

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

FRESHMAN ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	Numerical Methods for Partial Differential equations
Course Code	:	BCC002
Class	:	M. Tech I Semester CAD/CAM
Branch	:	Mechanical
Year	:	2017 - 2018
Course Coordinator	:	Ms. V Subba Laxmi, Associate Professor

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learners learning process.

S	QUESTION BANK	Blooms	Course
No		taxonomy	Outcomes
		level	
	UNIT - I		
	PARABOLIC EQUATIONS		
Part	- A (Short Answer Questions)		
1	Define Partial differential equation.	Remember	1
2	Classify the second order partial differential equations.	Remember	1
3	Define order and degree of a partial differential equation.	Remember	1
4	State one dimensional heat flow equation.	Remember	1
5	Explain different types of methods to solve partial differential equations.	Remember	1
6	State Crank-Nicholson formula.	Remember	1
7	Explain finite difference approximation to derivatives.	Remember	1
8	Give examples of parabolic, elliptic, hyperbolic partial differential equations.	Remember	1
9	Define linear and non linear partial differential equations.	Understand	1
10	Define semilinear and quasilinear partial differential equations and give examples.	Understand	1
11	Describe the two types of physical problems.	Understand	1
12	Discuss dirichlet boundary condition, Neumann boundary condition, mixed boundary conditions.	Understand	1
13	Discuss various methods for solving partial differential equations.	Understand	2

-	1		
14	State Laplace equation and Poisson equation.	Understand	1
15	Discuss the procedure for implementing derivative boundary conditions.	Understand	1
16	Define finite difference equation.	Understand	1
17	Classify the partial differential equation	Understand	1
	$u_{xx} + 4u_{yy} + (x^2 + 4y^2)u_{yy} = \sin(x + y).$		
18	State two dimensional Laplace equation ,one dimensional wave equation, one dimensional diffusion equation.	Understand	1
19	Discuss about the significance of classification of partial differential equations.	Understand	1
20	Discuss about the characteristic paths of elliptic, parabolic, hyperbolic partial differential equations.	Understand	2
Part	- B (Long Answer Questions)		
1	Explain Crank – Nicholson explicit method.	Understand	2
2	Solve by Crank-Nicholson method the equation $u_{xx} = u_t$ subject to	Understand	2
	u(x,0) = 0, u(0,t) = 0 and $u(1,t) = t$, for two steps.		
3	Using Crank's –Nicholson's method solve $u_{xx} = 16u_t$, $0 < x < 1$, $t > 0$ given	Understand	2
	u(x,0) = 0, u(0,t) = 0 and $u(1,t)=100t$ taking $h = 0.25$ for two steps.		
4	Using Crank's –Nicholson method solve $u_{xx} = u_t$, 0 <x<1, t="">0 given</x<1,>	Understand	2
	$u(x,0) = 0, u(0,t) = 0$ and $u(1,t) = t$ taking h = 0.25 and k = $\frac{1}{8}$		
5	Solve the equation $u_{xx} = 2u_t$ subject to $u(x,0) = x(4-x)$, $u(0,t) = 0$ and	Understand	2
	u(4,t) = 0 taking $h = 1$. Find the values upto $t = 5$.		
6	Solve by Crank-Nicholson method the equation $u_{xx} = u_t$	Understand	2
	0 < x < 1, t >0 subject to $u(x,0) = 100(1-x)$, $u(0,t) = 0$		
7	and $u(1,t) = 0$ taking $u = 0.23$.	Understand	2
/	Given $\frac{\partial f}{\partial x^2} = \frac{\partial f}{\partial t}$ f(0,t) = f(5,t) = 0, f(x,0) = $x^2(25 - x^2)$ find f in the range taking h = 1 and upto 5 seconds	Onderstand	2
8	Solve $\frac{\partial^2 u}{\partial u^2} - 2 \frac{\partial u}{\partial t} = 0$ given $u(0,t) = 0$, $u(x,0) = x(1-x)$. Assume $h = 1$.	Understand	2
	Find the values of u up to $t = 5$.		
9	Solve $u_{xx} = u_t$ given $u(0,t) = 0$, $u(4,t) = 0$, $u(x,0) = x(1-x)$.	Understand	2
	Assume $h = k = 1$ find the values of u upto $t = 5$.		
10	Solve $u_{xx} = u_t$ given $u(0,t) = 0$, $u(1,t) = 0$, $u(x,0) = \sin \pi x$,	Understand	2
	$0 \le x \le 1$ taking $h = 0.2$ and $\alpha = 1/2$		
Part	- C (Problem Solving and Critical Thinking Questions)		
1	Solve $25u_{xx} = u_t$ $0 < x < 1, t > 0$ with the boundary conditions	Understand	2
	$u(0,t) = 0$, $u(10, t) = 0$, $u(x,0) = \frac{1}{25}x(10-x)$ choosing $h = 1$, k suitably find		
	u_{ij} for i = 0,1,29, j = 0,1,2,3,4		
2	Solve $u_{xx} = u_t$, $0 \le x \le 1$, $t > 0$ under condition $u(0,t) = 0$, $u(1,t) = 0$ and	Understand	2

