equation, formation of PDE by eliminating arbitrary				
	constants and functions, evaluating linear equation b Lagrange's method. Applying the heat equation				
	and wave equation in subject to boundary conditions.				

COURSE LEARNING OUTCOMES (CLOs):

AHSB11.01	Evaluate the real roots of algebraic and transcendental equations by Bisection method, False position and Newton -Raphson method.
AHSB11.02	Apply the nature of properties to Laplace transform and inverse Laplace transform of the given function.
AHSB11.03	Solving Laplace transforms of a given function using shifting theorems.
AHSB11.04	Evaluate Laplace transforms using derivatives of a given function.
AHSB11.05	Evaluate Laplace transforms using multiplication of a variable to a given function.
AHSB11.06	Apply Laplace transforms to periodic functions.
AHSB11.07	Apply the symbolic relationship between the operators using finite differences.
AHSB11.08	Apply the Newtons forward and Backward, Gauss forward and backward Interpolation method to determine the desired values of the given data at equal intervals, also unequal intervals.
AHSB11.09	Solving Laplace transforms and inverse Laplace transform using derivatives and integrals.
AHSB11.10	Evaluate inverse of Laplace transforms by the method of convolution.
AHSB11.11	Solving the linear differential equations using Laplace transform.
AHSB11.12	Understand the concept of Laplace transforms to the real-world problems of electrical circuits, harmonic oscillators, optical devices, and mechanical systems

AHSB11.13	Ability to curve fit data using several linear and non linear curves by method of least squares.
AHSB11.14	Understand the nature of the Fourier integral.
AHSB11.15	Ability to compute the Fourier transforms of the given function.
AHSB11.16	Ability to compute the Fourier sine and cosine transforms of the function
AHSB11.17	Evaluate the inverse Fourier transform, Fourier sine and cosine transform of the given function.
AHSB11.18	Evaluate finite and infinite Fourier transforms
AHSB11.19	Understand the concept of Fourier transforms to the real-world problems of circuit analysis, control system design
AHSB11.20	Apply numerical methods to obtain approximate solutions to Taylors, Eulers, Modified Eulers
AHSB11.21	Runge-Kutta methods of ordinary differential equations.
AHSB11.22	Understand the concept of order and degree with reference to partial differential equation
AHSB11.23	Formulate and solve partial differential equations by elimination of arbitrary constants and functions
AHSB11.24	Understand partial differential equation for solving linear equations by Lagrange method.
AHSB11.25	Learning method of separation of variables.
AHSB11.26	Solving the heat equation and wave equation in subject to boundary conditions
AHSB11.27	Understand the concept of partial differential equations to the real-world problems of electromagnetic and fluid dynamics

MAPPING OF SEMESTER END EXAMINATION - COURSE OUTCOMES

SEE Question		Course Learning Outcomes			Blooms Taxonomy
No				Outcomes	Level
1	a	AHSB11.01	Evaluate the real roots of algebraic and transcendental	CO 1	Understand
			equations by Bisection method, False position and Newton -Raphson method.		
	b	AHSB11.01	Evaluate the real roots of algebraic and transcendental equations by Bisection method, False position and Newton -Raphson method.	CO 1	Understand
2	а	AHSB11.02	Apply the nature of properties to Laplace transform of the given function.	CO 1	Understand
	b	AHSB11.02	Apply the nature of properties to Laplace transform of the given function.	CO 1	Understand
3	а	AHSB11.08	Apply the Newtons forward and Backward, Gauss forward and backward Interpolation method to determine the desired values of the given data at equal intervals, also unequal intervals.	CO 2	Understand
	b	AHSB11.08	Apply the Newtons forward and Backward, Gauss forward and backward Interpolation method to determine the desired values of the given data at equal intervals, also unequal intervals.	CO 2	Remember
4	а	AHSB11.09	Solving inverse Laplace transform using derivatives and integrals.	CO 2	Understand
	b	AHSB11.09	Solving inverse Laplace transform using derivatives and integrals.	CO 2	Understand
5	а	AHSB11.13	Ability to curve fit data using several linear and non linear curves by method of least squares.	CO 3	Understand
	b	AHSB11.13	Ability to curve fit data using several linear and non linear curves by method of least squares.	CO 3	Understand
6	a	AHSB11.14	Understand the nature of the Fourier integral.	CO 3	Understand
	b	AHSB11.17	Evaluate the inverse Fourier transform, Fourier sine and cosine transform of the given function.	CO 3	Understand

7	а	AHSB11.20	Apply numerical methods to obtain approximate	CO 4	Understand
			solutions to Taylors, Eulers, Modified Eulers		
	b	AHSB11.20	Apply numerical methods to obtain approximate	CO 4	Understand
			solutions to Taylors, Eulers, Modified Eulers		
8	а	AHSB11.21	Runge-Kutta methods of ordinary differential equations.	CO 4	Understand
	b	AHSB11.21	Runge-Kutta methods of ordinary differential equations.	CO 4	Understand
9	а	AHSB11.22	Understand the concept of order and degree with	CO 5	Understand
			reference to partial differential equation		
	b	AHSB11.24	Understand partial differential equation for solving linear	CO 5	Understand
			equations by Lagrange method.		
10	а	AHSB11.26	Solving the heat equation and wave equation in subject to	CO 5	Understand
			boundary conditions		
	b	AHSB11.26	Solving the heat equation and wave equation in subject to	CO 5	Understand
			boundary conditions		

Signature of the faculty

HOD, ECE