

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

TUTORIAL QUESTION BANK

Course Name :	Intelligent controllers
Course Code :	BPE214
Class :	I - M. Tech ISem
Branch :	EEE
Year :	2016 - 2017
Course Faculty :	Dr. S. Vathsal

Group - I QUESTION BANK ON SHORT ANSWER QUESTION

S.No	QUESTION	BLOO TAXO YLEV	BLOOMS TAXONOM YLEVEL		E ME
	UNIT-I NEURAL NETWORKS				
1	What is meant by biological neuron ?	Evalu	iate	1	
2	What are the advantages of NN over conventional computer system?	Remer	nber	1	
3	What are the functions performed by Axon, synapse, soma, dendrite?	Remer	nber	1	
4	Mention the parts of Meculloch –Pitts model?	Remer	nber	1	
5	Mention the parts of Perceptron?	Remer	nber	1	
6	What are the characteristics of Adaline?	Remember 1			
7	Mention the difference between Auto and Hetero Association? Understand		1		
8	8 Explain Radial basis function network Remember		2		
9	What are supervised learning laws?	Remer	nber	1	
10	What are usupervised learning laws?	Remember 1,2			
11	What is meant by Reinforcement Learning	Remember 1,2			
12	Explain Back propagation in simple terms	Unders	stand	1	
Group	- II QUESTION BANK ON LONG ANSWER QUESTIONS				
1	1 Describe some attractive features of the biological neural network that make it superior to the most sophisticated Artificial Intelligence computer system for pattern recognition tasks. Analyze			2	

2	What are the main differences among the three models of Artificial Neuron ,namely, McCulloch-Pitts, perceptron, and Adaline with their Topology, give a few basic topological structures of artificial neural networks.	Understand	1
3	Identify supervised and unsupervised basic learning laws and compare Least mean square (LMS), perceptron and delta learning laws.	Analyze	2
4	Design networks using M_P neurons to realize the following logic functions Using + 1 or - 1 for weights. i) $s(a1,a2,a3) = a1a3 + a2a3 + a1(bar)a3$ (bar) ii) $s(a1,a2,a3) = a1a2a3$	Remember	1
5	Explain briefly the terms cell body,axon,synapse,dendrite,and neuron with reference to biological Neural Network.	Remember	1
6	Draw a block diagram each to describe i) supervised learning ii) unsupervised learning iii) Reinforcement learning iv) competitive learning	Understand	2
7	Enumerate all the sixteen steps with Equations for implementing a Back Propagation algorithm using a computational flow chart.	Evaluate	1
8	Prove that XOR function does not have a Linear separation Law.Draw an ANN for XOR problem.	understand	2
9	A fully connected feedforward network has 10 source nodes, 2 hidden layers, one with 4 neurons and the other with 3 neurons and a single output neuron. Construct an architectural graph of this network.	Evaluate	2
10	A neuron 'N' receives inputs from four other Neurons whose activity levels are 10,-20,4 and -2. The respective synaptic weights of neuron N are 0.8,0.2,-1.0,and -0.9. Compute the output of neuron N when a) the neuron is linear b) The neuron is represented by a Mccullah- Pitts model. Assume that the bias applied to the neuron is zero.	Remember	1
	Group – I QUESTION BANK ON SHORT ANSWER QUESTION UNIT-II		
	MODELS AND CONTROL SCHEMES IN ANN		
1	Explain activation and synaptic dynamics.?	Analyze	2
2	What is Auto Association and Hetero Association?	Understand	1
3	Show that Lyapunov function represents some form of Energy of an NN	Remember	2
4	What do you understand by Bi-directional Associative Memory	Analyze	1

5	What is Kohonen self organizing feature map	understand	2
	······································		
6	What is recall and cross talk in Neural Networks ?	Understand	1
7	Give an example of Maxnet, Mexican hat and Hamming net	understand	2
8	What are the two general methods of recall of information in Neural Networks	Analyze	1
9	What are different types of Hebbian learning?	understand	2
10	What are different types of Competitive learning?	Analyze	1
	Group - II QUESTION BANK ON LONG ANSWER QUESTIONS		
1	Explain Three types of Activation functions in ANN with their mathematical properties involving Sigmoid functions	Analyze	1
2	Explain INSTAR (Winner-take-all)and outstar learning laws with mathematical model and diagrams	Analyze	1
3	What do you understand by	Understand	2
	1) Cohen- Grossberg Theorem 2) Cohen –Grossberg –Kosko theorem		
	3)Adaptive bidirectional associative memory theorem		
4	Consider a stochastic unit with bipolar [-1,1] output function. The probability distribution for the unit is given by	Understand	2
	P(s=1/x)=1/(1+exp(-2tx)). If the learning of the stochastic unit is based on gradient descent on the error between the desired and the average output, show that the resulting learning law is the same as the learning law obtained using delta learning for a deterministic unit with hyperbolic tangent as the output function		
5	What do you understand by Travelling Salesman Problem? Enumerate a procedure to solve it using Hopfield network.	understand	2
6	Draw a block diagram each to describe i) supervised learningii) unsupervised learningiii) Reinforcement learningiv) competitive learning	Analyze	1
7	i)Prove that XOR function does not have a linear separation law	Analyse	2
	ii)Design NN usingMP neurons to realize the following logic function using +,- 1 for the weights.		
	s(a1,a2,a3)=a1a2a3		