$u(x,0) = \begin{cases} 2x \text{ for } 0 \le x \le \frac{1}{2} \\ 2(1-x) \text{ for } \frac{1}{-} \le x \le 1 \end{cases} \text{ using Crank-Nicholson method,}$	
$h = 0.1, k = .01, \lambda = 1$	
3 Using Crank's Nicholson method solve $\mu = \mu 0 < x < 1$ to given Understand	2
Using Clank's –Nicholson method solve $u_{xx} - u_t$, $0 < x < 1$, $t > 0$ given enderstand	-
u(x,0) = 0, u(0,t) = 0 and $u(1,t)=t$ taking	
$h = 0.5$ and $k = \frac{1}{2}$	
$II = 0.5$ and $K = \frac{1}{8}$	
4 Using Crank's –Nicholson method solve $\mu = \mu 0 \le x \le 5$ t > 0 given Understand	2
Using claim 5 Prehorson method solve $u_{xx} = u_t, 0, x, 0, t \ge 0$ given	
u(x,0) = 20, u(0,t) = 0 and $u(5,t) = 100$ compute u for time step with	
n=1.	
Solve $u_{xx} = u_t$ given $u(0,t) = 0$, $u(1,t) = 0$, $u(x,0) = \sin\pi x$, Understand	2
$0 \le x \le 1$ taking $h = 1/3$ and $k = 1/36$	
6 Given $\frac{\partial^2 f}{\partial t} = \frac{\partial f}{\partial t}$ f(0,t) = f(5,t) = 0 f(x,0) = r^2(25 - r^2) find f in the Understand	2
$\frac{\partial x^2}{\partial x^2} = \frac{\partial t}{\partial t} (0,t) = 1, (3,t) = 0, (x,0) = x (25 x \text{) find } 1 \text{ in the}$	
$\frac{1}{7}$	2
Solve $u_{xx} = 32u_t$ given $u(x,0) = 0$, $u(0,t) = 0$, $u(1,t) = t$, taking h=0.5 for $t > 0$ Understand	2
0,0 < x < 1.	
8 Solve $u_{xx} = u_t$ given $u(0,t) = 0$, $u(5,t) = 60$ and Understand	2
$u(x,0) = \begin{cases} 20x \text{ for } 0 < x \le 3\\ 60 \text{ for } 3 < x \le 5 \end{cases}$ for 5 time steps having h = 1 by Schmidt	
method.	
9 Solve $4u_{xx} = u_t$ and the boundary conditions $u(0,t) = 0$, $u(8,t) = 0$, $u(x,0) = 0$ Understand	2
$4x - \frac{1}{x^2}x^2$ for points x = 0.1.28. t = $\frac{1}{2}i$, i = 0.1.2.3.4.5	
10 Understand	2
Solve $u_{xx} = 2u_t$ given $0 \le x \le 12$, $0 \le t \le 12$ $u(x,0) = -x(15-x)$,	
u(0,t) = 0, $u(12,t) = 9$, $0 < t < 12$ using Schmidt process.	
UNIT-II	
CONVERGENCE STABILITY AND CONSISTENCY	
Part – A (Short Answer Questions)	
1 Define tridiagonal matrix . Remember	3
2 Explain alternating direction implicit method. Understand	3
3 Explain finite difference in cylindrical and spherical coordinates. Remember	3
4 Define local truncation error. Remember	3
5 Define global rounding error. Remember	3
6 State Lax's equation theorem.	3
7 Define four important properties of finite difference methods Remember	3
consistency.order. stability. convergence.	5
8 Define error rounding-off error truncation error Remember	3
9 State two methods for analysing the stability of finite difference Understand	3
equations.	-
10 Discuss about convergence and stability. Understand	3

Part	- B (Long Answer Questions)		
1	Explain alternate direction implicit method(ADI) method.	Understand	3
2	Explain finite difference approximation to $\frac{\partial u}{\partial t} = \nabla^2 u$ in cylindrical and	Understand	3
	spherical polar coordinates.		
3	Discuss about convergence, stability and consistency.	Understand	3
4	Discuss stability analysis by matrix method.	Understand	3
5	Explain Von Neumann stability method.	Understand	3
6	Define local truncation error and consistency convergence analysis.	Understand	3
7	Discuss stability analysis by eigen value.	Understand	3
8	Explain global rounding error.	Understand	3
9	Demonstrate the relationship between convergence, stability and consistency giving an example.	Understand	4
10	Calculate the order of the local truncation error of the explicit difference	Understand	4
	$\partial u = \partial^2 u$		-
	approximation to $\frac{\partial u}{\partial t} - \frac{\partial u}{\partial t^2} = 0$ at the point		
	$\partial t \partial x^2$		
	(ih,jk)		
Part	– C (Problem Solving and Critical Thinking)		
1	Show that the local truncation error at the point (ih,jk) of the Crank-	Understand	4
	$\partial u = \partial^2 u$		
	Nicholson approximation to $\frac{1}{\partial t} = \frac{1}{\partial x^2}$ is $O(n^2) + O(k^2)$		
2	$2 \cdot \cdot$	Understand	4
2	Solve the equation $\frac{CU}{C} = \frac{C}{C} \frac{U}{C}$ satisfying the initial condition $u = 1$ for	Chaeistana	-
	$\partial t \partial x^2$		
	$\partial \langle u \rangle$ where $t = 0$ and the boundary and it is ∂u where u		
	$0 \le x \le 1$ when $t = 0$ and the boundary conditions, $\frac{1}{\partial x} = u$ at $x = 0$,		
	∂u		
	for all t, $\frac{\partial u}{\partial x} = -u$ at x = 1, for all t, using an explicit method and		
	employing central differences for the boundary conditions.		
3	$\partial u \partial^2 u$	Understand	4
	The equation $\frac{1}{\partial t} - \frac{1}{\partial r^2} = 0$ is approximated at the point (in,jk) by the		
	difference equation		
	$\mu - \mu = \mu - 2 \{\theta \mu + (1 - \theta) \mu \} + \mu$		
	$\frac{u_{i,j+1} - u_{i,j-1}}{u_{i,j-1}} - \frac{u_{i+1,j} - 2(0u_{i,j+1} + (1 - 0)u_{i,j-1}) + u_{i-1,j}}{2} = 0$ find the local		
	$2k$ h^2		
	truncation error at this point. Discuss the consistency of this scheme		
	with the partial differential equation when $k = rh$ where r is a positive		
	constant θ a variable parameter.		
4	$\partial u \partial^2 u$	Understand	4
	The equation $\frac{\partial t}{\partial t} = \frac{\partial r^2}{\partial r^2} = 0$ is approximated at the point (in,jk) by the		
	difference equation		
	$\mu - \mu = \mu - 2 \{ \theta \mu + (1 - \theta) \mu \} + \mu$		
	$\frac{u_{i,j+1} - u_{i,j-1}}{2} - \frac{u_{i+1,j} - 2(0 u_{i,j+1} + (1-0)u_{i,j-1}) + u_{i-1,j}}{2} = 0$ find the local		
	$2k$ h^2		
	truncation error at this point .Discuss the consistency of this scheme with		
	the partial differential equation when $k = rh^2$ where r is a positive constant		
	and θ a variable parameter.		
5	Explain necessary and sufficient condition for stability.	Understand	4
6	Explain stability criteria for derivative boundary conditions.	Understand	4