8	Compare the performance of a computer and that of a biological network interms of speed of processing, sze and complexity, storage, format tolerance and control mechanism	understand	2
9	 What are the merits and demerits of supervised and unsupervised learning? List the features that distinguish Delta rule and Hebbs rule. 	understand	2
10	Write short notes on a) XOR problem b)Associative memory c)Linear and nonlinear separation d)Self organizing feature map	Analyze	1
	Group – I QUESTION BANK ON SHORT ANSWER QUESTION UNIT III FUZZY LOGIC AND ITS CONTROLLERS		
1	Define crisp and fuzzy sets	Understand	2
2	Define membership function and give some examples	understand	2
3	Explain Fuzzification done to solve a problem	Analyze	1
4	What is meant by defuzzification	Understand	2
5	Describe three main techniques of Defuzzification	Understand	2
6	Give a few classic fuzzy set operations	Analyze	1
7	What do you understand by Neuro fuzzy inference system	Analyze	1
8	Draw a block diagram of Fuzzy logic control system	Understand	2
9	What are the properties of crisp sets	Analyze	1
10	What are the properties of Fuzzysets	Analyze	1
	Group - II QUESTION BANK ON LONG ANSWER QUESTIONS		

1	 i) Draw a generalized flow chart for the design of FLC ii) Illustrate the formation of rules and decision making logic with the help of a case study 	Analyze	1
2	What is Fuzzification? Illustrate the procedure with the help of an Example	Understand	2
3	What are the common methods of defuzzification ? Illustrate the procedure with the help of an Example	Understand	2
4	Let $A=((x1,0.5),(x2,0.7),(x3,0))$ and B=(x1,0.8),(x2,0.2),(x3,1) are fuzzysets with associated membership values. Find AUB(x1), AUB)(x2),AUB)(x3)	Analyse	1
5	If Ma(x)=1/(1+10x*x) is a membership function of a fuzzy set A(x). Compute the complement of Fuzzyset A(x)	Analyse	1
6	Given Two universe of discourse U1=U2=(1,2,,10) and Two fuzzy sets(umbers) defined by "Approximately 2"=0.5/1+1/2+0.5/3 and "Approximately 4"= 0.8/2+0.9/3+1/4. It is desired to find "approximately8"	Understand	2
7	Consider Two fuzzy sets A1=0.2/x1+0.9/x2 and A2=0.3/y1+0.5/y2+1/y3. Determine the fuzzy relation between these sets.	Analyze	1
8	Consider two fuzzy relations R=[0.6 0.8] and [0.7 0.9] S=[0.3 0.1] [0.2 0.8] it is desired to evaluate RoS and SoR where XoX is maxmin composition	Analyse	1
9	 Describe two common methods of fuzzy logic Stability 1) Lyapunov Stability 2) Stability via Interval matrix Method. 	Analyse	1

10	Consider the following Fuzzy system	Analyse	1
	P1:IF x(k) is A1 THEN x1(k+!)=0.85x(k)-0.25x(k- 1)+0.35u(k)		
	P2:IF x(k)is A2 THEN x2(k+1)=0.56x(k)-0.25x(k-1)+ 2.22u(k)		
	Assume two different fuzzy sets for A1 and A2 and bounded u(k), check the stability of this system.		
	Group – I QUESTION BANK ON SHORT ANSWER QUESTION UNIT IV		
	GENETIC ALGORITHMS		
1	What are the advantages of genetic algorithm over conventional approach	Analyze	1
2	In GA explain the operation of Encoding	understandin g	2
3	How is fitness function defined in GA	Understandi ng	2
4	Explain Selection Operation in GA	Understandi ng	2
5	What is mutation in GA and how it helps?	Understandi ng	2
6	How crossover operation helps GA	Understandi ng	2
7	Give an example of combinatorial problem	Understandi ng	2
8	How will you perform genetic operations on a binary string ?	Analyse	1
9	Can you apply GA to travelling Salesmen Problem	Analyze	