7	Investigate the stability of the linear difference, equation	Understand	3
, í	1 a	enderstand	5
	$\frac{1}{1}(u_{p,q+1} - u_{p,q}) = \frac{u}{12}(u_{p-1,q} - 2u_{p,q} + u_{p+1,q}) + bu_{p,q} $ approximating		
	κ n n 2		
	parabolic equation $\frac{\partial u}{\partial u} = a \frac{\partial^2 u}{\partial u^2} + bu$ at the point (ph ak) where a and b		
	parabolic equation $\frac{-u}{\partial t} \frac{-u}{\partial x^2} + \frac{u}{\partial u}$ at the point (pin,qk) where u and u		
	are positive constant.		
	$\partial u = \partial^2 u$	Understand	3
8	The equation $\frac{\partial u}{\partial t} - \frac{\partial u}{\partial y^2} = 0$ is approximated at the point (ih,jk) by the		
	difference equation		
	$\left(\left(\frac{u_{i,j+1}-u_{i,j-1}}{2}\right)+(1-\theta)\right)\left(\frac{u_{i,j}-u_{i,j-1}}{2}\right)-\frac{1}{2}\delta^{2}u_{i,j}=0$ find the		
	$\begin{pmatrix} 2k \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \end{pmatrix}$ $\begin{pmatrix} k \end{pmatrix}$ $h^2 = 0$ and $h^2 = 0$		
	truncation error at this point.		
	UNIT-III	I	
	HYPERBOLIC EQUATIONS		
Part	- A (Short Answer Questions)		
1	Discuss the general features of hyperbolic partial differential	Understand	5
	equations.		
2	Describe the concepts underlying Lax-Wendroff type methods.	Understand	5
3	State the explicit formula to solve the wave equation.	Understand	5
4	State first order quasi linear equation.	Understand	5
5	Give an example of hyperbolic equation.	Remember	5
6	Explain CFI condition wendroff's implicit approximation.		6
7	Explain discontinuous initial derivatives		6
8	$\partial^2 u \partial^2 u \partial^2 u \partial^2 u \partial^2 u$		6
	Determine the characteristics of the equation $\frac{\partial^2}{\partial r^2} - \frac{\partial^2}{\partial r \partial v} - 6 \frac{\partial^2}{\partial v^2} = 0$		
0	Discuss about the characteristic paths of alliptic partial differential		6
9	priscuss about the characteristic paths of emptic partial unreferitia		0
10	Discuss the numerical solution of hyperbolic equations by		6
10	method of characteristics.		0
Part	– B (Long Answer Ouestions)	I	
1	Solve $4\mu = \mu$ with the boundary conditions $\mu(0, t) = 0$, $\mu(4, t) = 0$ and the	Understand	6
	initial conditions $u(x, 0) = 0$, $u(x, 0) = v(A, x)$, taking $h = 1$ (for A time stars)		
2	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	Understand	6
2	Solve $2.5u_{xx} = u_{tt}$ for u at the pivotal points given $u(0,t) = 0$, $u(5,t) = 0$ and	Onderstand	0
	$2x \text{ for } 0 \le x \le 2.5$		
	$u_t(x,0) = 0$ u(x,0) = $10 - 2x$ for $2.5 < x < 5$ for one half period of		
	vibration		
3	Discuss the method of numerical integration along a characteristic	Understand	5
4	Explain Lax-Wendroff method.	Understand	5
5	Explain analytical solution of first order quasi linear equation.	Understand	5
		Junetotalite	2
6	Solve $25\mu = \mu$, for u at the pivotal points given $u(0,t) = 0$, $u(5,t) = 0$ and	Understand	6
	$\sum_{xx} \sum_{t} \sum_{$		

	$u_t(x,0) = 0 \ u(x,0) = \begin{cases} 20x \ for \ 0 \le x \le 1\\ 5(5-x) \ for \ 1 \le x \le 5 \end{cases}$		
7	Find the solution of the vibrating string problem $u_{\mu} = u_{\mu\nu}$, given	Understand	6
	u(x,0) = x(1-x), u(x,0) = 0, u(0,t) = 0 and $u(1,t) = 0$. Take h=k =0.1.		
	Find the solution up to $t=0.3$.		
8	Solve $4u_{xx} = u_{tt}$ with the boundary conditions $u(0,t) = 0$, $u(4, t) = 0$, and the	Understand	6
	nitial conditions $u_t(x,0) = 0$, $u(x,0) = x(4-x)$ taking $h = 1$ (for 4 time steps).		
9	A laterally insulated homogeneous bar with ends at $x = 0$ and $x = 1$ has	Understand	6
	initial temperature 0.its left end is kept at 0 whereas the temperature at		
	the right end varies sinusoidally according to $u(t,1) g(t) = \sin \frac{25}{3} \pi t$.find		
	the temperature $u(x,t)$ in the bar with $h = 0.2$ and		
	$r = 0.5$ (one period that is $0 \le t \le 0.24$		
10	Explain numerical solution of hyperbolic equations by method of characteristics.	Understand	6
Part	- C (Problem Solving and Critical Thinking Questions)		
1	$\partial u = \partial u$	Understand	5
	The function u satisfies the equation $\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0$, $0 < x < \infty$, $t > 0$ and		
	the boundary condition $u(0,t) = 2t$, $t > 0$, and the initial conditions $u(x,0)$		
	$= x(x-2), 0 \le x \le 2,$		
	$u(x,0) = 2(x-2)$, $2 \le x$ calculate the analytical solution.		
2	The function u satisfies the equation $\sqrt{x} \frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} = -u^2$ and the	Understand	5
	condition u=1 on y = 0 , $0 < x < \infty$.Use a finite difference method to calculate a first approximation to the solution.		
3	The function u satisfies the equation $x^2 u \frac{\partial u}{\partial x} + e^{-y} \frac{\partial u}{\partial y} = -u^2$ and the	Understand	5
	condition u=1 on y = 0, $0 < x < \infty$. Use a finite difference method to calculate a first approximation to the solution.		
4	The function u satisfies the equation $\partial u = \partial u = 0$	Understand	5
	The function u satisfies the equation $\frac{1}{\partial t} + \frac{1}{\partial x} = 0, \ 0 < x < \infty, t > 0$ and		
	the boundary condition $u(0,t) = 2t$, $t > 0$, and the initial conditions $u(x,0) = x(x-2)$, $0 \le x \le 2$,		
	$u(x,0) = 2(x-2)$, $2 \le x$ calculate the numerical solution using		
	the explicit Lax-wendroff equation.		
5	Describe the concepts underlying Lax-Wendroff type methods.	Remember	5
6	Use the method of characteristics to derive a solution of the quasi linear	Understand	6
	$\partial^2 u = \partial^2 u$		
	equation $\frac{\partial x^2}{\partial x^2} - u = 0$ at the first characteristic grid point between		
	$x = 0.2$ and 0.3 y > 0 where u satisfies the conditions $u = 0.2 + 5 x^2$ and		