10	Give an outline to solve TimeTable problem using GA	Analyse	1
	Group – II QUESTION BANK ON LONG ANSWER QUESTIONS		
1	Name and describe the main features of Genetic Algorithm(GA)	Understand	2
2	A budget airline company operates 3 planes and employs 5 cabin crews. Only one crew can operate on any plane on a single day and each crew cannot work for more than two days in a row. The company uses all planes everyday. Agenetic algorithm is used to workout the best combination of crews on any particular day, Suggest i) Chromosome ii)Alphabet iii) fitness function for this problem	Analyse	1
3	Suppose a genetic algorithm uses chromosomes of the form $x = abcdefgh$ with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four individuals with the following chromosomes: $x_1 = 65413532$ $x_2 = 87126601$ $x_3 = 23921285$ $x_4 = 41852094$ a) Evaluate the fitness of each individual, showing all your workings, and arrange them in order with the fittest first and the least fit last.	Understand	2

4	Consider the problem of finding the shortest route through several cities.	Analyse	1
	such that each city is visited only once and in the end return to the		
	city (the Travelling Salesman problem). Suppose that in order to solve		
	problem we use a genetic algorithm, in which genes represent links		
	pairs of cities. For example, a link between London and Paris is		
	represented by a single gene 'LP'. Let also assume that the direction in which we		
	travel is not important, so that LP = PL.		
	a) How many genes will be used in a chromosome of each individual if the number of cities is 10?		
5	In the above problem	Understand	2
	b) How many genes will be in the alphabet of the algorithm?		
	by now many genes will be in the alphabet of the algorithm.		
6	In problem 3 perform	Analyse	1
	Perform the following crossover operations:		
	 i) Cross the fittest two individuals using one-point crossover at the middle point 		
	ii)Cross the second and third fittest individuals using a two-point crossover (points b and f)		
	iii) Cross the first and third fittest individuals (ranked 1st and 3rd)		
7	Define_ the terms chromosome, fitness function, crossover and mutation as used in	Analyse	1
	genetic algorithms. Explain how genetic algorithms work, in English or		
	in pseudocode		
8	A genetic algorithm is to be used to evolve a binary string of length n containing only 1s. The initial population is a randomly generated set of	Understand	2
	binary strings of length n.		

9	Suppose symmetr string wil (n 1) 1 i. and a 1 a 110011 i randomly generate i. Give a	the problem is to evolve a binary string of length n which is ic.If the string positions are numbered from 0, then a symmetric I have a 1 in position i if and only if there is a 1 in position For example, 001100 is symmetric since it has a 1 at index 2 at index $(6\Box 1)2 = 3$. Similarly, s symmetric, and 011011 is not. The initial population is a / ed set of binary strings of length n, where n is an even number. suitable fitness function for this problem.	understand	2
10	In the ab Will the c have a h answer If the pop search a	ove problem off_spring of parents with a high fittness value generally also igh _fitness value, given your _fitness function? Explain your oulation size in a genetic algorithm is restricted to 1, what lgorithm does it correspond to? Explain your answer	Analyze	1
		LINIT_V		
		APPLICATIONS		
		Group I and Group II put		
		together		
1	How will	you apply artificial Neural Networks in Pattern Classification	Understand	2
	i)Recogn	ition of Olympic symbols		
	ii)Recogn	ition of printed Characters		
	iii)Makii	ng an opeing bid in Contract Bridge Game		
2	How will	you apply Associate memories	Analyze	1
	i)	Image pattern recall		
	ii)	Content addressable memory		
	iii)	Information retrieval		
3	How will	you apply NN optimization to	Understand	2
	i)	Graph bipartition Problem		
	ii)	Linear Programming Problem		
	iii)	Travelling salesman problem		
	iv)	Smoothing images with discontinuities		

4	How w	ill you apply NN to	Understand	2
	i)	Vector quantization		
	ii)	Control Applications		
	iii)	Decision Making		
5	How wi	ill you apply NN to following speech applications	Analyze	
	i)	Net Talk		
	ii)	Phonic Typewriter		
	iii)	Vowel classification		
	iv)	Recognition of consonant (CV) segments		
	<u>v)</u>	Recognition of stop CV utterances in Indian Languages	XX 1 / 1	
6	How will	I you apply NN to following Image Processing Applications	Understand	2
	i)	Recognition of handwritten digits		
	ii)	Image segmentation		
	iii)	Texture classification and segmentation		
7	How will	you apply Fuzzy Logic to	Analyse	1
,	i)	Predictive constrained control	1 1101 9 50	
	ii)	PID control		
	iii)	Washing machines		
	iv)	Air conditioning control		
	1.	An conditioning control		
8	How w	ill you apply Fuzzy Logic to Intgrated Modern Control involving	Understand	2
	i)	Supervision		
	ii)	Local Control		
	iii)	Opimization		
	iv)	Monitoring		
9	Evolain l	now Fuzzy logic works in	Analyse	1
,	i)	Antilock braking system	i illui j 50	1
	ii)	Wah based Fuzzy Neural Networks for Stock Prediction		
	iii)	Neuro Fuzzy system for Speech recognition		
	III)	Actio Fuzzy system for specen recognition.		
10	i)Give a f	lowchart program to solve Travelling salesmen Problem using	Understand	2
	GENETI	C ALGORITHM		