	2.		
	$\frac{\partial u}{\partial t} = 3x$ along the initial line y = 0, for $0 \le x \le 1$.		
	∂y		
7	Explain propagation of discontinuities in first order equations.	Understand	6
8		Understand	6
	Solve $u_{tt} = u_{xx}$, given $u(x,0) = -x(4-x)$, $u_t(x,0) = u(0,t) = 0$ and $u(4,t)$		
	= 0. Take h=1.Find the solution upto 5 steps in t-direction.		
9	Solve $u_{tt} = u_{xx}$, $0 < x < 1$ t > 0 given $u(x,0) = u_t(x,0) = u(0,t) = 0$ and	Understand	6
	$u(1,t) = 100\sin\pi t$. Compute u for u for 4 times with $h = 0.25$.		
10	Solve $u_{tt} = u_{xx}$, given $u(x,0) = 10x(4-x), u_t(x,0) = 0$, $u(0,t) = 0$ and	Understand	6
	u(1,t) = 0. Take h=k =0.1. Find the solution upto t=0.5.		
	UNIT-IV		
	ELLIPTIC EQUATIONS		
Par	t - A (Short Answer Questions)		
1	Explain finite differences in polar coordinates.	Remember	7
2	Give the formulae for derivatives near a curved boundary.	Remember	7
3	Give standard five point formula.	Remember	7
4	Give diagonal five point formula	Remember	7
5	Explain discretization error.	Remember	7
6	State Laplace equation.	Remember	7
7	State Poisson's equation.	Remember	7
8	Discuss general features of elliptic partial differential equations.	Remember	7
9	Explain numerical solution of dirichlet problem.	Remember	7
10	Explain about Neumann and mixed problems.	Remember	7
Part	- B (Long Answer Questions)		
1	Solve the elliptic equation at the nodal points of the following square grid using	Understand	8
	the boundary values indicated		
	$\overline{0}$ 0 0 1		
2	Solve $u_{xx} + u_{yy} = 8x^2y^2$ for the square mesh with $u(x, y) = 0$ on the 4	Understand	8
	boundaries dividing the square into 16 subsquares and mesh length=1		
3	Solve $u_{xx} + u_{yy} = -10(x^2 + y^2 + 10)$ over the square with sides	Understand	8
	x = 0 = v, $x = 3 = v$ and $u = 0$ on the boundary and mesh length -1		
	x = y, x = y and $u = 0$ on the boundary and mean length -1		
1		1	

4	Solve the Laplace equ	uation u_{x}	$x_{x} + u_{yy}$	= 0.			Understand	8
	for the following square region having the boundary conditions					15		
	0	50	00	1000	500	0		
	1000					1000		
	2000							
	2000					2000		
	1000					1000		
						1000		
	0	50	00 10)00 5	500	0		
5	Solve the e	lliptic 1	oartial	differentia	l equatio	on $u_{xx} + u_{yy} = 0$	Understand	8
	at the pivoted p	oints of	the lower	square n	nesh to fou	ir decimals by any		
	numerical metho	od.		2				
		Г	1	2	7			
		1			4			
		2			5			
			4					
			4	5				
6	Solve the Laplace e	quation ι	$u_{xx} + u_{y}$	y = 0.			Understand	8
	for the following square region having the boundary conditions							
	0	11	.1	17	19.7	18.6		
	0					21.0		
	0					21.9		
	0					- 21		
						21		
	0					17		
	0							
	0	8.	7 12	2.1 12.8		9		
7	Summarize the an difference approxim	alysis o	f the dia Poisson	scretizatio 's equatio	on error on over a re	of the five point ectangle.	Understand	8
	Solve the elliptic equ	uation $ abla^2$	u = 0 at	the nodal	points of th	ne following square	Understand	8
8	grid using the boun	dary valu 50	es indicate	ed 00	100	50		
_		50	, 1	00	100			
		0				0		
						~		
		- 0				0		

9	Solve $\nabla^2 u = 0$ at the nodal points of the following square region given the	Understand	8
	boundary conditions.		
	0 10 20 30		
	20 40		
	40 50		
	50		
	60 60 60 60		
10	Solve $\nabla^2 u = 0$ for the square racion with the given boundary conditions	Understand	8
10	Solve $\nabla u = 0$ for the square region with the given boundary conditions.	Chiderstand	0
	20 30		
	20		
	20 40		
	30 50		
	40 50		
Part	- C (Problem Solving and Critical Thinking Questions)		
1	Solve $\nabla^2 \mu = 0$ over the square mesh of side 4 units satisfying the	Understand	8
	following boundary conditions (i) $u(0,y) = 0$ for $0 \le y \le 4$		
	(ii) $u(4,y) = 12 + y$ for $0 \le y \le 4$ (iii) $u(x,0) = 3x$ for $0 \le x \le 4$		
	(iv) $u(x, 4) = x^2$ for $0 \le x \le 4$		
2	Solve the elliptic partial differential equation $u + u = 0$ in the following	Understand	8
	square region with the boundary conditions as shown in the figure		
	- 1		
	0 0		
	0		
	0 0		
3	Solve the elliptic partial differential equation $u_{xx} + u_{yy} = 0$ in the following	Understand	8
	square region with the boundary conditions as shown in the figure		
	200 100		
	300 100		
	400 200		
	400 300		

4	Solve the Laplace equation $u_{xx} + u_{yy} = 0$.	Understand	8
	for the following square region with given boundary conditions.		
	50 100 100 100 50		
	0 0		
	0 0		
	0		
	0 0 0 0		
5	Explain about finite differences in polar coordinates.	Understand	8
6 7	Piscuss about the formulae for derivatives near a curved boundary . Explain analysis of the discretization error of the five point approximation	Understand	8
,	o Poissons equation.	Chaerstand	0
8	Solve $\nabla^2 u = 0$ in the square region bounded by x=0, x = 4, y = 0, y = 4 and	Understand	8
	with the boundary conditions $u(0, y) = 0$ $u(4, y) = 8 + 2y$ $u(x, 0) = \frac{1}{2}x^2$ and		
	$\frac{1}{2}$		
0	$\mu(\mathbf{x}, 4) = \mathbf{x}^2 \text{ taking } \mathbf{h} = \mathbf{k} = 1$	Understand	Q
9	Solve the Laplace equation $u_{xx} + u_{yy} = 0$.	Understand	0
	for the following square region having the boundary conditions		
	0 0 0		
	5 0		
	10 0		
	5		
	0		
	0 0 0		
10	Solve $\nabla^2 u = 0$ at the nodal points of the following square region given the	Understand	8
	boundary conditions.		
	2000		
	500		
	2000		
	1000 500 0 0		

	SYSTEMATIC ITERATIVE METHODS						
Part	- A (Short Answer Questions)						
1	Explain Gauss Siedel iteration method for solving a system of linear algebraic equations.	Understand	9				
2	Explain Jacobi iteration method for solving a system of linear algebraic equations.	Understand	9				
3	Define the term residual.	Understand	9				
4	Explain Successive- Over – Relaxation method.	Understand	9				
5	Explain ill –conditioned and well conditioned problem.	Understand	9				
6	State necessary and sufficient condition for the convergence of iterative methods.	Understand	9				
7	Explain Stone's implicit method.	Understand	9				
8	Explain Galerkin's method.	Understand	10				
9	Explain finite element method.	Understand	10				
10	Define sparse matrix.	Understand	10				
Part	- B (Long Answer Questions)						
1	Solve the boundary value problem $y'' + 2 = 0, 0 < x < 1$, $y(0) = y(1) = 0$ by method.	Understand	10				
2	Solve the boundary value problem	Understand	10				
	y'' - y + x = 0, 0 < x < 1, y(0) = 0, y(1) = 1 by Galerkin method.						
3	Solve the boundary value problem $y'' + y = -2x, 0 < x < 1, y(0) = y(1) = 0$ by Galerkin method	Understand	10				
4	Solve the boundary value problem	Understand	10				
	y'' + y + 2x(1 - x) = 0, 0 < x < 1, y(0) = y(1) = 0						
	By Galerkin method.						
5	Solve the system $8x + y + z + w = 14$, $2x+10y+3z+w = -8$,	Understand	9				
	x-2y-20z+3w=111,3x+2y+2z+19w = 53 by						
	Gauss Siedel iteration method.						
6	The function ϕ satisfies the equation $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + 2 = 0$ at every point	Understand	9				
	inside the square bounded by the straight lines $x = \pm 1$, $y = \pm 1$ and is zero on the boundary. Calculate a finite difference solution using a						
	square mesh of side $\frac{1}{2}$.						
7	$x_1 - 0.25x_2 - 0.25x_3 = 50$	Understand	9				
	$-0.25x_1 + x_2$ $-0.25x_4 = 50$						
	Solve the system of equations $-0.25x_{+} + x_{-} -0.25x_{-} = 25$						
	$-0.25x_{2} - 0.25x_{3} + x_{4} = 25$						
8	Solve the following system of equations using $Gauss_{-}$ Sidel iteration	Understand	9				
0	method	Onderstand	2				
	$x_1 + 9x_2 - 2x_3 = 36, 2x_1 - x_2 + 8x_3 = 121, 6x_1 + x_2 + x_3 = 107$						
9	Solve the following system of equations using Jacobi iteration method	Understand	9				
	$4x_1 + 5x_3 = 12.5$, $x_1 + 6x_2 + 2x_3 = 18.5$, $8x_1 + 2x_2 + x_3 = -11.5$						
10	Solve by Gauss Jacobi method the equations $10x-2y-3z = 205$; -2x+10y-2z = 154; $-2x-y+10z = 120$.	Understand	9				

Part - C (Problem Solving and Critical Thinking Questions)			
1	Solve by Gauss siedel iteration method the equations $9x-2y + z = 50$;	Understand	9
	x + 5y - 3z = 18; -2x + 2y + 7z = 19.		
2	Solve the Laplace equation inside the square region bounded by the lines	Understand	9
	x=0,x=4, y=0and y=4 given that $u = x^2 y^2$ on the boundary by using		
	relaxation method.		
3	Explain weighted residual method.	Understand	10
4	Discuss variational methods.		
5	Solve the system $8x + y + z + w = 14$, $2x + 10y + 3z + w = -8$,	Understand	10
	x - 2y - 20 z + 3w = 111, $3x + 2y + 2z + 19w = 53 by$		
	relaxation method.		
6	Solve by Relaxation method the system $9x-y+2z = 9$; $x + 10y-2z = 15$;	Understand	9
	2x-2y-13z = -17.		
7	Solve by Relaxation method the system $10x+2y - w = 11$;	Understand	9
	-x + 20y + 2z = 49.5; -x + 10z - w = 27.5; -y + 2z + 20w = 92.4.		
8	Solve $7.6x - 2.4y + 1.3z = 20.396$; $3.7x + 7.9y - 2.5z = 35.866$,	Understand	9
	1.9x-4.3y+8.2z=32.514 by Gauss- Jacobi method.		
9	Solve the laplace equation inside the square region bounded by the lines	Understand	9
	$x = 0$, $x = 4$, $y = 0$, $y = 4$ given that $u = x^2 y^2$ on the boundary by using		
	relaxation method.		
10	Explain Galerkin's method.	Understand	9

Prepared By:

V Subba Laxmi

⋪